def plot_net_performance(X_predict, Y_predict, X_predicted, predictionError): import matplotlib.pyplot as plt plt.subplot(2,2,1) plt.title('dbmixed') plt.imshow(X_predict, interpolation='nearest', aspect='auto') plt.colorbar() plt.subplot(2,2,2) plt.title('dbmusic') plt.imshow(Y_predict, interpolation='nearest', aspect='auto') plt.colorbar() plt.subplot(2,2,3) plt.title('prediction') plt.imshow(X_predicted, interpolation='nearest', aspect='auto') plt.colorbar() plt.subplot(2,2,4) plt.title('predictionerror') plt.imshow(predictionError, interpolation='nearest', aspect='auto') plt.colorbar() plt.show() def plot_net_logerr(logerr_mean_whole, logerr_over_whole, logerr_under_whole, logerr_var_whole): import matplotlib import matplotlib.pyplot as plt import numpy as np labels = ['mean','over','under','var'] logerr_mean = np.mean(logerr_mean_whole) logerr_over = np.mean(logerr_over_whole) logerr_under = np.abs(np.mean(logerr_under_whole)) logerr_var = np.mean(logerr_var_whole) means = [logerr_mean, logerr_over, logerr_under, logerr_var] x = np.arange(len(labels)) width = 0.35 fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, means, width, label='CNN_Noise') ax.set_ylabel('Mittelwerte') ax.set_title('Mittelwerte logerr-Auswertung') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() fig.tight_layout() plt.show()