import os length_file = 2.3 SNR_matrix = [-10,0,10] option = 'most' path_s = '/media/aneumann/Harddisk/Bachelorarbeit/TIMIT/timit_16kHz_wav' path_m = '/media/aneumann/Harddisk/Bachelorarbeit/MedleyDB/Audio' path_save = '/media/aneumann/Harddisk/Bachelorarbeit/BATest' # path_s = '/ba/TIMIT/timit_16kHz_wav_concatenated/train' # path_m = '/ba/MedleyDB/Audio' # path_save = '/ba/BATest' testname = '/test_whole' pattern = "*.wav" split = 0.8 path_save_augmentation = path_save + '/Gemischte_Signale' option = 'music' path_train = path_save_augmentation + '/Train' path_valid = path_save_augmentation + '/Validation' batch_size = 20 epochs = 1 reduction_divisor = 10 from Generators.DataGenerator_whole import DataGenerator # train = os.listdir(path_train) # train = sorted(train,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5]))) # valid = os.listdir(path_valid) # valid = sorted(valid,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5]))) train_generator = DataGenerator(path_train, option, reduction_divisor, batch_size, True) # valid_generator = DataGenerator(path_valid, option, reduction_divisor, batch_size, True) for X, Y in train_generator: print(X.shape, Y.shape)