From 09120e1261e2d816b6e226f98133d466540b69f2 Mon Sep 17 00:00:00 2001
From: Ian Bell <ian.bell@nist.gov>
Date: Mon, 3 May 2021 19:04:45 -0400
Subject: [PATCH] Add CPA for pure fluids

---
 include/teqp/models/CPA.hpp | 222 ++++++++++++++++++++++++++++++++++++
 src/tests/catch_tests.cxx   |  27 +++++
 2 files changed, 249 insertions(+)
 create mode 100644 include/teqp/models/CPA.hpp

diff --git a/include/teqp/models/CPA.hpp b/include/teqp/models/CPA.hpp
new file mode 100644
index 0000000..eff4411
--- /dev/null
+++ b/include/teqp/models/CPA.hpp
@@ -0,0 +1,222 @@
+#pragma once
+
+template<typename X> auto POW2(X x) { return x * x; };
+template<typename X> auto POW3(X x) { return x * POW2(x); };
+
+enum class association_classes {not_set, a1A, a2B, a3B, a4C, not_associating};
+enum class radial_dist { CS, KG, OT };
+
+/// Function that calculates the association binding strength between site A of molecule i and site B on molecule j
+template<typename BType, typename TType, typename RhoType, typename VecType>
+auto get_DeltaAB_pure(radial_dist dist, double epsABi, double betaABi, BType b_cubic, TType T, RhoType rhomolar, const VecType& molefrac) {
+
+    using eta_type = std::common_type_t<decltype(rhomolar), decltype(b_cubic)>;
+    eta_type eta;
+    eta_type g_vm_ref;
+
+    // Calculate the contact value of the radial distribution function g(v)
+    switch (dist) {
+        case radial_dist::CS: {
+            // Carnahan - Starling EOS, given by Kontogeorgis et al., Ind.Eng.Chem.Res. 2006, 45, 4855 - 4868, Eq. 4a and 4b:
+            eta = (rhomolar / 4.0) * b_cubic;
+            g_vm_ref = (2.0 - eta) / (2.0 * POW3(1.0 - eta));
+            break;
+        }
+        case radial_dist::KG: {
+            // Function proposed by  Kontogeorgis, G.M.; Yakoumis, I.V.; Meijer, H.; Hendriks, E.M.; Moorwood, T., Fluid Phase Equilib. 1999, 158 - 160, 201.
+            eta = (rhomolar / 4.0) * b_cubic;
+            g_vm_ref = 1.0 / (1.0 - 1.9 * eta);
+            break;
+        }
+        case radial_dist::OT: {
+            g_vm_ref = 1.0 / (1.0 - 0.475 * rhomolar * b_cubic);
+            break;
+        }
+        default: {
+            throw std::invalid_argument("Bad radial_dist");
+        }
+    }
+    double R_gas = 8.3144598;
+
+    // Calculate the association strength between site Ai and Bi for a pure compent
+    auto DeltaAiBj = forceeval(g_vm_ref*exp(epsABi /(T*R_gas) - 1.0)*b_cubic* betaABi);
+
+    return DeltaAiBj;
+};
+
+/// Routine that calculates the fractions of sites Ai not bound to other active sites for pure fluids
+/// Some association schemes are explicitly solvable for self - associating compounds, see Huang and Radosz, Ind.Eng.Chem.Res., 29 (11), 1990
+/// So far implemented association schemes : 1A, 2B, 3B, 4C (see Kontogeorgis et al., Ind. Eng. Chem. Res. 2006, 45, 4855 - 4868)
+/// 
+
+template<typename BType, typename TType, typename RhoType, typename VecType>
+auto XA_calc_pure(int N_sites, association_classes scheme, double epsABi, double betaABi, const BType b_cubic, const TType T, const RhoType rhomolar, const VecType& molefrac) {
+
+    // Matrix XA(A, j) that contains all of the fractions of sites A not bonded to other active sites for each molecule i
+    // Start values for the iteration(set all sites to non - bonded, = 1)
+    Eigen::Array<RhoType, Eigen::Dynamic, Eigen::Dynamic> XA;  // A maximum of 4 association sites(A, B, C, D)
+    XA.resize(N_sites, 1);
+    XA.setOnes();
+
+    // Get the association strength between the associating sites
+    auto dist = radial_dist::CS;
+    auto DeltaAiBj = get_DeltaAB_pure(dist, epsABi, betaABi, b_cubic, T, rhomolar, molefrac);
+
+    if (scheme == association_classes::a1A) { // Acids
+        // Only one association site "A"  (OH - group with C = O - group)
+        XA(0, 0) = forceeval((-1.0 + sqrt(1.0 + 4.0 * rhomolar * DeltaAiBj)) / (2.0 * rhomolar * DeltaAiBj));
+    }
+    else if (scheme == association_classes::a2B) { // Alcohols
+        // Two association sites "A" and "B"
+        XA(0, 0) = forceeval((-1.0 + sqrt(1.0 + 4.0 * rhomolar * DeltaAiBj)) / (2.0 * rhomolar * DeltaAiBj));
+        XA(1, 0) = XA(0, 0);   // XB = XA;
+    }
+    else if (scheme == association_classes::a3B) { // Glycols
+        // Three association sites "A", "B", "C"
+        XA(0, 0) = forceeval((-(1.0 - rhomolar * DeltaAiBj) + sqrt(POW2(1.0 + rhomolar * DeltaAiBj) + 4.0 * rhomolar * DeltaAiBj)) / (4.0 * rhomolar * DeltaAiBj));
+        XA(1, 0) = XA(0, 0);         // XB = XA
+        XA(2, 0) = 2 * XA(0, 0) - 1; // XC = 2XA - 1
+    }
+    else if (scheme == association_classes::a4C) { // Water
+        // Four association sites "A", "B", "C", "D"
+        XA(0, 0) = forceeval((-1.0 + sqrt(1.0 + 8.0 * rhomolar * DeltaAiBj)) / (4.0 * rhomolar * DeltaAiBj));
+        XA(1, 0) = XA(0, 0);   // XB = XA
+        XA(2, 0) = XA(0, 0);   // XC = XA
+        XA(3, 0) = XA(0, 0);   // XD = XA
+    }
+    else if (scheme == association_classes::not_associating) { // non - associating compound
+        XA(0, 0) = 1;
+        XA(1, 0) = 1;
+        XA(2, 0) = 1;
+        XA(3, 0) = 1;
+    }
+    else {
+        throw std::invalid_argument("Bad scheme");
+    }
+    return XA;
+};
+
+enum class cubic_flag {not_set, PR, SRK};
+
+class CPACubic {
+private:
+
+    std::valarray<double> a0, bi, c1, Tc;
+    double delta_1, delta_2;
+    std::valarray<std::valarray<double>> k_ij;
+
+public:
+    CPACubic(cubic_flag flag, const std::valarray<double> a0, const std::valarray<double> bi, const std::valarray<double> c1, const std::valarray<double> Tc) : a0(a0), bi(bi), c1(c1), Tc(Tc) {
+        switch (flag) {
+        case cubic_flag::PR:
+        { delta_1 = 1 + sqrt(2); delta_2 = 1 - sqrt(2); break; }
+        case cubic_flag::SRK:
+        { delta_1 = 0; delta_2 = 1; break; }
+        default:
+            throw std::invalid_argument("Bad cubic flag");
+        }
+        k_ij.resize(Tc.size()); for (auto i = 0; i < k_ij.size(); ++i) { k_ij[i].resize(Tc.size()); }
+    };
+
+    template<typename TType>
+    auto get_ai(TType T, int i) const {
+        return a0[i] * POW2(1 + c1[i]*(1 - sqrt(T / Tc[i])));
+    }
+
+    template<typename TType, typename VecType>
+    auto get_ab(const TType T, const VecType& molefrac) const {
+        using return_type = std::common_type_t<decltype(T), decltype(molefrac[0])>;
+        return_type asummer = 0.0, bsummer = 0.0;
+        for (auto i = 0; i < molefrac.size(); ++i) {
+            bsummer += molefrac[i] * bi[i];
+            auto ai = get_ai(T, i);
+            for (auto j = 0; j < molefrac.size(); ++j) {
+                auto aj = get_ai(T, j);
+                auto a_ij = (1.0 - k_ij[i][j]) * sqrt(ai * aj);
+                asummer += molefrac[i] * molefrac[j] * a_ij;
+            }
+        }
+        return std::make_tuple(asummer, bsummer);
+    }
+
+    template<typename TType, typename RhoType, typename VecType>
+    auto alphar(const TType T, const RhoType rhomolar, const VecType& molefrac) const {
+        auto [a_cubic, b_cubic] = get_ab(T, molefrac);
+        auto R_gas = 8.3144598;
+        return forceeval(-log(1 - b_cubic * rhomolar) - a_cubic / R_gas / T * log((delta_1 * b_cubic * rhomolar + 1) / (delta_2 * b_cubic * rhomolar + 1)) / b_cubic / (delta_1 - delta_2));
+    }
+};
+
+template<typename Cubic>
+class CPAAssociation {
+private:
+    const Cubic& cubic;
+    const std::vector<association_classes> classes;
+    const std::vector<double> N_sites;
+    const std::valarray<double> epsABi, betaABi;
+
+    auto get_N_sites(const std::vector<association_classes> &classes) {
+        std::vector<double> N_sites_out;
+        auto get_N = [](auto cl) {
+            switch (cl) {
+            case association_classes::a1A: return 1;
+            case association_classes::a2B: return 2;
+            case association_classes::a3B: return 3;
+            case association_classes::a4C: return 4;
+            default: throw std::invalid_argument("Bad association class");
+            }
+        };
+        for (auto cl : classes) {  
+            N_sites_out.push_back(get_N(cl));
+        }
+        return N_sites_out;
+    }
+
+public:
+    CPAAssociation(const Cubic &cubic, const std::vector<association_classes>& classes, const std::valarray<double> &epsABi, const std::valarray<double> &betaABi) 
+        : cubic(cubic), classes(classes), epsABi(epsABi), betaABi(betaABi), N_sites(get_N_sites(classes)) {};
+
+    template<typename TType, typename RhoType, typename VecType>
+    auto alphar(const TType& T, const RhoType& rhomolar, const VecType& molefrac) const {
+        // Calculate a and b of the mixture
+        auto [a_cubic, b_cubic] = cubic.get_ab(T, molefrac);
+
+        // Calculate the fraction of sites not bonded with other active sites
+        auto XA = XA_calc_pure(N_sites[0], classes[0], epsABi[0], betaABi[0], b_cubic, T, rhomolar, molefrac);
+
+        using return_type = std::common_type_t<decltype(T), decltype(rhomolar), decltype(molefrac[0])>;
+        return_type alpha_r_asso = 0.0;
+        auto i = 0;
+        for (auto xi : molefrac){ // loop over all components
+            auto XAi = XA.col(i);
+            alpha_r_asso += forceeval(xi * (log(XAi) - XAi / 2).sum());
+            alpha_r_asso += xi*N_sites[i]/2;
+            i++;
+        }
+        return alpha_r_asso;
+    }
+};
+
+template <typename Cubic, typename Assoc>
+class CPA {
+public:
+    Cubic cubic;
+    Assoc assoc;
+
+    CPA(Cubic cubic, Assoc assoc) : cubic(cubic), assoc(assoc) {
+    }
+
+    /// Residual dimensionless Helmholtz energy from the SRK or PR core and contribution due to association
+    /// alphar = a/(R*T) where a and R are both molar quantities
+    template<typename TType, typename RhoType, typename VecType>
+    auto alphar(const TType& T, const RhoType& rhomolar, const VecType& molefrac) const {
+
+        // Calculate the contribution to alphar from the conventional cubic EOS
+        auto alpha_r_cubic = cubic.alphar(T, rhomolar, molefrac);
+
+        // Calculate the contribution to alphar from association
+        auto alpha_r_assoc = assoc.alphar(T, rhomolar, molefrac);
+
+        return alpha_r_cubic + alpha_r_assoc;
+    }
+};
\ No newline at end of file
diff --git a/src/tests/catch_tests.cxx b/src/tests/catch_tests.cxx
index af9ea15..80d7b24 100644
--- a/src/tests/catch_tests.cxx
+++ b/src/tests/catch_tests.cxx
@@ -4,6 +4,7 @@
 #include "teqp/core.hpp"
 #include "teqp/models/pcsaft.hpp"
 #include "teqp/models/cubicsuperancillary.hpp"
+#include "teqp/models/CPA.hpp"
 #include "teqp/algorithms/VLE.hpp"
 
 auto build_vdW_argon() {
@@ -305,4 +306,30 @@ TEST_CASE("Test pure VLE with non-unity R0/Rr", "") {
     auto r1 = residspecial.call(solnspecial);
 
     auto rr = 0;
+}
+
+TEST_CASE("Test water", "") {
+    std::valarray<double> a0 = {0.12277}, bi = {0.000014515}, c1 = {0.67359}, Tc = {647.096}, 
+                          molefrac = {1.0};
+    CPACubic cub(cubic_flag::SRK, a0, bi, c1, Tc);
+    double T = 400, rhomolar = 100;
+    
+    auto R = 8.3144598;
+    auto z = (Eigen::ArrayXd(1) << 1).finished();
+
+    using tdx = TDXDerivatives<decltype(cub)>;
+    auto alphar = cub.alphar(T, rhomolar, molefrac);
+    double p_noassoc = T*rhomolar*R*(1+tdx::get_Ar01(cub, T, rhomolar, z));
+    CAPTURE(p_noassoc);
+
+    std::vector<association_classes> schemes = { association_classes::a4C };
+    std::valarray<double> epsAB = { 16655 }, betaAB = { 0.0692 };
+    CPAAssociation cpaa(cub, schemes, epsAB, betaAB);
+
+    CPA cpa(cub, cpaa);
+    using tdc = TDXDerivatives<decltype(cpa)>;
+    double p_withassoc = T*rhomolar*R*(1 + tdc::get_Ar01(cpa, T, rhomolar, z));
+    CAPTURE(p_withassoc);
+
+    REQUIRE(p_withassoc == 3.14);
 }
\ No newline at end of file
-- 
GitLab