def autoencoder_old(path_train, path_valid, batch_size, epochs, path_save, option): #!/usr/bin/env python3 # -*- coding: utf8 -*- import ctypes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_ENABLE_XLA'] = '1' os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1' os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1' os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1' import numpy as np import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) except RuntimeError as e: print(e) from keras.models import Sequential from keras.layers import InputLayer, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D from keras.activations import selu from keras.constraints import max_norm from keras.optimizers import Adam, SGD from keras.utils import to_categorical, normalize from keras.callbacks import ModelCheckpoint from keras.datasets import mnist from keras import losses from keras import backend as K import matplotlib.pyplot as plt import numpy as np import random #custom generator import from DataGenerator import DataGenerator # GET DATA # def getData(): # Datasets # path_train = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Train' # path_valid = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Validation' train = os.listdir(path_train) train = sorted(train) valid = os.listdir(path_valid) valid = sorted(valid) # # def batch_generator(path, batch_size): # files = os.listdir(path) # files = sorted(files,key=lambda x: int(x.split("_",2)[1])) # ids = np.arange(len(files)) # np.random.shuffle(ids) # # batch = [] # batch_counter = 0 # # while batch_counter < 10:#np.floor(len(ids)/batch_size): # # while True: # # np.random.shuffle(ids) # X = list() # Y = list() # # for i in ids: # batch.append(i) # file = files[i] # # try: # loadfile = np.load(path + '/' + file) # except Exception as e: # print("Couldn't load file: " + str(file) + "\nError: " + str(e)) # # xl = np.nan_to_num(loadfile['x'], nan=0.0001, posinf=1000, neginf=-1000) # yl = np.nan_to_num(loadfile['y'], nan=0.0001, posinf=1000, neginf=-1000) # xl = (xl-np.mean(xl))/np.std(xl) # yl = (yl-np.mean(xl))/np.std(xl) # X.extend(xl) # Y.extend(yl) # # if len(batch)==batch_size: # yield np.array(X), np.array(Y) # batch = [] # X = list() # Y = list() # # batch_counter += 1 # break # # train_generator = batch_generator(path_train, batch_size) # valid_generator = batch_generator(path_valid, batch_size) train_generator = DataGenerator(path_train, option, batch_size, True) valid_generator = DataGenerator(path_valid, option, batch_size, True) # BUILD MODEL max_norm_value = 100.0 model = Sequential([ # InputLayer(input_shape=(256,128,1)), # BatchNormalization(axis=1), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", input_shape=(256, 128, 1), name="enc_conv1"), LeakyReLU(), # BatchNormalization(), Dropout(0.3, name="enc_drop1"), MaxPooling2D(pool_size=(2,2), name="enc_pool1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool3"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool4"), Flatten(), Dense(units = 8192), Reshape((32,16,16)), UpSampling2D(size=(2,2), name="dec_up1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"), LeakyReLU(), UpSampling2D(size=(2,2), name="dec_up2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"), LeakyReLU(), Dropout(0.3, name="dec_drop1"), UpSampling2D(size=(2,2), name="dec_up3"), Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation='linear', kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3") ]) # opt = Adam(lr=0.000001) model.compile(loss='mape', optimizer='adam', metrics=['mse', 'accuracy']) # MODEL Train if not os.path.exists("weights_cnn"): try: os.mkdir("weights_cnn") except Exception as e: print("Konnte Ordner für Gewichte nicht erstellen" + str(e)) filepath = "weights_cnn/weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='loss', verbose=0, save_best_only=True, mode='min' ) model.summary() history = model.fit(train_generator, steps_per_epoch = int(np.floor(len(train) / batch_size)), epochs = epochs, validation_data=valid_generator, validation_steps = int(np.floor(len(valid) / batch_size)), use_multiprocessing=True) model.summary() model.save(path_save + '/cnn_base_whole.h5') plt.style.use("ggplot") plt.figure() plt.plot(history.history["loss"], label="train_loss") plt.plot(history.history["val_loss"], label="val_loss") plt.title("Training Loss and Accuracy") plt.xlabel("Epochs") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(path_save + '/testrun.png', dpi=400) plt.show()