#!/usr/bin/env python3 # -*- coding: utf8 -*- import ctypes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_ENABLE_XLA'] = '1' os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1' os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1' os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1' import numpy as np from tensorflow.keras.models import Sequential import tensorflow.keras import os import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) except RuntimeError as e: print(e) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D from tensorflow.keras.activations import selu from tensorflow.keras.constraints import max_norm from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.utils import to_categorical, normalize from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.datasets import mnist from tensorflow.keras import losses from tensorflow.keras import backend as K import matplotlib.pyplot as plt import numpy as np # GET DATA # def getData(): # Datasets path_train = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Train' path_valid = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Validation' train = os.listdir(path_train) train = sorted(train) print(len(train)) valid = os.listdir(path_valid) valid = sorted(valid) print(len(valid)) # partition = {'train': train, # 'validation': valid} # labels = [] # for file in train: # np.load(path_train + '/' + file) # print(partition) # train_file = np.load(path_train + '/' + train[0]) # ids_train = np.arange(np.size(train_file['x'],0)) # print(ids_train) batch_size = 10 def batch_generator(files, path, batch_size): i = 0 # while True: # for file in files: file = files[i] print(file) loadfile = np.load(path + '/' + file) ids = np.arange(np.size(loadfile['x'],0)) batch = [] batch_counter = 0 np.random.shuffle(ids) # while batch_counter < np.floor(len(ids)/batch_size): while True: for i in ids: batch.append(i) if len(batch) == batch_size: yield load_data(loadfile,batch) batch = [] batch_counter += batch_size # i += 1 # def batch_valid_generator(ids, batch_size): def load_data(loadfile,ids): X = [] Y = [] for i in ids: x = loadfile['x'][i,:,:,:] y = loadfile['y'][i,:,:,:] X.append(x) Y.append(x) return np.array(X), np.array(Y) # train_generator = batch_generator(ids, batch_size = 10) train_generator = batch_generator(train, path_train, batch_size) # print(train_generator.get_next().shape) # print(train_generator.get_next().shape) # for X,Y in train_generator: # print(X.shape,Y.shape) # valid_generator = batch_valid_generator(ids_valid, batch_size) valid_generator = batch_generator(valid, path_valid, batch_size) # return train_generator, valid_generator # BUILD MODEL max_norm_value = 100.0 model = Sequential([ Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", input_shape=(256, 128, 1), name="enc_conv1"), LeakyReLU(), Dropout(0.3, name="enc_drop1"), MaxPooling2D(pool_size=(2,2), name="enc_pool1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool3"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"), LeakyReLU(), Flatten(), Dense(units = 8192), Dense(units = 8192), Reshape((32,16,16)), UpSampling2D(size=(2,2), name="dec_up1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"), LeakyReLU(), UpSampling2D(size=(2,2), name="dec_up2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"), LeakyReLU(), Dropout(0.3, name="dec_drop1"), UpSampling2D(size=(2,2), name="dec_up3"), Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation='linear', kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3") ]) # opt = Adam(lr=0.000001) model.compile(loss='mse', optimizer='adam', metrics=['mape', 'accuracy']) # MODEL Train if not os.path.exists("weights_cnn"): try: os.mkdir("weights_cnn") except Exception as e: print("Konnte Ordner für Gewichte nicht erstellen" + str(e)) filepath = "weights_cnn/weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='loss', verbose=0, save_best_only=True, mode='min' ) model.summary() history = model.fit_generator(train_generator, steps_per_epoch = 1, epochs = 5, validation_data=valid_generator, validation_steps = 1, use_multiprocessing=True) model.summary() model.save('cnn_autoencoder_model.h5')