def masktraining_skip_2chan_1enc(): # initializing #!/usr/bin/env python3 # -*- coding: utf8 -*- import ctypes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_ENABLE_XLA'] = '1' os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1' os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1' os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1' import numpy as np import tensorflow as tf from tensorflow import keras from keras.layers import Add, Multiply, Input, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D from keras.models import Model from keras.constraints import max_norm from keras.optimizers import Adam, SGD from keras.utils import to_categorical, normalize from keras.callbacks import ModelCheckpoint from keras import losses from keras import backend as K import matplotlib.pyplot as plt import random # checking for gpus and using it/them gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) except RuntimeError as e: print(e) # custom generator import from Generators.MaskGenerator3_realimag_1enc import DataGenerator len_train = glob(path_train + '/**/*.npz', recursive=True) len_train = len(len_train) len_valid = glob(path_valid + '/**/*.npz', recursive=True) len_valid = len(len_valid) # generators for train and validation data train_generator = DataGenerator(path_train, option, reduction_divisor, len_train, framelength, batch_size, True) valid_generator = DataGenerator(path_valid, option, reduction_divisor, len_valid, framelength, batch_size, True)