/*** * A script for testing the loss in precision of autodiff differentiation and comparing to the lost * precision in REFPROP */ // Only this file gets the implementation #define REFPROP_IMPLEMENTATION #define REFPROP_FUNCTION_MODIFIER #include "REFPROP_lib.h" #undef REFPROP_FUNCTION_MODIFIER #undef REFPROP_IMPLEMENTATION #include <iostream> #include <valarray> #include "teqp/models/multifluid.hpp" #include "teqp/derivs.hpp" // Imports from boost #include <boost/multiprecision/cpp_bin_float.hpp> using namespace boost::multiprecision; #include "teqp/finite_derivs.hpp" /// A standalone implementation to be more in control of type promotion. /// In the end this standalone implementation gives the same answer /// This is for propane template<typename T, typename Tau, typename Delta> auto alphar_Lemmon2009(Tau tau, Delta delta) { const static std::valarray<T> d = { 4.0,1.0,1.0,2.0,2.0,1.0,3.0,6.0,6.0,2.0,3.0,1.0,1.0,1.0,2.0,2.0,4.0,1.0 }, n = { 0.042910051,1.7313671,-2.4516524,0.34157466,-0.46047898,-0.66847295,0.20889705,0.19421381,-0.22917851,-0.60405866,0.066680654,0.017534618,0.33874242,0.22228777,-0.23219062,-0.09220694,-0.47575718,-0.017486824 }, t = { 1,0.33,0.8,0.43,0.9,2.46,2.09,0.88,1.09,3.25,4.62,0.76,2.5,2.75,3.05,2.55,8.4,6.75 }, ld = { 0,0,0,0,0,1,1,1,1,2,2,0,0,0,0,0,0,0 }, cd = { 0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0 }, lt = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, ct = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, beta = { 0,0,0,0,0,0,0,0,0,0,0,2.33,3.47,3.15,3.19,0.92,18.8,547.8 }, epsilon = { 0,0,0,0,0,0,0,0,0,0,0,1.283,0.6936,0.788,0.473,0.8577,0.271,0.948 }, eta = { 0,0,0,0,0,0,0,0,0,0,0,0.963,1.977,1.917,2.307,2.546,3.28,14.6 }, gamma = { 0,0,0,0,0,0,0,0,0,0,0,0.684,0.829,1.419,0.817,1.5,1.426,1.093 }; std::common_type_t<Tau, Delta> result = 0.0; for (auto i = 0; i < n.size(); ++i) { result += n[i] * pow(tau, t[i]) * pow(delta, d[i]) * exp(-cd[i] * pow(delta, ld[i]) - eta[i] * pow(delta - epsilon[i], 2) - beta[i] * pow(tau - gamma[i], 2)); } return result; } int REFPROP_setup(const std::string &RPname) { // You may need to change this path to suit your installation // Note: forward-slashes are recommended. std::string path = std::getenv("RPPREFIX"); std::string DLL_name = ""; // Load the shared library and set up the fluid std::string err; bool loaded_REFPROP = load_REFPROP(err, path, DLL_name); printf("Loaded refprop: %s @ address %zu\n", loaded_REFPROP ? "true" : "false", REFPROP_address()); if (!loaded_REFPROP) { throw std::invalid_argument("Bad load of REFPROP"); } char hpath[256]; strcpy(hpath, (path + std::string(254-path.size(),'\0')).c_str()); SETPATHdll(hpath, 255); int ierr = 0, nc = 1; char herr[256], hfld[10000] = " ", hhmx[256] = "HMX.BNC", href[4] = "DEF"; strcpy(hfld, RPname.c_str()); SETUPdll(nc, hfld, hhmx, href, ierr, herr, 10000, 255, 3, 255); if (ierr != 0) { throw std::invalid_argument("Bad setup of REFPROP: "+std::string(herr)); } return 0; } struct REFPROP_sat_output { double T, rhoLmol_L, rhoVmol_L, p_kPa, rho_mol_L; char herr[256]; int ierr; std::valarray<double> mole_fractions{ 0.0, 20 }, mole_fractions_liq{ 0.0, 20 }, mole_fractions_vap{ 0.0, 20 }; }; // Do a saturation call in REFPROP to generate the liquid and vapor densities for a given temperature auto REFPROP_sat(double T) { REFPROP_sat_output o; o.T = T; int iFlsh = 0; SATTdll(T, &(o.mole_fractions[0]), iFlsh, o.p_kPa, o.rhoLmol_L, o.rhoVmol_L, &(o.mole_fractions_liq[0]), &(o.mole_fractions_vap[0]), o.ierr, o.herr, errormessagelength); return o; } struct calc_output { double Zexact, Zteqp, Ar01exact, Ar01teqp, Ar02exact, Ar02teqp, Ar03exact, Ar03teqp; }; template<typename Model, typename VECTOR> auto with_teqp_and_boost(const Model &model, double T, double rho, const VECTOR &z, bool is_propane){ // Pressure for each phase via teqp in double precision w/ autodiff using tdx = TDXDerivatives<decltype(model), double, VECTOR>; double Zteqp = 1.0 + tdx::get_Ar01(model, T, rho, z); double Ar01teqp = tdx::get_Ar01(model, T, rho, z); // Calculation with ridiculous number of digits of precision (the approximation of ground truth) using my_float = boost::multiprecision::number<boost::multiprecision::cpp_bin_float<200>>; my_float Tc = model.redfunc.Tc[0]; my_float rhoc = 1.0/static_cast<my_float>(model.redfunc.vc[0]); auto delta = static_cast<my_float>(rho) / rhoc; auto tau = Tc / static_cast<my_float>(T); my_float ddelta = 1e-30 * delta; my_float deltaplus = delta + ddelta, deltaminus = delta - ddelta; using coef_type = my_float; // What numerical type to use to initialize the coefficients (in the end it doesn't matter since they all get upcasted to my_float) // Check that the function values are exactly the same auto ar1 = model.corr.get_EOS(0).alphar(tau, delta); if (is_propane) { // As the standalone (if we are using propane) auto ar2 = alphar_Lemmon2009<my_float>(tau, delta); auto dar2 = static_cast<double>((ar2 - ar1) / ar1); if (std::abs(dar2) > 1e-100) { // yes, we have ridiculously accurate values throw std::invalid_argument("Function values are not exactly the same"); } } else { // Or from REFPROP otherwise int itau = 0, idelta = 0; double tau_ = static_cast<double>(tau), delta_ = static_cast<double>(delta); std::valarray<double> z(20); z = 1; double ar2 = -1; PHIXdll(itau, idelta, tau_, delta_, &(z[0]), ar2); double dar2 = static_cast<double>((ar2 - ar1) / ar1); if (std::abs(dar2) > 5e-14) { // basically double precision.. std::cout << dar2 << std::endl; throw std::invalid_argument("Function values are not exactly the same; error (%): "+std::to_string(dar2)); } } // And now the derivative value in two subtly different approaches, also check that 2nd-order-truncation and 4th-order-truncation are the same auto derL2_2nd = (alphar_Lemmon2009<coef_type>(tau, deltaplus) - alphar_Lemmon2009<coef_type>(tau, deltaminus)) / (2.0 * ddelta) * delta; auto derL2_4th = ( 1.0*alphar_Lemmon2009<coef_type>(tau, delta - 2.0*ddelta)/12.0 -2.0*alphar_Lemmon2009<coef_type>(tau, delta - ddelta)/3.0 +2.0*alphar_Lemmon2009<coef_type>(tau, delta + ddelta)/3.0 -1.0*alphar_Lemmon2009<coef_type>(tau, delta + 2.0*ddelta)/12.0 ) / ddelta * delta; auto derL3 = (model.corr.get_EOS(0).alphar(tau, deltaplus) - model.corr.get_EOS(0).alphar(tau, deltaminus)) / (2.0 * ddelta) * delta; auto Zexact = derL3 + 1.0; if (is_propane) { auto d3 = static_cast<double>((derL2_2nd - derL3) / derL2_2nd); auto d34th = static_cast<double>((derL2_4th - derL2_2nd) / derL2_2nd); if (std::abs(d3) > 1e-100) { // yes, we have ridiculously accurate values throw std::invalid_argument("Derivatives are not exactly the same in teqp and in standalone implementation"); } } calc_output o; o.Zexact = static_cast<double>(Zexact); o.Zteqp = Zteqp; o.Ar01exact = static_cast<double>(derL3); o.Ar01teqp = Ar01teqp; // Now do the third-order derivative of alphar, as a further test // Define a generic lambda function taking rho auto ff = [&](const auto& rho){ return model.alphar(T, rho, z); }; my_float drho = 1e-30*rho; o.Ar02exact = static_cast<double>(centered_diff<2,6>(ff,static_cast<my_float>(rho),drho)*pow(rho, 2)); o.Ar02teqp = tdx::template get_Ar0n<2>(model, T, rho, z)[2]; o.Ar03exact = static_cast<double>(centered_diff<3,6>(ff,static_cast<my_float>(rho),drho)*pow(rho, 3)); o.Ar03teqp = tdx::template get_Ar0n<3>(model, T, rho, z)[3]; return o; } int do_one(const std::string &RPname, const std::string &teqpname) { REFPROP_setup(RPname); auto model = build_multifluid_model({ teqpname }, "../mycp", "../mycp/dev/mixtures/mixture_binary_pairs.json"); Eigen::ArrayXd z(1); z = 1.0; bool is_propane = (RPname == "PROPANE"); double Tt = (is_propane) ? 85.525 : 273.16, Tc = (is_propane) ? 369.89 : 647.096; int NT = 200; nlohmann::json outputs = nlohmann::json::array(); for (double T : Eigen::ArrayXd::LinSpaced(NT, Tt, Tc)) { auto o = REFPROP_sat(T); // Pressure for each phase via REFPROP double pL = -1; PRESSdll(o.T, o.rhoLmol_L, &(z[0]), pL); double RL = -1; RMIX2dll(&(z[0]), RL); double ZLRP = pL/(o.rhoLmol_L*RL*o.T); // Units cancel (factor of 1000 in pL and RL) double Tr = -1, Dr = -1; REDXdll(&(z[0]), Tr, Dr); double pV = -1; PRESSdll(o.T, o.rhoVmol_L, &(z[0]), pV); double RV = -1; RMIX2dll(&(z[0]), RV); double ZVRP = pV/(o.rhoVmol_L*RV*o.T); // Units cancel (factor of 1000 in pV and RV) int itau = 0, idelta = 3; double tau = Tr / o.T, deltaL = o.rhoLmol_L / Dr, Ar03LRP = -1; double deltaV = o.rhoVmol_L / Dr, Ar03VRP = -1; PHIXdll(itau, idelta, tau, deltaL, &(z[0]), Ar03LRP); PHIXdll(itau, idelta, tau, deltaV, &(z[0]), Ar03VRP); double Ar01LRP = -1, Ar01VRP = -1; idelta = 1; PHIXdll(itau, idelta, tau, deltaL, &(z[0]), Ar01LRP); PHIXdll(itau, idelta, tau, deltaV, &(z[0]), Ar01VRP); double Ar02LRP = -1, Ar02VRP = -1; idelta = 2; PHIXdll(itau, idelta, tau, deltaL, &(z[0]), Ar02LRP); PHIXdll(itau, idelta, tau, deltaV, &(z[0]), Ar02VRP); double rhoL = o.rhoLmol_L * 1000.0, rhoV = o.rhoVmol_L*1000.0; for (double Q : { 0, 1 }) { double rho = (Q == 0) ? rhoL : rhoV; auto c = with_teqp_and_boost(model, T, rho, z, is_propane); double Zratiominus1 = c.Zteqp / c.Zexact - 1, Ar01ratiominus1 = c.Ar01teqp / c.Ar01exact - 1; outputs.push_back({ {"T / K", T}, {"Q", Q}, {"rho / mol/m^3", rho}, {"Zteqp", c.Zteqp}, {"Zexact", c.Zexact}, {"ratio-1", Zratiominus1}, {"ZRP", ((Q == 0) ? ZLRP : ZVRP)}, {"Ar03teqp", c.Ar03teqp}, {"Ar03exact", c.Ar03exact}, {"ratio03-1", c.Ar03teqp / c.Ar03exact - 1}, {"Ar01teqp", c.Ar01teqp}, {"Ar01exact", c.Ar01exact}, {"ratio01-1", Ar01ratiominus1}, {"Ar02teqp", c.Ar02teqp}, {"Ar02exact", c.Ar02exact}, {"Ar01RP", ((Q == 0) ? Ar01LRP : Ar01VRP)}, {"Ar02RP", ((Q == 0) ? Ar02LRP : Ar02VRP)}, {"Ar03RP", ((Q == 0) ? Ar03LRP : Ar03VRP)}, }); } std::cout << "Completed:" << T << std::endl; } std::ofstream file(RPname + "_saturation_Z_accuracy.json"); file << outputs; return EXIT_SUCCESS; } int main() { do_one("PROPANE", "n-Propane"); do_one("WATER", "Water"); return EXIT_SUCCESS; }