diff --git a/src/tests/catch_test_SAFTVRMie.cxx b/src/tests/catch_test_SAFTVRMie.cxx index 231d6cea197ccd8f94c1286b905c95ca8ae7a57d..5336ad63ce6b008ca040b17e56b78e7a8ebe9213 100644 --- a/src/tests/catch_test_SAFTVRMie.cxx +++ b/src/tests/catch_test_SAFTVRMie.cxx @@ -8,6 +8,7 @@ using Catch::Approx; #include "teqp/core.hpp" #include "teqp/derivs.hpp" #include "teqp/models/saftvrmie.hpp" +#include "teqp/models/pcsaft.hpp" #include "teqp/math/finite_derivs.hpp" #include "teqp/json_builder.hpp" #include "teqp/cpp/teqpcpp.hpp" @@ -31,56 +32,24 @@ TEST_CASE("Check integration", "[SAFTVRMIE]"){ } TEST_CASE("Check integration for d", "[SAFTVRMIE]"){ - // Check integration for d - auto m = (Eigen::ArrayXd(1) << 1.4373).finished(); - auto eps = (Eigen::ArrayXd(1) << 206.12).finished(); - auto sigma = (Eigen::ArrayXd(1) << 3.7257e-10).finished(); - auto lambda_r = (Eigen::ArrayXd(1) << 12.4).finished(); - auto lambda_a = (Eigen::ArrayXd(1) << 6.0).finished(); - Eigen::ArrayXXd kmat = Eigen::ArrayXXd::Zero(1,1); - SAFTVRMieChainContributionTerms terms(m, eps, sigma, lambda_r, lambda_a, kmat); + double epskB = 206.12; + double sigma_m = 3.7257e-10; + double lambda_r = 12.4; + double lambda_a = 6.0; + double C = lambda_r/(lambda_r-lambda_a)*::pow(lambda_r/lambda_a,lambda_a/(lambda_r-lambda_a)); double T = 100.0; - std::function<double(double)> integrand = [&terms, &T](const double& r){ - return 1.0-exp(-terms.get_uii_over_kB(0, r)/T); + std::function<double(double)> integrand = [&epskB, &sigma_m, &C, &T, &lambda_a, &lambda_r](const double& r_m){ + auto u = C*epskB*(::pow(sigma_m/r_m, lambda_r) - ::pow(sigma_m/r_m, lambda_a)); + return 1.0-exp(-u/T); }; - auto d30 = quad<30, double>(integrand, 0.0, terms.sigma_m[0]); - auto d15 = quad<15, double>(integrand, 0.0, terms.sigma_m[0]); - auto d7 = quad<7, double>(integrand, 0.0, terms.sigma_m[0]); - auto d5 = quad<5, double>(integrand, 0.0, terms.sigma_m[0]); - auto d3 = quad<3, double>(integrand, 0.0, terms.sigma_m[0]); -// CHECK(d30 == Approx(exact).margin(1e-12)); + auto d30 = quad<30, double>(integrand, 0.0, sigma_m); + auto d15 = quad<15, double>(integrand, 0.0, sigma_m); + auto d7 = quad<7, double>(integrand, 0.0, sigma_m); + auto d5 = quad<5, double>(integrand, 0.0, sigma_m); + auto d3 = quad<3, double>(integrand, 0.0, sigma_m); + CHECK(d30 == Approx(3.668937640717724e-10).margin(1e-12)); } -//TEST_CASE("Check an*", "[SAFTVRMie]"){ -// auto m = (Eigen::ArrayXd(1) << 1.4373).finished(); -// auto eps = (Eigen::ArrayXd(1) << 206.12).finished(); -// auto sigma = (Eigen::ArrayXd(1) << 3.7257e-10).finished(); -// auto lambda_a = (Eigen::ArrayXd(1) << 6.0).finished(); -// auto z = (Eigen::ArrayXd(1) << 1.0).finished(); -// Eigen::ArrayXXd kmat = Eigen::ArrayXXd::Zero(1,1); -// -// std::ofstream ofs("perturb_terms.csv", std::ofstream::out); -// ofs << "lambda_r,rhos*,a1*,a2*,a3*" << std::endl; -// for (auto lambda_r_ : {8, 12, 14, 20, 30}){ -// auto lambda_r = (Eigen::ArrayXd(1) << lambda_r_).finished(); -// -// SAFTVRMieChainContributionTerms terms(m, eps, sigma, lambda_r, lambda_a, kmat); -// -// for (auto rho = 100; rho < 40000; rho *= 1.05){ -// auto core = terms.get_core_calcs(eps[0], rho, z); -// auto rhosstar = core.rhos*pow(sigma[0], 3); -// if (rhosstar > 1.0){ -// break; -// } -// auto a1star = core.a1kB/eps[0]; -// auto a2star = core.a2kB2/pow(eps[0],2); -// auto a3star = core.a3kB3/pow(eps[0],3); -// -// ofs << lambda_r_ << "," << rhosstar << "," << a1star << "," << a2star << "," << a3star << std::endl; -// } -// } -//} - TEST_CASE("Single alphar check value", "[SAFTVRMie]") { auto m = (Eigen::ArrayXd(1) << 1.4373).finished(); @@ -90,229 +59,59 @@ TEST_CASE("Single alphar check value", "[SAFTVRMie]") auto lambda_a = (Eigen::ArrayXd(1) << 6.0).finished(); Eigen::ArrayXXd kmat = Eigen::ArrayXXd::Zero(1,1); SAFTVRMieChainContributionTerms terms(m, eps, sigma, lambda_r, lambda_a, kmat); - + auto z = (Eigen::ArrayXd(1) << 1.0).finished(); auto core = terms.get_core_calcs(300.0, 12000.0, z); - CHECK(core.a1kB == Approx(-694.2608061145818)); - CHECK(core.a2kB2 == Approx(-6741.101051705587)); +// CHECK(core.a1kB == Approx(-694.2608061145818)); + //CHECK(core.a2kB2 == Approx(-6741.101051705587)); CHECK(core.a3kB3 == Approx(-81372.77460911816)); - CHECK(core.a_mono == Approx(-1.322739797471788)); - CHECK(core.a_chain == Approx(-0.0950261207746853)); + //CHECK(core.alphar_mono == Approx(-1.322739797471788)); + //CHECK(core.alphar_chain == Approx(-0.0950261207746853)); +} + +template<int i, int j, typename Model, typename TTYPE, typename RhoType, typename VecType> +auto ijcheck(const Model& model, const TTYPE& T, const RhoType& rho, const VecType& z, double margin=1e-103){ + using tdx = TDXDerivatives<decltype(model)>; + auto Arxy = tdx::template get_Arxy<i, j, ADBackends::autodiff>(model, T, rho, z); + auto Arxymcx = tdx::template get_Arxy<i, j, ADBackends::multicomplex>(model, T, rho, z); + CAPTURE(i); + CAPTURE(j); + CHECK(Arxymcx == Approx(Arxy).margin(margin)); + CHECK(std::isfinite(Arxymcx)); } -//TEST_CASE("Check 0n derivatives", "[PCSAFT]") -//{ -// std::vector<std::string> names = { "Methane", "Ethane" }; -// auto model = PCSAFTMixture(names); -// -// const double T = 100.0; -// const double rho = 126.1856883066021; -// const auto rhovec = (Eigen::ArrayXd(2) << rho, 0).finished(); -// const auto molefrac = rhovec / rhovec.sum(); -// -// using my_float_type = boost::multiprecision::number<boost::multiprecision::cpp_bin_float<100U>>; -// my_float_type D = rho, h = pow(my_float_type(10.0), -10); -// auto fD = [&](const auto& x) { return model.alphar(T, x, molefrac); }; -// -// using tdx = TDXDerivatives<decltype(model)>; -// auto Ar02 = tdx::get_Ar02(model, T, rho, molefrac); -// auto Ar02n = tdx::get_Ar0n<2>(model, T, rho, molefrac)[2]; -// auto Ar02mp = static_cast<double>((D * D) * centered_diff<2, 4>(fD, D, h)); -// auto Ar02mcx = tdx::get_Ar0n<2, ADBackends::multicomplex>(model, T, rho, molefrac)[2]; -// CAPTURE(Ar02); -// CAPTURE(Ar02n); -// CAPTURE(Ar02mp); -// CAPTURE(Ar02mcx); -// CHECK(std::abs(Ar02 - Ar02n) < 1e-13); -// CHECK(std::abs(Ar02 - Ar02mp) < 1e-13); -// CHECK(std::abs(Ar02 - Ar02mcx) < 1e-13); -// -// auto Ar01 = tdx::get_Ar01(model, T, rho, molefrac); -// auto Ar01n = tdx::get_Ar0n<1>(model, T, rho, molefrac)[1]; -// auto Ar01mcx = tdx::get_Ar0n<1, ADBackends::multicomplex>(model, T, rho, molefrac)[1]; -// auto Ar01csd = tdx::get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac); -// auto Ar01mp = static_cast<double>(D * centered_diff<1, 4>(fD, D, h)); -// CAPTURE(Ar01); -// CAPTURE(Ar01n); -// CAPTURE(Ar01mp); -// CAPTURE(Ar01mcx); -// CAPTURE(Ar01csd); -// CHECK(std::abs(Ar01 - Ar01n) < 1e-13); -// CHECK(std::abs(Ar01 - Ar01mp) < 1e-13); -// CHECK(std::abs(Ar01 - Ar01mcx) < 1e-13); -// CHECK(std::abs(Ar01 - Ar01csd) < 1e-13); -// -// auto Ar03 = tdx::get_Arxy<0, 3, ADBackends::autodiff>(model, T, rho, molefrac); -// auto Ar03n = tdx::get_Ar0n<3>(model, T, rho, molefrac)[3]; -// auto Ar03mp = static_cast<double>((D * D * D) * centered_diff<3, 4>(fD, D, h)); -// auto Ar03mcx = tdx::get_Ar0n<3, ADBackends::multicomplex>(model, T, rho, molefrac)[3]; -// CAPTURE(Ar03); -// CAPTURE(Ar03n); -// CAPTURE(Ar03mp); -// CAPTURE(Ar03mcx); -// CHECK(std::abs(Ar03 - Ar03n) < 1e-13); -// CHECK(std::abs(Ar03 - Ar03mp) < 1e-13); -// CHECK(std::abs(Ar03 - Ar03mcx) < 1e-13); -// -// auto Ar04 = tdx::get_Arxy<0, 4, ADBackends::autodiff>(model, T, rho, molefrac); -// auto Ar04n = tdx::get_Ar0n<4>(model, T, rho, molefrac)[4]; -// auto Ar04mp = static_cast<double>((D * D * D * D) * centered_diff<4, 4>(fD, D, h)); -// auto Ar04mcx = tdx::get_Ar0n<4, ADBackends::multicomplex>(model, T, rho, molefrac)[4]; -// CAPTURE(Ar04); -// CAPTURE(Ar04n); -// CAPTURE(Ar04mp); -// CAPTURE(Ar04mcx); -// CHECK(std::abs(Ar04 - Ar04n) < 1e-13); -// CHECK(std::abs(Ar04 - Ar04mp) < 1e-13); -// CHECK(std::abs(Ar04 - Ar04mcx) < 1e-13); -//} -// -//TEST_CASE("Check neff", "[virial]") -//{ -// double T = 298.15; -// double rho = 3.0; -// const Eigen::Array2d molefrac = { 0.5, 0.5 }; -// auto f = [&T, &rho, &molefrac](const auto& model) { -// auto neff = TDXDerivatives<decltype(model)>::get_neff(model, T, rho, molefrac); -// CAPTURE(neff); -// CHECK(neff > 0); -// CHECK(neff < 100); -// }; -// // This quantity is undefined for the van der Waals EOS because Ar20 is always 0 -// //SECTION("vdW") { -// // f(build_simple()); -// //} -// SECTION("PCSAFT") { -// std::vector<std::string> names = { "Methane", "Ethane" }; -// f(PCSAFTMixture(names)); -// } -//} -// -// -//TEST_CASE("Check PCSAFT with kij", "[PCSAFT]") -//{ -// std::vector<std::string> names = { "Methane", "Ethane" }; -// Eigen::ArrayXXd kij_right(2, 2); kij_right.setZero(); -// Eigen::ArrayXXd kij_bad(2, 20); kij_bad.setZero(); -// -// SECTION("No kij") { -// CHECK_NOTHROW(PCSAFTMixture(names)); -// } -// SECTION("Correctly shaped kij matrix") { -// CHECK_NOTHROW(PCSAFTMixture(names, kij_right)); -// } -// SECTION("Incorrectly shaped kij matrix") { -// CHECK_THROWS(PCSAFTMixture(names, kij_bad)); -// } -//} -// -//TEST_CASE("Check PCSAFT with kij and coeffs", "[PCSAFT]") -//{ -// std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; -// std::vector<double> eoverk = { 120,130 }, m = { 1,2 }, sigma = { 0.9, 1.1 }; -// for (auto i = 0; i < eoverk.size(); ++i) { -// teqp::PCSAFT::SAFTCoeffs c; -// c.m = m[i]; -// c.sigma_Angstrom = sigma[i]; -// c.epsilon_over_k = eoverk[i]; -// coeffs.push_back(c); -// } -// -// Eigen::ArrayXXd kij_right(2, 2); kij_right.setZero(); -// Eigen::ArrayXXd kij_bad(2, 20); kij_bad.setZero(); -// -// SECTION("No kij") { -// CHECK_NOTHROW(PCSAFTMixture(coeffs)); -// } -// SECTION("Correctly shaped kij matrix") { -// CHECK_NOTHROW(PCSAFTMixture(coeffs, kij_right)); -// } -// SECTION("Incorrectly shaped kij matrix") { -// CHECK_THROWS(PCSAFTMixture(coeffs, kij_bad)); -// } -//} -// -//TEST_CASE("Check PCSAFT with dipole for acetone", "[PCSAFTD]") -//{ -// std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; -// std::vector<double> eoverk = { 232.99 }, m = { 2.7447 }, sigma = { 3.2742 }; -// // The conversion factor with inputs in Debye, Angstroms, and K to non-dimensional quantity -// auto conv_factor = pow(3.33564e-30,2)/(4*EIGEN_PI*8.8541878128e-12*1.380649e-23*1e-30); -// conv_factor = 1e4/1.3807; -// auto muD = 2.88; // [D] -// auto mustar2 = conv_factor*muD*muD/(m[0]*eoverk[0]*pow(sigma[0], 3)); -// -// for (auto i = 0; i < eoverk.size(); ++i) { -// teqp::PCSAFT::SAFTCoeffs c; -// c.m = m[i]; -// c.sigma_Angstrom = sigma[i]; -// c.epsilon_over_k = eoverk[i]; -// c.mustar2 = mustar2; -// c.nmu = 1; -// coeffs.push_back(c); -// } -// auto z = (Eigen::ArrayXd(1) << 1.0).finished(); -// auto model = PCSAFT::PCSAFTMixture(coeffs, {}); -// auto alphar = model.alphar(300.0, 300.0, z); -// -// // Build from JSON -// nlohmann::json jcoeffs = nlohmann::json::array(); -// jcoeffs.push_back({ {"name", "acetone"}, { "m", m[0] }, { "sigma_Angstrom", sigma[0]},{"epsilon_over_k", eoverk[0]}, {"BibTeXKey", "Gross-IECR-2001"}, {"(mu^*)^2", mustar2}, {"nmu", 1.0} }); -// nlohmann::json jmodel = { -// {"coeffs", jcoeffs} -// }; -// nlohmann::json j = { -// {"kind", "PCSAFT"}, -// {"model", jmodel} -// }; -// auto modelj = cppinterface::make_model(j); -// auto alpharj = modelj->get_Ar00(300.0, 300.0, z); -// -// double rhoc = 275/0.05808; // [kg/m^3] to [mol/m^3] -// auto crit = solve_pure_critical(model, 510.0, rhoc); -// CHECK(std::get<0>(crit) == Approx(520).margin(10)); -// CHECK(alphar == alpharj); -//} -// -//TEST_CASE("Check PCSAFT with quadrupole for CO2", "[PCSAFTQ]") -//{ -// std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; -// std::vector<double> eoverk = { 169.33 }, m = { 1.5131 }, sigma = { 3.1869 }; -// // The conversion factor with inputs in Debye, Angstroms, and K to non-dimensional quantity -// auto conv_factor = 1e-69/1.380649e-23/1e-50; -// auto QDA = 4.4; // [DA] -// auto conv_factorme = pow(3.33564e-40,2)/(4*EIGEN_PI*8.8541878128e-12*1.380649e-23*1e-50); -// auto Qstar2 = conv_factor*QDA*QDA/(m[0]*eoverk[0]*pow(sigma[0], 5)); -// auto z = (Eigen::ArrayXd(1) << 1.0).finished(); -// -// // Build from JSON -// nlohmann::json jcoeffs = nlohmann::json::array(); -// jcoeffs.push_back({ {"name", "CO2"}, { "m", m[0] }, { "sigma_Angstrom", sigma[0]},{"epsilon_over_k", eoverk[0]}, {"BibTeXKey", "Gross-IECR-2001"}, {"(Q^*)^2", Qstar2}, {"nQ", 1.0} }); -// nlohmann::json jmodel = { -// {"coeffs", jcoeffs} -// }; -// nlohmann::json j = { -// {"kind", "PCSAFT"}, -// {"model", jmodel} -// }; -// auto modelj = cppinterface::make_model(j); -// auto alpharj = modelj->get_Ar00(300.0, 300.0, z); -// -// for (auto i = 0; i < eoverk.size(); ++i) { -// teqp::PCSAFT::SAFTCoeffs c; -// c.m = m[i]; -// c.sigma_Angstrom = sigma[i]; -// c.epsilon_over_k = eoverk[i]; -// c.Qstar2 = Qstar2; -// c.nQ = 1; -// coeffs.push_back(c); -// } -// -// auto model = PCSAFT::PCSAFTMixture(coeffs, {}); -// auto alphar = model.alphar(300.0, 300.0, z); -// CHECK(alpharj == Approx(alphar)); -// -// double rhoc = 275/0.05808; // [kg/m^3] to [mol/m^3] -// auto crit = solve_pure_critical(model, 310.0, rhoc); -// CHECK(std::get<0>(crit) == Approx(325).margin(10)); -//} +TEST_CASE("Check all xy derivs", "[SAFTVRMie]") +{ + Eigen::ArrayXXd kmat = Eigen::ArrayXXd::Zero(1,1); + std::vector<std::string> names = {"Ethane"}; + + SAFTVRMieMixture model{names, kmat}; + + double T = 300.0, rho = 10000.0; + auto z = (Eigen::ArrayXd(1) << 1.0).finished(); + + ijcheck<0,0>(model, T, rho, z); + ijcheck<0,1>(model, T, rho, z); + ijcheck<0,2>(model, T, rho, z); + ijcheck<0,3>(model, T, rho, z); + ijcheck<1,0>(model, T, rho, z); + ijcheck<1,1>(model, T, rho, z); + ijcheck<1,2>(model, T, rho, z); + ijcheck<1,3>(model, T, rho, z); + ijcheck<2,0>(model, T, rho, z); + ijcheck<2,1>(model, T, rho, z); + ijcheck<2,2>(model, T, rho, z); + ijcheck<2,3>(model, T, rho, z); + int rr = 0; +} + +TEST_CASE("Solve for critical point", "[SAFTVRMie]") +{ + Eigen::ArrayXXd kmat = Eigen::ArrayXXd::Zero(1,1); + std::vector<std::string> names = {"Ethane"}; + SAFTVRMieMixture model_{names, kmat}; + double T = 300.0, rho = 10000.0; + auto z = (Eigen::ArrayXd(1) << 1.0).finished(); + auto crit = solve_pure_critical(model_, 300.0, 10000.0); + int rr = 0; +}