def autoencoder_old(path_train, path_valid, batch_size, epochs, path_save_model, path_weights_model, plot_name, option, reduction_divisor): # initializing #!/usr/bin/env python3 # -*- coding: utf8 -*- import ctypes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_ENABLE_XLA'] = '1' os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1' os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1' os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1' import numpy as np import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) except RuntimeError as e: print(e) from keras.models import Sequential from keras.layers import InputLayer, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D from keras.activations import selu from keras.constraints import max_norm from keras.optimizers import Adam, SGD from keras.utils import to_categorical, normalize from keras.callbacks import ModelCheckpoint from keras.datasets import mnist from keras import losses from keras import backend as K import matplotlib.pyplot as plt import numpy as np import random #custom generator import from Generators.DataGenerator_whole import DataGenerator train = os.listdir(path_train) train = sorted(train,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5]))) valid = os.listdir(path_valid) valid = sorted(valid,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5]))) train_generator = DataGenerator(path_train, option, reduction_divisor, batch_size, True) valid_generator = DataGenerator(path_valid, option, reduction_divisor, batch_size, True) # BUILD MODEL max_norm_value = 100.0 model = Sequential([ InputLayer(input_shape=(260,128,1)), BatchNormalization(), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv1"), LeakyReLU(), Dropout(0.3, name="enc_drop1"), MaxPooling2D(pool_size=(2,2), name="enc_pool1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool3"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"), LeakyReLU(), MaxPooling2D(pool_size=(2,2), name="enc_pool4"), Flatten(), Dense(units = 4352), Reshape((17,8,32)), UpSampling2D(size=(2,2), name="dec_up1"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"), LeakyReLU(), UpSampling2D(size=(2,2), name="dec_up2"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"), LeakyReLU(), UpSampling2D(size=(2,2), name="dec_up3"), Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3"), LeakyReLU(), Dropout(0.3, name="dec_drop1"), UpSampling2D(size=(2,2), name="dec_up4"), Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation="linear", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv4") ]) # opt = Adam(lr=0.000001) model.compile(loss='mse', optimizer='adam', metrics=['mape', 'accuracy']) # MODEL Train if not os.path.exists(path_weights_model): try: os.mkdir(path_weights_model) except Exception as e: print("Konnte Ordner für Gewichte nicht erstellen" + str(e)) filepath = path_weights_model + "/weights-{epoch:02d}-{loss:.4f}.hdf5" checkpoint = ModelCheckpoint( filepath, monitor='loss', verbose=0, save_best_only=True, mode='min' ) model.summary() history = model.fit(train_generator, steps_per_epoch = int(np.floor(len(train) // reduction_divisor / batch_size)), epochs = epochs, validation_data=valid_generator, validation_steps = int(np.floor(len(valid) // reduction_divisor / batch_size)), callbacks=[checkpoint], use_multiprocessing=True) model.summary() model.save(path_save_model) index = path_save_model.split("/") path_save_nomodel = '/'.join(index[0:-1]) loss_history = history.history["loss"] mape_history = history.history["mape"] accuracy_history = history.history["accuracy"] val_loss_history = history.history["val_loss"] val_mape_history = history.history["val_mape"] val_accuracy_history = history.history["val_accuracy"] dict_history = {'loss':loss_history, 'mape':mape_history, 'accuracy':accuracy_history, 'val_loss':val_loss_history, 'val_mape':val_mape_history, 'val_accuracy':val_accuracy_history} np.save(path_save_nomodel + '/' + plot_name, dict_history) plt.style.use("ggplot") plt.figure() plt.plot(history.history["loss"], label="train_loss") plt.plot(history.history["val_loss"], label="val_loss") plt.title("Training Loss and Accuracy") plt.xlabel("Epochs") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") index = path_save_model.split("/") path_save_nomodel = '/'.join(index[0:-1]) plt.savefig(path_save_nomodel + '/' + plot_name + '.png', dpi=400) plt.show() return