diff --git a/doc/source/algorithms/VLE.ipynb b/doc/source/algorithms/VLE.ipynb
index 425c451889e6d220ff5f99322cff937618a6efcb..85dc68c2fcbc01d10f13702bfeb6ccece9c9ba6c 100644
--- a/doc/source/algorithms/VLE.ipynb
+++ b/doc/source/algorithms/VLE.ipynb
@@ -15,21 +15,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 42,
+   "execution_count": null,
    "id": "c0b4e863",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "'0.9.4.dev0'"
-      ]
-     },
-     "execution_count": 42,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "import teqp\n",
     "import numpy as np\n",
@@ -72,39 +61,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 43,
+   "execution_count": null,
    "id": "2674227c",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "'guess:'"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[12735.311173407898, 752.4082303122791]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "array([12735.31117341,   752.40823031])"
-      ]
-     },
-     "execution_count": 43,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "# Instantiate the model\n",
     "model = teqp.canonical_PR([300], [4e6], [0.1])\n",
@@ -154,23 +114,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 44,
+   "execution_count": null,
    "id": "b12bd318",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "(<VLE_return_code.xtol_satisfied: 1>,\n",
-       " array([  128.66049209, 12737.38871682]),\n",
-       " array([  12.91868229, 1133.77242677]))"
-      ]
-     },
-     "execution_count": 44,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "zA = np.array([0.01, 0.99])\n",
     "model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
@@ -205,11 +152,11 @@
    "id": "f4e3f914",
    "metadata": {},
    "source": [
-    "# Tracing\n",
+    "# Tracing (isobars and isotherms)\n",
     "\n",
-    "When it comes to mixture thermodynamics, as soon as you add another component to a pure component to form a binary mixture, the complexity of the thermodynamics entirely changes. For that reason, mixture iterative calculations for mixtures are orders of magnitude more difficult to carry out.  Asymmetric mixtures can do all sorts of interesting things that are entirely unlike those of pure fluids, and the algorithms are therefore much, much more complicated.  Formulating phase equilibrium problems for pure fluids is not much more complicated, but the most challenging aspect is to obtain good guess values from which to start an iterative routine\n",
+    "When it comes to mixture thermodynamics, as soon as you add another component to a pure component to form a binary mixture, the complexity of the thermodynamics entirely changes. For that reason, mixture iterative calculations for mixtures are orders of magnitude more difficult to carry out.  Asymmetric mixtures can do all sorts of interesting things that are entirely unlike those of pure fluids, and the algorithms are therefore much, much more complicated. Formulating phase equilibrium problems is not much more complicated than for pure fluids, but the most challenging aspect is to obtain good guess values from which to start an iterative routine, and the difficulty of this problem increases with the complexity of the mixture thermodynamics.\n",
     "\n",
-    "Ulrich Deiters and Ian Bell have developed a number of algorithms for tracing phase equilibrium solutions as the solution of ordinary differential equations rather than carrying out iterative routines for a given state point.  The advantage of the tracing calculations is that they can be often initiated at a state point that is entirely known, perhaps the pure fluid endpoint for a subcritical isotherm."
+    "Ulrich Deiters and Ian Bell have developed a number of algorithms for tracing phase equilibrium solutions as the solution of ordinary differential equations rather than carrying out iterative routines for a given state point.  The advantage of the tracing calculations is that they can often be initiated at a state point that is entirely known, for instance the pure fluid endpoint for a subcritical isotherm or isobar."
    ]
   },
   {
@@ -232,127 +179,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": null,
    "id": "49dcba2b",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "\"[{'T / K': 273.0, 'c': -1.0, 'drho/dt': [-0.618312383229212, 0.7690760182230469, -0.1277526773161415...\""
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>T / K</th>\n",
-       "      <th>c</th>\n",
-       "      <th>drho/dt</th>\n",
-       "      <th>dt</th>\n",
-       "      <th>pL / Pa</th>\n",
-       "      <th>pV / Pa</th>\n",
-       "      <th>rhoL / mol/m^3</th>\n",
-       "      <th>rhoV / mol/m^3</th>\n",
-       "      <th>t</th>\n",
-       "      <th>xL_0 / mole frac.</th>\n",
-       "      <th>xV_0 / mole frac.</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>273.0</td>\n",
-       "      <td>-1.0</td>\n",
-       "      <td>[-0.618312383229212, 0.7690760182230469, -0.12...</td>\n",
-       "      <td>0.000010</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>[10697.985891540735, 0.0]</td>\n",
-       "      <td>[1504.6120879290752, 0.0]</td>\n",
-       "      <td>0.000000</td>\n",
-       "      <td>1.0</td>\n",
-       "      <td>1.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>273.0</td>\n",
-       "      <td>-1.0</td>\n",
-       "      <td>[-0.6183123817120353, 0.7690760162922189, -0.1...</td>\n",
-       "      <td>0.000045</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>[10697.985885357639, 7.690760309421386e-06]</td>\n",
-       "      <td>[1504.6120866515366, 9.945415375682985e-07]</td>\n",
-       "      <td>0.000010</td>\n",
-       "      <td>1.0</td>\n",
-       "      <td>1.0</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>273.0</td>\n",
-       "      <td>-1.0</td>\n",
-       "      <td>[-0.6183123827116788, 0.7690760173388914, -0.1...</td>\n",
-       "      <td>0.000203</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>2.203397e+06</td>\n",
-       "      <td>[10697.98585753358, 4.229918121248511e-05]</td>\n",
-       "      <td>[1504.6120809026731, 5.469978386095445e-06]</td>\n",
-       "      <td>0.000055</td>\n",
-       "      <td>1.0</td>\n",
-       "      <td>1.0</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   T / K    c                                            drho/dt        dt  \\\n",
-       "0  273.0 -1.0  [-0.618312383229212, 0.7690760182230469, -0.12...  0.000010   \n",
-       "1  273.0 -1.0  [-0.6183123817120353, 0.7690760162922189, -0.1...  0.000045   \n",
-       "2  273.0 -1.0  [-0.6183123827116788, 0.7690760173388914, -0.1...  0.000203   \n",
-       "\n",
-       "        pL / Pa       pV / Pa                               rhoL / mol/m^3  \\\n",
-       "0  2.203397e+06  2.203397e+06                    [10697.985891540735, 0.0]   \n",
-       "1  2.203397e+06  2.203397e+06  [10697.985885357639, 7.690760309421386e-06]   \n",
-       "2  2.203397e+06  2.203397e+06   [10697.98585753358, 4.229918121248511e-05]   \n",
-       "\n",
-       "                                rhoV / mol/m^3         t  xL_0 / mole frac.  \\\n",
-       "0                    [1504.6120879290752, 0.0]  0.000000                1.0   \n",
-       "1  [1504.6120866515366, 9.945415375682985e-07]  0.000010                1.0   \n",
-       "2  [1504.6120809026731, 5.469978386095445e-06]  0.000055                1.0   \n",
-       "\n",
-       "   xV_0 / mole frac.  \n",
-       "0                1.0  \n",
-       "1                1.0  \n",
-       "2                1.0  "
-      ]
-     },
-     "execution_count": 47,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
     "model1 = teqp.canonical_PR([300], [4e6], [0.1])\n",
@@ -366,23 +196,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 49,
+   "execution_count": null,
    "id": "9aecca78",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0EElEQVR4nO3dd3xUVf7/8dcnhRY6oUMIvQkIREARBRuICNgVla9lly26yooVRLEhriuKK4isYheQ3ptKVektIaGEHggdkkBISDKf3x93/BGzSQiYyc0kn+fjkQczc86dfK5I3jlzzz1HVBVjjDEmqwC3CzDGGFM4WUAYY4zJlgWEMcaYbFlAGGOMyZYFhDHGmGwFuV1AfgoNDdXw8HC3yzDGGL+xfv3646paNbu2IhUQ4eHhrFu3zu0yjDHGb4jIvpza7CMmY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIY4wx2fJZQIhIXRFZIiIxIrJVRJ7Ops+DIrLF+/WLiLTJ1NZDRLaLSKyIvOirOo0xxp9Fr17Eqq+G+uS9fXmjXDowSFU3iEg5YL2ILFbV6Ex99gDXq+opEbkVGAd0FJFAYDRwMxAHrBWRWVmONcaYYuvEqVNEff08XU5MJj6gGslnnqVM2Qr5+j18NoJQ1XhV3eB9nATEALWz9PlFVU95n64C6ngfdwBiVXW3qp4HJgJ9fFWrMcb4C49HWbRgJmdGXc31J79nU407qTRoTb6HAxTQUhsiEg60BVbn0u1xYL73cW3gQKa2OKBjDu89ABgAEBYW9kdLNcaYQit6/2FiJ7xAr+SZHAuqzsFek2jXtofPvp/PA0JEygJTgYGqmphDn244AXHtby9l0y3bvVFVdRzOR1NERETY/qnGmCLnTGo6U6Z+T9dtw+gdcIRd9e+nwQP/RkqW8+n39WlAiEgwTjh8q6rTcujTGvgUuFVVT3hfjgPqZupWBzjky1qNMaawUVUWbNxDwpyX6Z8xj9OlanDmjuk0bH5DgXx/nwWEiAjwGRCjqiNz6BMGTAMeVtUdmZrWAo1FpD5wELgf6OerWo0xprDZd+IsX0+ayEOH3yE84AjHWvSnat+3oWTZAqvBlyOIzsDDQKSIbPK+NhgIA1DVscArQBVgjJMnpKtqhKqmi8iTwEIgEBivqlt9WKsxxhQKqekZfPbTVsqsHM5gWcDZkFpk3D2bqg2vK/BafBYQqrqS7K8lZO7zJ+BPObTNA+b5oDRjjCmUfo49zuSpkxh4dhThAUdIvvIxyvV8E0qEuFJPkdowyBhj/NHRpBT+NWsDLWM+4IOghZwrXxfumkOZ+l1crcsCwhhjXJLhUb5bvY+fFk7nNR1DWNBR0iP+TOlbXnNt1JCZBYQxxrgg6mACr09bS88jn/B50CLSKtSDO+cSFH7txQ8uIBYQxhhTgJJS0nhv0Q62rZrPyBLjqBN0BO0wgOCbhhWKUUNmFhDGGFMAVJW5kfG8O2s9j6V+xbASi8ioWB/6zkPCO7tdXrYsIIwxxsf2nTjL0JlbOR+7jEml/kv1wKPQ8W8E3ji00I0aMrOAMMYYH0lNz+CTZbsZvySK5wMn0K/EQrRiA6TPPKh3jdvlXZQFhDHG+MAvscd5eWYU1U+s4YeQ8VRJOwyd/o7cMBRKlHG7vDyxgDDGmHx0LCmV4fNiWLhxF2+VncwdJeZDuQbgJ6OGzCwgjDEmH3g8yoS1+3ln/jbapG/m1wrjKZ96GDr+DW58xW9GDZlZQBhjzB8UfSiRITMi2bE/nvcrT+eW5DkQ0hAeXABhndwu77JZQBhjzGU6m5rOBz/sYPzPe7m5VAzfVPqUMsnxcPWT0G2IX44aMrOAMMaYy7Bw62GGzdpKYsIpvqs1i44nZ0KZRvDAQgjLdgNMv2MBYYwxlyDuVDLDZkXzQ8wRHqiyi2FVPqbkyXi45h/OqCG4tNsl5hsLCGOMyYO0DA/jV+7hgx92EkIy8xrMpsWhaVClMdy/COp2cLvEfGcBYYwxF7F+30mGTI9i2+Ekngo/wFNnPyQoPh6ueQq6DS5So4bMLCCMMSYHCclpjFiwjQlr9tOofAYrms+m7p7vIbQJ3LcY6kS4XaJPWUAYY0wWqsqMTQd5c04Mp5LP81arIzxw+F0C9h6Gzk9D18EQXMrtMn3OAsIYYzLZfewMQ2dG8XPsCa6uHczoRrOovH0ihDaF+76BOu3dLrHAWEAYYwzOwnofL93FmKW7KBkUwGedT3HDjreQHYfh2n/C9S8Wi1FDZj4LCBGpC3wF1AA8wDhVHZWlTzPgc6AdMERV/52pbS+QBGQA6apatD/sM8a45pddx3l5ehS7j5/l3ivK8VrJbym9fiJUbQ73fwO1i8+oITNfjiDSgUGqukFEygHrRWSxqkZn6nMSeArom8N7dFPV4z6s0RhTjJ04k8pb82KYtuEgYZXLMLv7WVptGARnjkKXQXD9CxBU0u0yXeOzgFDVeCDe+zhJRGKA2kB0pj5HgaMicpuv6jDGmKw8HmXy+gO8PX8bZ1PTGdSlGn9P/YzAZROgWgt4YALUaut2ma4rkGsQIhIOtAVWX8JhCiwSEQU+UdVxObz3AGAAQFhY2B+s1BhT1O08ksTg6ZGs3XuKDvUr80Hbw9Ra/hCcPQbXPed8FeNRQ2Y+DwgRKQtMBQaqauIlHNpZVQ+JSDVgsYhsU9XlWTt5g2McQEREhOZL0caYIiclLYP//LSTT5btpmypID7oXY8+hz9E5k2Cai2h3ySodaXbZRYqPg0IEQnGCYdvVXXapRyrqoe8fx4VkelAB+B/AsIYYy5m2Y5jDJ0Rxf6Tydzdvg6vNt5LuR/uhOQTznWGLs9CUAm3yyx0fDmLSYDPgBhVHXmJx4YAAd5rFyHALcDrPijTGFOEHU1K4Y05MczefIgGoSF8378JHWLegRmToXoreHAy1GzjdpmFli9HEJ2Bh4FIEdnkfW0wEAagqmNFpAawDigPeERkINACCAWmOxlDEPCdqi7wYa3GmCLE41G+W7OfdxZsIzXNwz9vasLfa0QTPPfPcO4kdH0Jrn3GRg0X4ctZTCsBuUifw0CdbJoSAYt1Y8wl23Y4kZemRbJx/2muaViF4d1rEb5mGKycCjVawcPTnD/NRdmd1MaYIiH5fDqjftzJpyv2UKF0MCPvbcMdJdchEx+ElATo9jJcOxACg90u1W9YQBhj/N6S7UcZOiOKuFPnuC+iLi9dH0rFJS9B9AznGsP/zYLqLd0u0+9YQBhj/NbRxBRemxPN3C3xNKwawqQBneh4bjl83hdSk+CGoc7qqzZquCwWEMYYv+PxKN+u2c+/5m8jNcPDoJubMKB9WUouHAgxs6BWO+g7Bqo1d7tUv2YBYYzxKzHxzkXoTQdO07lRFd7scwX1Dy+AT56D82fgxlednd4C7cfbH2X/BY0xfiHrRej372tD30ZByNy/wLY5UDsC+oyGas3cLrXIsIAwxhR6WS9Cv9ijKZV2zYDRz0PaObj5Dbj6CQgIdLvUIsUCwhhTaB1NTOH1OdHMyXwROvQ8zOoPOxZAnQ7OqKFqE7dLLZIsIIwxhc7v7oRO916Evq4+JaMmwfcvQXoqdB8OHf9qowYfsoAwxhQq2w87y3Gv33eKaxpW4c2+V9CgRAJMuh9iF0PY1dD7Iwht5HapRZ4FhDGmUEhJy+DDH3cybvluypUK4r172nBn21rIpm9g4RDISIMe70CHARAQ4Ha5xYIFhDHGdSt2HmPI9AvLcQ/u2ZzKaUfg27tg109Q71ro8x+o3MDtUosVCwhjjGuOn0nlzTnRzNh0iPqhIXz3545c06AKrP8cFg0FVej5b4h43EYNLrCAMMYUOFVl8ro43poXQ/L5dJ66sTF/79qQUmfi4KvHYM8yqH8d9P4PVAp3u9xiywLCGFOgdh07w+Bpkazec5IO4ZUZfucVNAoNgXWfweJXQQRuGwkRjzmPjWssIIwxBSI1PYOPl+5izJJdlAoOYMSdrbg3oi4Bp/fAl/fDvpXQoBv0/hAqhrldrsECwhhTAFbvPsHg6ZHsOnaW3m1qMbRXC6qGBMOasfDj6xAQ5Hyc1PZhGzUUIhYQxhifOZ18nrfnbWPSugPUqVSaLx69iq5Nq8GJXTD5Cdj/KzS+BXp9ABVqu12uycICwhiT71SVWZsP8cacaE4lp/GX6xrw9E2NKRMk8MtH8NMbEFQS+o6FNvfbqKGQsoAwxuSrAyeTGTIjiuU7jtGmTgW+fKwDLWtVgGPbYeYTELcWmvZ0LkSXr+l2uSYXPptYLCJ1RWSJiMSIyFYReTqbPs1E5FcRSRWRZ7O09RCR7SISKyIv+qpOY0z+SM/wMG75Lm5+fxnr957k1dtbMO3vnWlZPQRWvg9ju8CJWLjzU7j/OwsHP+DLEUQ6MEhVN4hIOWC9iCxW1ehMfU4CTwF9Mx8oIoHAaOBmIA5YKyKzshxrjCkkNh84zUvTIomOT+Sm5tV5vU9LalUsDUeinVHDoQ3Q/HZn1FC2mtvlmjzyWUCoajwQ732cJCIxQG0gOlOfo8BREbkty+EdgFhV3Q0gIhOBPpmPNca472xqOu8t2sEXv+whtGxJxj7Uju4tayCedFj2Lix7B0qVh7s/h5Z32LUGP1Mg1yBEJBxoC6zO4yG1gQOZnscBHXN47wHAAICwMJs7bUxB+SH6CK/MjOJQQgoPdQrj+R7NKF8qGA5Hwoy/w+Et0PJO6PkuhIS6Xa65DD4PCBEpC0wFBqpqYl4Py+Y1za6jqo4DxgFERERk28cYk3+OJqbw2uxo5kbG06R6Wab2u5r29SpD+nlYMhxWvAelK8N93zgfKxm/5dOAEJFgnHD4VlWnXcKhcUDdTM/rAIfyszZjzKXxeJQJa/czYr6zic+ztzRhwHUNKREUAIc2wown4OhWaH0f9BgBZSq7XbL5g3wWECIiwGdAjKqOvMTD1wKNRaQ+cBC4H+iXzyUaY/Io9mgSL02LZO3eU3RqUJnhd7SiQdWykJYCP7wDP4+CkKrwwERoeqvb5Zp84ssRRGfgYSBSRDZ5XxsMhAGo6lgRqQGsA8oDHhEZCLRQ1UQReRJYCAQC41V1qw9rNcZkIzU9gzFLdjFmaSxlSgTxr7tbc0/7OogIxK1zrjUc3w5XPgTd34LSFd0u2eQjX85iWkn21xIy9zmM8/FRdm3zgHk+KM0Ykwdr9pzkpWlb/v/6Sa/c3oLQsiUh7Rz89CasGgPlasKDU6HxTW6Xa3zA7qQ2xvxOwrk0RszfxoQ1+6ldsTSfP3oV3Zp6713Y96tzX8PJXdD+Ebj5DWcaqymSLCCMMYCzftL8qMO8OmsrJ86k8qdr6/PPm5sQUjIIzp91Vl1d/QlUrAv9Z0KDrm6XbHzMAsIYw6HT53hlZhQ/xBylZa3yjP+/q2hVp4LTuGc5zPoHnNoLHQbAja9CybKu1msKhgWEMcVYhkf5+te9vLtwOxmqDO7ZjMc61ycoMABSk2DxK7BuPFSqD4/MhfBr3S7ZFCALCGOKqe2Hk3hx2hY27j9Nl8ahvNW3FWFVyjiNsT/A7IGQEAdXPwndhkCJMq7WawqeBYQxxUxKWgYf/RTL2GW7KFcqiPfva0PfK2s7U1fPnYZFQ2DjNxDaBB5fBHU7uF2ycYkFhDHFyKrdJxg8LZLdx89yZ9vavNyrBZVDSjiN2xfAnIFw5ghc+0+4/kUILuVqvcZdFhDGFAMJyWm8PT+GiWsPULdyab56rAPXNanqNCafhAUvwpZJUK2Fs1dD7XbuFmwKBQsIY4owVWVepDN19eTZVAZc14CBNzWmTAnvP/3oWTB3EJw7Cde/AF2ehaAS7hZtCg0LCGOKqPiEcwydcWHq6hePXsUVtb1TV88cg/nPwdbpUKM1PDwNarRyt2BT6FhAGFPEeDzKt6v38c6C7aR7PL+fuqoKUVNh3nNw/gzc8DJ0HgiBwW6XbQohCwhjipCdR5J4cVok6/ed+t+pq4nxzsdJ2+dC7QjoMxqqNXO3YFOoWUAYUwSkpmfw8dJdjF4SS0jJIN67pw13tvNOXVWFTd/BwpcgPRVueQs6/Q0CAt0u2xRyFhDG+Ln1+07y4tRIdh49Q58razG0l3fVVYDTB2D207DrRwi7Bvp8BFUauluw8RsWEMb4qaSUNN5duJ2vV+2jVoXSfP7IVXRr5l111eOB9Z87S2WoQs9/Q8TjEBDgbtHGr1hAGOOHfog+wsszojiSlMIj14Tz7C1NnVVXAU7uhllPwd4Vzoqrt38Ileq5Wq/xTxYQxviRY0mpDJu9lblb4mlavRwfP9SOtmGVnEZPBqwZ5yzLHRAEvf8DbR8GyXXfLmNylKeAEJFKQGPg/993r6rLfVWUMeb3VJUp6+N4c24M585nMOjmJvzl+oaUCPJ+ZHRsh7ORT9waaNwder0PFWq7W7TxexcNCBH5E/A0ztagm4BOwK/ADT6tzBgDwP4TyQyeHsnK2ON0CK/M8Dtb0aiadz+GjHT45UNYOsJZbfXO/0Kre2zUYPJFXkYQTwNXAatUtZuINANe821Zxpj0DA+f/7yX9xZvJygggDf7XkG/DmEEBHh/+B+OckYN8ZugeW+47T0oW83Vmk3RkpeASFHVFBFBREqq6jYRaXqxg0SkLvAVUAPwAONUdVSWPgKMAnoCycAjqrrB27YXSAIygHRVjbiE8zLGr0UfSuTFaVvYEpfATc2r80bfltSsUNppTD8PK96DFf+G0pXgni+hZV9X6zVFU14CIk5EKgIzgMUicgo4lIfj0oFBqrpBRMoB60VksapGZ+pzK861jcZAR+Bj75+/6aaqx/PwvYwpElLSMvjwx518snw3lcoEM7pfO3q2quHc8AZwcIMzajgaDa3vgx4joExld4s2RVZeAuLPqnoaGCYiS4AKwIKLHaSq8UC893GSiMQAtYHMAdEH+EpVFVglIhVFpKb3WGOKlcx7NdzTvg5DbmtOxTLelVXTzsHSt+GX/0DZ6vDAJGjaw92CTZGXY0CIyO3AeCBNRDzAvaq67HK+iYiEA22B1VmaagMHMj2P874WDyiwSEQU+ERVx13O9zamsEtMSePteduYsGY/YZXL8M3jHbm2ceiFDvtXOaOGE7HQrj/c/AaUruhavab4yG0E8RbQxXvNoSPwL+D6S/0GIlIWmAoMVNXErM3ZHKLePzur6iERqYbz0da27KbWisgAYABAWFjYpZZnjKsWRx/h5RmRHEty9mr4501NKF3Cu0ZS6hnnnoY146BCXXh4OjS0yYOm4OQWEOmqug1AVVd7ryNcEhEJxgmHb1V1WjZd4oC6mZ7XwXt9Q1V/+/OoiEwHOgD/ExDekcU4gIiICM3abkxhlPmGt2Y1yvHf/hG0rlPxQoddS2D2U3B6P3QYADe+CiXLulavKZ5yC4hqIvJMTs9VdWRub+ydofQZEJNL31nAkyIyEefidIKqxotICBDgvXYRAtwCvJ6H8zGmUFNVpm44yBtzojl3PoPnujdlwHUNCA703vB27jQsehk2fg1VGsGjC6De1a7WbIqv3ALiv0C5XJ5fTGfgYSBSRDZ5XxsMhAGo6lhgHs4U11icaa6PevtVB6Z7Z24EAd+p6kUvjBtTmB046dzwtmLncSLqVWLEXa0v3PAGsH0+zPknnDkCnZ+Gri9BcGn3CjbFXo4Boap/6GY4VV1J9tcYMvdR4IlsXt8NtPkj39+YwiLDo3z5y17+vWg7ArzRpyUPdqx34Ya3sydgwQsQORmqtYD7v4Xa7V2t2RjIfRbTh7kdqKpP5X85xhQtO44k8fyULWw6cJpuTavy5h2tqF3ROypQdfaEnvccpCQ4I4Zrn4GgEu4WbYxXbh8x/RWIAr7HuXBsi7sYk0fn0z2MWRrL6CWxlCsVzKj7r6R3m1oXbnhLOuxs/7ltDtRqC31mQfWW7hZtTBa5BURN4B7gPpy7oicBU1X1VEEUZoy/2rj/FC9M3cKOI2fo693hrcpvO7xl3f7z5teh0xMQaCvvm8Int2sQJ4CxwFgRqQ08AGwVkRdU9euCKtAYf5F8Pp33Fu1g/M97qFG+1O93eANnyursgd7tP6+G3h9BaCPX6jXmYvKy3Hc7nHC4GZgPrPd1Ucb4m59jj/PitC0cOHmOhzvV4/keTSlXKthp9Hhg3Wew+FXnuW3/afxEbhepXwN6ATHAROAlVU0vqMKM8QcJ59IYPjeGSesOUD80hEkDOtGxQZULHY7HwqwnYf+vzl3Qt4+CinbHv/EPuY0ghgK/TTdtAwz3XmATnBmqrX1fnjGF18Kthxk6I4oTZ8/zt64NefrGxpQK9i6TkZEOv34ES4ZDcCnoMwau7Gcb+Ri/kltA1C+wKozxI8eSUhk2aytzI+NpUbM84x+5iitqV7jQIfNGPs16ORv5lKvhWr3GXK7cLlLvK8hCjCnsVJVpGw7yek7LZKSnejfyec+7kc8X0KKvjRqM37K5dcbkQdypZIZMj2LZjmO0r1eJd7IukxG33hk1HIuxjXxMkWEBYUwuPB7lm9X7eGf+NhR4rXdLHu6UaZmM88mw5C1YNQbK1YR+30OT7q7WbEx+yW0W0zicaa0/qGpSwZVkTOGw+9gZXpi6hbV7T9GlcShv39mKOpXKXOiwZwXM+gec2gPtH3VueitV3r2CjclnuY0gxgM9gGdE5DywCFigqpsLpDJjXJKe4eHTlXsYuXgHpYICePfu1tzdvs6FZTJSEmDxK7D+C6hUH/5vDtTv4mrNxvhCbhepVwGrcPairoKzJ8MgEWkFbMQJi+8LpkxjCkZMfCLPT9lC5MEEureszht9rqBa+VIXOuxY6NwNfeYwXPMP6DoYSpTJ8f2M8Wd5ugbhXXZjgvcLEWmPM7owpkhITc9g9E+xjFm6i4plghndrx09W9W4MGo4exwWvHhhSe77voE6tiS3Kdou6yK1qq7HltwwRUTmxfXuaFubV3q1oFKId8ltVYiaCvOfh5REW5LbFCs2i8kUW+fOZ/Deou2M/3kP1cuXYvwjEdzQrPqFDomHYM4zsGO+s4FP74+gegv3CjamgFlAmGJp1e4TvDB1C/tOJNOvYxgv3drswuJ6qrDhS1g0FDLS4Ja3oNPfICDQ3aKNKWB5Wc21FPB34FpAgZXAx6qa4uPajMl3SSlpjJi/jW9X7yeschm++3NHrmkYeqHDyd0w+2nYsxzCuziL61Vp6F7BxrgoLyOIr4Ak4D/e5w8AX+NsJmSM31i6/SiDp0USn5jC49fWZ9AtTShTwvtPwJMBqz6Gn96EwGDo9QG0+z9bktsUa3kJiKaq2ibT8yUiYvdCGL+RkJzGG3OjmbI+jkbVyjL1b9fQLqzShQ5Hop0luQ+uhya3Qq+RUL6WewUbU0jkJSA2ikgn730RiEhH4OeLHSQidXFGHzUADzBOVUdl6SPAKKAnkAw8oqobvG09vG2BwKeqOiLPZ2WM16KthxkyI4qTZ8/zRLeG/OOGTEtyp6fCipHO4nqlysNdn8EVd9niesZ45SUgOgL9RWS/93kYECMikeS+L0Q6MEhVN4hIOWC9iCxW1ehMfW4FGnu/OgIfAx1FJBAYjbOLXRywVkRmZTnWmBydOJPKsNnRzN58iOY1y/N51iW549bBzCedxfVa3essrhdSJec3NKYYyktAXNYNcaoaD8R7HyeJSAxQG8j8Q74P8JWqKrBKRCqKSE0gHIhV1d0AIjLR29cCwuRKVZmzJZ5XZ20lKSWNQTc34a9dG15Ykvv8WfjJu7he+Vq2uJ4xubhoQOTHvhAiEg60BVZnaaoNHMj0PM77Wnavd8zhvQcAAwDCwmwrx+LsaGIKQ2ZEsTj6CG3qVOBfd3eiaY1yFzrsWuLMUDq9z9kT+qZhtrieMbnw+X0QIlIWmAoMVNXErM3ZHKK5vP6/L6qOA8YBREREZNvHFG2qypT1cbwxJ5rUdA+Dezbjsc71Cfpt1HDuNCwaAhu/gcoN4ZF5EN7Z1ZqN8Qc+DQgRCcYJh29VdVo2XeKAupme1wEOASVyeN2Y3zl0+hwvTYtk2Y5jXBXubOTToGqmjXxiZsPcZ+HsMeg8ELq+CMGlXavXGH/is4DwzlD6DIhR1ZE5dJsFPOm9xtARSFDVeBE5BjQWkfrAQeB+oJ+vajX+R1WZsOYAw+fF4FFl2O0t6H91+IWNfJKOwPznIHomVG8F/SZCrbbuFm2Mn/HlCKIz8DAQKSKbvK8NxpkFhaqOBebhTHGNxZnm+qi3LV1EngQW4kxzHa+qW31Yq/EjB04m8+K0Lfwce4JrGlbhnbtaU7eyd8ltVdj0LSwcAmnn4MZX4JqnnJvfjDGXxGcBoaoryf5aQuY+CjyRQ9s8nAAxBriw/eeI+dsIEOGtO66gX4ewC0tyn9wDcwbC7qUQdjX0/g+ENnazZGP8mi3WZ/zCvhNneX7KFlbvOUmXxqGMuKs1tSt6ryV4MmD1WGeZDAmAnv92ZinZMhnG/CEWEKZQy/AoX/yyl3cXbiM4MIB/3dWaeyIybf95JNrZF/rgOmh8C9w2EirWzf1NjTF5YgFhCq1dx87w/JQtrN93ihuaVWP4Ha2oUcG7/WfWZTLu/BRa3W3LZBiTjywgTKGT4VE+XbGbkYt3UCo4kPfva0PfK2tfGDUcWOuMGo7FQKt7vMtkhOb+psaYS2YBYQqVnUeSeHbKFjYfOE33ltV5o+8VVCvnHTWknnGuM6wea8tkGFMALCBMoZCe4WHcit18sHgnISUD+fCBttzeuuaFUUPsDzD7n5CwH676szN91ZbJMManLCCM67YfTuK5KZvZEpdAz1Y1eL3PFYSWLek0Jp+EBS/BlokQ2gQeWwhhndwt2JhiwgLCuCYtw8Mny3bx4Y+xlC0VxOh+7bitdU2nURWipsL8FyDlNFz3HHR5FoJLuVqzMcWJBYRxRUx8Is9N2UzUwURua12T13u3pMpvo4aEOJg7CHYsgFrtoPdMqHGFuwUbUwxZQJgClZbh4eOlu/jPTzupUDqYjx9sx62tvKMGjwfWfQY/vAaedLjlLej0NwgIdLdoY4opCwhTYKIPJfLs5M1ExyfSu00thvVuSeWQEk7j8Z3O1NX9v0KDrtDrA6hc381yjSn2LCCMz6VleBi9JJaPfoqlYpkSjH2oPT2uqOE0pp+HX0bBsn9BcBnoMwau7Gc3vBlTCFhAGJ/KPGroc2Utht3ekkq/jRri1jujhqNboeUd0OMdKFfd3YKNMf+fBYTxiayjhk8ebk/3lt5Rw2/7Qq/+GMrWgPsnQLOe7hZsjPkfFhAm3+U6aoj90VmS+/R+777Qr0KpCq7Wa4zJngWEyTe5jhqST8LCwbB5AlRpDI/Oh3rXuFuwMSZXFhAmX+Q4arAb3ozxWxYQ5g/JddSQ+Ya32u2h9yyo3tLdgo0xeWYBYS5bTLwzath6yLmv4bXe3lGDJwPWfgY/vgbqge7DoeNf7YY3Y/yMBYS5ZGkZHsYu3cWH3ruhf3dfw9EYmPUUxK2BhjdCr/ehUj13CzbGXBafBYSIjAd6AUdV9X8W0hGRSsB4oCGQAjymqlHetr1AEpABpKtqhK/qNJdm++Eknp28mciDCdzuHTVUDinh3eHtPWeXt5Ll4I5x0Ppeu+HNGD/myxHEF8BHwFc5tA8GNqnqHSLSDBgN3JipvZuqHvdhfeYSpGd4+GT5bkb9sJNypYJ+v4bS/lXOqOH4dmh9n/ORku3wZozf81lAqOpyEQnPpUsL4G1v320iEi4i1VX1iK9qMpdn5xFn1LA5LoHbWtXk9T7elVdTEp3rDGs/hQp14cGp0Pgmt8s1xuQTN69BbAbuBFaKSAegHlAHOAIosEhEFPhEVcfl9CYiMgAYABAWFubzoouT9AwP/12xh/cX7yCkZCAf9WtLr9a1nMZt85wZSknx0PFvcMPLULKsuwUbY/KVmwExAhglIpuASGAjkO5t66yqh0SkGrBYRLap6vLs3sQbHuMAIiIi1PdlFw+xR8/w7OTNbPLuDf1m31ZULVcSko7A/OchegZUawH3fQ117BKRMUWRawGhqonAowDibDy8x/uFqh7y/nlURKYDHYBsA8LkrwyPMn7lHt5dtJ3SwYGMuv9KerephQCs/xIWD4W0c9DtZej8NASVcLtkY4yPuBYQIlIRSFbV88CfgOWqmigiIUCAqiZ5H98CvO5WncXJnuNneW7yZtbtO8VNzasx/I5WVCtfCo7HwuynYd9KqNcZbh8FoY3dLtcY42O+nOY6AegKhIpIHPAqEAygqmOB5sBXIpIBRAOPew+tDkx3BhUEAd+p6gJf1WnA41G++nUvIxZsIzgwgPfuacOd7WojnnRY/m9nr4agUk4wtO0PAQFul2yMKQC+nMX0wEXafwX+59dQVd0NtPFVXeb3DpxM5rkpm1m1+yTXN6nKiLtaUbNCaYhb50xdPboVWvSBW/8F5Wq4Xa4xpgDZndTFlKry3Zr9DJ8bg4jwzl2tuDeiLnL+DMx/EVaPhXI14f7voNltbpdrjHGBBUQxdOj0OV6YuoUVO4/TuVEV3rmrNXUqlYEdC2HOM5B4ECIeg5uGQanybpdrjHGJBUQxoqpMWR/H67OjSfcob/S9goc6hiFnj8HkJ2DrNKjaDB5bCGEd3S7XGOMyC4hi4mhiCoOnR/JDzFE6hFfm3XtaU69yGdj4DSx6GdKSoetguHYgBJV0u1xjTCFgAVHEqSqzt8Tzyswozp3P4OXbmvNo5/oEntoNXz4Ne1dA2NXODKWqTd0u1xhTiFhAFGEnzqQydGYU8yIP06ZuRd67pw2NqpSEn0c6U1cDSzjLcbd7xKauGmP+hwVEEbVw62GGTI8k4Vwaz3Vvyl+ua0BQ/EYY9xQciYLmt8Ot70L5mm6XaowppCwgipiEc2m8Nmsr0zYepEXN8nzzp440qySw6CVY/YkzdfW+b6F5L7dLNcYUchYQRciyHcd4YcoWjp1J5akbG/Nkt0aU2LUQvhsEiYfgqj/Bja/Y1FVjTJ5YQBQBZ1LTGT4vhu9W76dRtbKM69+e1hVSYNqjzqqrVZvD419A3Q5ul2qM8SMWEH5u9e4TPDtlM3GnzvGX6xrwz5saUWrLN/D1q5Ce4uzTcI2tumqMuXQWEH4qJS2DdxduZ/zPewirXIbJf7maiJBj8M3tsP9XCO8CvT6A0EZul2qM8VMWEH5o84HTPPP9JnYdO8vDnerx0i31KbP6Q1jxHpQIgT6j4coHwVkR1xhjLosFhB85n+7ho592MnrpLqqVK8nXj3egS/AOGN8Vju+AVvdA97ehbFW3SzXGFAEWEH5i++Eknvl+E1sPJXJXuzq8cnMtKqx4AzZ8CRXD4MGp0Pgmt8s0xhQhFhCFXIZH+e+K3YxctIPypYP45KF2dOcX+PRuSD4B1/wDur7kfLRkjDH5yAKiENt7/CzPercA7dGyBm/fUIFKS5+CnYug5pXw0BSoaXsrGWN8wwKiEFJVvlntbOYTFCh8cE9L+qTORr4YDohznaHDAAi0vz5jjO/YT5hCJj7hHM9PcTbz6dI4lJFdoOqS/hC/GRp3h9veg4p13S7TGFMMWEAUEqrKzE2HeGVmFGkZytu9GnD/ma+RCR9DSFW45wto0demrhpjCozPAkJExgO9gKOqekU27ZWA8UBDIAV4TFWjvG09gFFAIPCpqo7wVZ2Fwcmz53l5RiTzIg/TLqwiYzocp8aKeyDhALR/1Nn6s3RFt8s0xhQzvhxBfAF8BHyVQ/tgYJOq3iEizYDRwI0iEuh9fDMQB6wVkVmqGu3DWl3zY8wRXpgaScK58wzrVpn+CWMJmDMj09afndwu0RhTTPksIFR1uYiE59KlBfC2t+82EQkXkepAAyBWVXcDiMhEoA9QpALiTGo6b86JZuLaAzSvHsLsTtupufavtn6SMabQcPMaxGbgTmCliHQA6gF1gNrAgUz94oCOOb2JiAwABgCEhYX5rNj8tHr3CQZN3syh0+cY2gEePfkWASvX2PpJxphCxc2AGAGMEpFNQCSwEUgHsrsKqzm9iaqOA8YBRERE5NivMEhJy2Dk4h38d8VuGlUK5OerVlIzahyULA99P4Y2D9hFaGNMoeFaQKhqIvAogIgIsMf7VQbIPI+zDnCowAvMZ1sPJfDMpM1sP5LEKy2O8MjJDwnYsgfa9INb3oSQKm6XaIwxv+NaQIhIRSBZVc8DfwKWq2qiiKwFGotIfeAgcD/Qz606/6j0DA+fLN/NBz/soH7pc6xqNpMau2dC5QbQfyY06Op2icYYky1fTnOdAHQFQkUkDngVCAZQ1bFAc+ArEcnAuQD9uLctXUSeBBbiTHMdr6pbfVWnL+09fpZnvt/Ehv2neLPeJvolfErA/jNw3fPQZRAEl3K7RGOMyZEvZzE9cJH2X4HGObTNA+b5oq6CoKp8u3o/b82NoXHgIdbV/pbQI+sg7GrnInS1Zm6XaIwxF2V3Uuezo4kpPD91C79uP8iIaj/Q98wk5GwZuH0UtO0PAQFul2iMMXliAZGP5m6JZ8iMSNqkbWFN5a+okLgPWt0L3d+CstXcLs8YYy6JBUQ+SDiXxrBZW1m6MYb3KkzmRs+PUDIc7pwGjW50uzxjjLksFhB/0C+7jvPspE1cm7yYX8pOoFTaWbj2Gbj+eQgu7XZ5xhhz2SwgLlNKWgbvLtzOkp9/ZnSZL2gbFAU1OzoXoau3cLs8Y4z5wywgLkPUwQSen7iGW059x6JSswkMLgO3vg/tHrGL0MaYIsMC4hJkeJSxy3bx64/T+ThoPPWCDkHLu6H7cChX3e3yjDEmX1lA5NH+E8kMm7iU2w6P4ZugFWRUCIfb7SK0MabosoC4CFVl8tr9bJkzhpEB31A+KAXtPIjA65+zi9DGmCLNAiIXJ86k8sHEOfTa/y/uDdhGaq2OBPT90O6ENsYUCxYQOVgatY/Yqa8x1DMDT4kQPLd+SMm2D9tFaGNMsWEBkcXZ1HQmTfySG3a9Q9eAIyQ0vYsKvd+BslXdLs0YYwqUBUQmUdt3cGTyIB5LX87J0nU5f/cMKjTu5nZZxhjjCgsIID09nWUT3uWq2A9pIuc50Pop6t4+xJbjNsYUa8U+IBJOHiN+TC9uTN/GjpB21HpoDHVrNXe7LGOMcV2xD4jyFauws0wdNjZ+hLa9/mp7QhtjjFexDwgJCCDimalul2GMMYWOzdk0xhiTLQsIY4wx2bKAMMYYky2fBYSIjBeRoyISlUN7BRGZLSKbRWSriDyaqW2viESKyCYRWeerGo0xxuTMlyOIL4AeubQ/AUSrahugK/CeiJTI1N5NVa9U1QjflWiMMSYnPgsIVV0OnMytC1BORAQo6+2b7qt6jDHGXBo3r0F8BDQHDgGRwNOq6vG2KbBIRNaLyIDc3kREBojIOhFZd+zYMd9WbIwxxYibAdEd2ATUAq4EPhKR8t62zqraDrgVeEJErsvpTVR1nKpGqGpE1aq2oJ4xxuQXN2+UexQYoaoKxIrIHqAZsEZVDwGo6lERmQ50AJZf7A3Xr19/XET2XWY9ocDxyzzWX9k5F33F7XzBzvlS1cupwc2A2A/cCKwQkepAU2C3iIQAAaqa5H18C/B6Xt5QVS97CCEi64rbBXE756KvuJ0v2DnnJ58FhIhMwJmdFCoiccCrQDCAqo4F3gC+EJFIQIAXVPW4iDQApjvXrgkCvlPVBb6q0xhjTPZ8FhCq+sBF2g/hjA6yvr4baOOruowxxuSN3Ul9wTi3C3CBnXPRV9zOF+yc840414iNMcaY37MRhDHGmGxZQBhjjMlWsQoIEekhIttFJFZEXsymXUTkQ2/7FhFp50ad+SkP5/yg91y3iMgvIuL3EwQuds6Z+l0lIhkicndB1ucLeTlnEenqXQBzq4gsK+ga81se/t/OcUFQf5SHBVDz/+eXqhaLLyAQ2AU0AEoAm4EWWfr0BObjTLvtBKx2u+4COOdrgErex7cWh3PO1O8nYB5wt9t1F8Dfc0UgGgjzPq/mdt0FcM6DgXe8j6virPdWwu3a/8A5Xwe0A6JyaM/3n1/FaQTRAYhV1d2qeh6YCPTJ0qcP8JU6VgEVRaRmQReajy56zqr6i6qe8j5dBdQp4BrzW17+ngH+AUwFjhZkcT6Sl3PuB0xT1f3grFJQwDXmt7ycc5FaEFQvvgBqvv/8Kk4BURs4kOl5nPe1S+3jTy71fB7H+Q3En130nEWkNnAHMLYA6/KlvPw9NwEqichS7yKY/QusOt/IyznntiBoUZTvP7/cXGqjoEk2r2Wd45uXPv4kz+cjIt1wAuJan1bke3k55w9w7tzP8N6x7+/ycs5BQHuc5W1KA7+KyCpV3eHr4nwkL+f824KgNwANgcUiskJVE31cm1vy/edXcQqIOKBupud1cH6zuNQ+/iRP5yMirYFPgVtV9UQB1eYreTnnCGCiNxxCgZ4ikq6qMwqkwvyX1/+3j6vqWeCsiCzHWbHAXwMiL+ec44KgBVNigcv3n1/F6SOmtUBjEanv3bnufmBWlj6zgP7e2QCdgARVjS/oQvPRRc9ZRMKAacDDfvzbZGYXPWdVra+q4aoaDkwB/u7H4QB5+397JtBFRIJEpAzQEYgp4DrzU17O+bcFQcm8IGiBVlmw8v3nV7EZQahquog8CSzEmQExXlW3ishfve1jcWa09ARigWSc30D8Vh7P+RWgCjDG+xt1uvrxSph5POciJS/nrKoxIrIA2AJ4gE9VNdvpkv4gj3/P2S4I6lrRf1AeFkDN959fttSGMcaYbBWnj5iMMcZcAgsIY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIYy6DiHwiIp198L5nLrH/UyISIyLf5nctxtiNcsZcBhHZBLRX1Yx8ft8zqlr2Evpvw1lDa0+m1wTn33ZRXrnUFAAbQRi/JiJLRORm7+M3ReTDSzi2lYj8nOl5OxH5KQ/HNQd2ZA0HEQkXkW0i8qmIRInItyJyk4j8LCI7RaRDpr7PePtEicjAHL7PQyKyxrsL3CciEpilfSzOhjmzROSf3pHEGGAD3kXbRGSGd3nvrSIyINOx/b27jm0Wka/z8t/LFENu75JkX/b1R75wdtlaCjwIzAUCL+HYAODwb8cAS4B2eTjuGeCxbF4Px9mQppX3vdcD43HWAeoDzPD2a4+zP0EIzkY2W4G23rYz3j+bA7OBYO/zMUD/bL7nXpwVacNx1ljqlKW9svfP0kAUzrpbLYHtQGjmPvZlX1m/is1ifaZoUtXl3o9UngG6qrPHQwNgCFBBVXPcb1pVPSKyFWgpIo1xVv88LSKfXeTY7uS8ENoeVY0E8L73j6qq3gXjwr19rgWmq7P0NiIyDegCbMz0PjfiBMla7yKKpbn47nf71NlJLLOnROQO7+O6QGPgKmCKeheuU9XcdikzxZgFhPFrItIKqImz10ESgKruBh4XkSl5eItVQGfg70APVT2Y27HepbIrqmpO6+ynZnrsyfTcw4V/b3nZpUiAL1X1pTz0/c3ZLLV2BW4CrlbVZBFZCpTyvrddfDQXZdcgjN/y7rf7Lc7HN2dFpHsufX8UZ6vRrFYBb+L8Rn8wD9+2G85HUX/EcqCviJQRkRCc7U9XZOnzI3C3iFQDEJHKIlLvEr9PBeCUNxya4Wxk/9t73ysiVX5778s9EVO0WUAYv+T9TX4aMEhVY3DW/h+WQ98AoBHZb/i+Dee3/Hfy+K1vBRZcar2ZqeoG4Aucnc1W4+zNsDFLn2jgZWCRiGwBFuOMlC7FAiDIe/wbOGGIqm4F3gKWichmYCSAiMwTkVqXe16m6LFprqbI8f5m/BZwM85WqrNxLio/k03fj4C1qvpldseq6ttZ+m8AOqpqmm/Pwhj3WUCYYklEGuLMevpZVR93ux5jCiMLCGOMMdmyaxDGGGOyZQFhjDEmWxYQxhhjsmUBYYwxJlsWEMYYY7JlAWGMMSZbFhDGGGOy9f8APZuVEluMz54AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e6)\n",
     "plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e6)\n",
@@ -415,7 +232,7 @@
    "id": "d4193110",
    "metadata": {},
    "source": [
-    "Supercritical isotherms should work approximately in the same manner"
+    "Supercritical isotherms work approximately in the same manner"
    ]
   },
   {
@@ -439,6 +256,47 @@
     "plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='p / MPa')\n",
     "plt.show()"
    ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "936c5f55",
+   "metadata": {},
+   "source": [
+    "As of version 0.10.0, isobar tracing has been added to ``teqp``. It operates in fundamentally the same fashion as the isotherm tracing and the same recommendations about starting at a pure fluid apply"
+   ]
+  },
+  {
+   "cell_type": "raw",
+   "id": "81eacaf0",
+   "metadata": {
+    "raw_mimetype": "text/restructuredtext"
+   },
+   "source": [
+    "The tracer function class is here: :py:meth:`trace_VLE_isobar_binary <teqp.teqp.trace_VLE_isobar_binary>`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "109bc65b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "Tc_K = [190.564, 154.581]\n",
+    "pc_Pa = [4599200, 5042800]\n",
+    "acentric = [0.011, 0.022]\n",
+    "model = teqp.canonical_PR(Tc_K, pc_Pa, acentric)\n",
+    "model1 = teqp.canonical_PR([Tc_K[0]], [pc_Pa[0]], [acentric[0]])\n",
+    "T = 170.0 # [K] # Note: above Tc of the second component\n",
+    "rhoL0, rhoV0 = model1.superanc_rhoLV(T) # start off at pure of the first component\n",
+    "p0 = rhoL0*model1.get_R(np.array([1.0]))*T*(1+model1.get_Ar01(T, rhoL0, np.array([1.0])))\n",
+    "j = teqp.trace_VLE_isobar_binary(model, p0, T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))\n",
+    "df = pandas.DataFrame(j) # Now as a data frame\n",
+    "plt.plot(df['xL_0 / mole frac.'], df['T / K'])\n",
+    "plt.plot(df['xV_0 / mole frac.'], df['T / K'])\n",
+    "plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='T / K')\n",
+    "plt.show()"
+   ]
   }
  ],
  "metadata": {