#!/usr/bin/env ipython3 # initialization # --------------------------------------------------------------------------------------------------------------------------------------------------- length_file = 2.3 SNR_matrix = [-10,0,10] option = 'most' path_s = '/media/aneumann/Harddisk/Bachelorarbeit/TIMIT/timit_16kHz_wav' path_m = '/media/aneumann/Harddisk/Bachelorarbeit/MedleyDB/Audio' path_save = '/media/aneumann/Harddisk/Bachelorarbeit/BATest' # path_s = '/ba/TIMIT/timit_16kHz_wav_concatenated/train' # path_m = '/ba/MedleyDB/Audio' # path_save = '/ba/BATest' testname = '/test_skip_5' pattern = "*.wav" split = 0.8 # Abspeichern path_save_augmentation = path_save + '/Gemischte_Signale' # Preprocessing # --------------------------------------------------------------------------------------------------------------------------------------------------- path_load = path_save_augmentation path_save_preprocessing = path_save + '/test_framelength/Preprocessing' option = 'music' framelength = 5 # Neuronales Netz trainieren # --------------------------------------------------------------------------------------------------------------------------------------------------- path_train = path_save_preprocessing + '/Train' path_valid = path_save_preprocessing + '/Validation' batch_size = 20 epochs = 100 path_save_model = path_save + testname + '/cnn_skip_5_100epochs.h5' path_weights_model = path_save + testname + '/cnn_skip_5_100epochs_weights' plot_name = 'testrun_100epochs' from Net_Topology.Skip_Autoencoder import skip_autoencoder # print('Training CNN Autoencoder ...') # skip_autoencoder(path_train, path_valid, batch_size, epochs, path_save_model, path_weights_model, plot_name, option) # Prediction # --------------------------------------------------------------------------------------------------------------------------------------------------- path_data = path_save_preprocessing path_save_prediction = path_save + testname + '/Predict_skip_5_100epochs' option_dir = 'test' # or 'train' or 'valid' # option2 = framelength weight_path = '/media/aneumann/Harddisk/Bachelorarbeit/BATest/test_skip_5/cnn_skip_5_100epochs_weights/weights-92-450.2259.hdf5' from Prediction.Prediction_skips import skips_predict print('Predicting: CNN ...') skips_predict(path_save_model, path_data, path_save_prediction, option_dir, option, weight_path) # Auswertung # --------------------------------------------------------------------------------------------------------------------------------------------------- option_audio = 'noaudiosave' path_files = path_save_augmentation path_predicted = path_save_prediction path_save_ausw = path_save + testname + '/Auswertung_skip_5_100epochs' K_sub = 4 I_sub = 4 from Auswertung.Auswertung import auswertung_framelength print('Auswertung CNN ...') auswertung_framelength(path_files, path_predicted, path_save_ausw, K_sub, I_sub, option ,option_audio, option_dir)