def autoencoder_old(path_train, path_valid, batch_size, epochs, path_save): #!/usr/bin/env python3 # -*- coding: utf8 -*- import ctypes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_ENABLE_XLA'] = '1' os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1' os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1' os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1' import numpy as np import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) except RuntimeError as e: print(e) from keras.models import Sequential from keras.layers import InputLayer, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D from keras.activations import selu from keras.constraints import max_norm from keras.optimizers import Adam, SGD from keras.utils import to_categorical, normalize from keras.callbacks import ModelCheckpoint from keras.datasets import mnist from keras import losses from keras import backend as K import matplotlib.pyplot as plt import numpy as np import random # GET DATA # def getData(): # Datasets # path_train = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Train' # path_valid = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Validation' train = os.listdir(path_train) train = sorted(train) valid = os.listdir(path_valid) valid = sorted(valid) # partition = {'train': train, # 'validation': valid} # labels = [] # for file in train: # np.load(path_train + '/' + file) # print(partition) # train_file = np.load(path_train + '/' + train[0]) # ids_train = np.arange(np.size(train_file['x'],0)) # print(ids_train) # batch_size = 64 def batch_generator(files, path, batch_size): i = 0 while True: X = list() y = list() # for b in range(batch_size): if i == len(files): i = 0 random.shuffle(files) file = files[i] print("loading file " + str(i) + " : " + str(file)) try: loadfile = np.load(path + '/' + file) except Exception as e: print("Couldn't load file: " + str(file) + "\nError: " + str(e)) ids = np.arange(np.size(loadfile['x'],0)) batch = [] batch_counter = 0 np.random.shuffle(ids) print(ids.shape) print(ids) # while batch_counter < np.floor(len(ids)/batch_size): for id in ids: batch.append(id) xl = np.nan_to_num(loadfile['x'][id,:,:,:], nan=1, posinf=500, neginf=-500) yl = np.nan_to_num(loadfile['y'][id,:,:,:], nan=1, posinf=500, neginf=-500) xl = (xl-np.mean(xl))/np.std(xl) yl = (yl-np.mean(xl))/np.std(xl) X.append(xl) y.append(yl) if len(batch) == batch_size: print(batch) yield np.array(X), np.array(y) print(np.array(X).shape, np.array(y).shape) batch = [] X = list() y = list() # break #batch = [] # batch_counter += batch_size i += 1 # print(np.array(X).shape,np.array(y).shape) # yield np.array(X), np.array(y) # def load_data(loadfile,ids): # X = [] # Y = [] # # for i in ids: # # x = loadfile['x'][i,:,:,:] # y = loadfile['y'][i,:,:,:] # # X.append(x) # Y.append(y) # # print("X: " + str(np.array(X).shape)) # print("Y: " + str(np.array(Y).shape)) # return np.array(X), np.array(Y) # train_generator = batch_generator(ids, batch_size = 10) train_generator = batch_generator(train, path_train, batch_size) # valid_generator = batch_valid_generator(ids_valid, batch_size) valid_generator = batch_generator(valid, path_valid, batch_size) # for X, Y in train_generator: # print(X.shape, Y.shape) # return train_generator, valid_generator # BUILD MODEL max_norm_value = 100.0 model = Sequential([ # InputLayer(input_shape=(256,128,1)), # BatchNormalization(axis=1), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", input_shape=(256, 128, 1), name="enc_conv1"), LeakyReLU(), # BatchNormalization(), Dropout(0.3, name="enc_drop1"), MaxPooling2D(pool_size=(2,2), name="enc_pool1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool3"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool4"), Flatten(), Dense(units = 8192), Reshape((32,16,16)), UpSampling2D(size=(2,2), name="dec_up1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"), LeakyReLU(), UpSampling2D(size=(2,2), name="dec_up2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"), LeakyReLU(), Dropout(0.3, name="dec_drop1"), UpSampling2D(size=(2,2), name="dec_up3"), Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation='linear', kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3") ]) # opt = Adam(lr=0.000001) model.compile(loss='mape', optimizer='adam', metrics=['mse', 'accuracy']) # MODEL Train if not os.path.exists("weights_cnn"): try: os.mkdir("weights_cnn") except Exception as e: print("Konnte Ordner für Gewichte nicht erstellen" + str(e)) filepath = "weights_cnn/weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='loss', verbose=0, save_best_only=True, mode='min' ) model.summary() history = model.fit(train_generator, steps_per_epoch = len(train), epochs = epochs, validation_data=valid_generator, validation_steps = len(valid), use_multiprocessing=False) model.summary() model.save(path_save + '/cnn_autoencoder_model.h5') plt.style.use("ggplot") plt.figure() plt.plot(history.history["loss"], label="train_loss") plt.plot(history.history["val_loss"], label="val_loss") plt.title("Training Loss and Accuracy") plt.xlabel("Epochs") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(path_save + '/testrun.png', dpi=400) plt.show()