#include <catch2/catch_test_macros.hpp> #include <catch2/catch_approx.hpp> using Catch::Approx; #include "teqp/core.hpp" #include "teqp/derivs.hpp" #include "teqp/models/pcsaft.hpp" #include "teqp/finite_derivs.hpp" #include "teqp/json_builder.hpp" #include "teqp/cpp/teqpcpp.hpp" #include "teqp/algorithms/critical_pure.hpp" using namespace teqp::PCSAFT; using namespace teqp; #include "boost/multiprecision/cpp_bin_float.hpp" #include "boost/multiprecision/cpp_complex.hpp" TEST_CASE("Single alphar check value", "[PCSAFT]") { std::vector<std::string> names = { "Methane" }; auto model = PCSAFTMixture(names); double T = 200, Dmolar = 300; auto z = (Eigen::ArrayXd(1) << 1.0).finished(); using tdx = teqp::TDXDerivatives<decltype(model), double>; CHECK(tdx::get_Ar00(model, T, Dmolar, z) == Approx(-0.032400020930842724)); } TEST_CASE("Check 0n derivatives", "[PCSAFT]") { std::vector<std::string> names = { "Methane", "Ethane" }; auto model = PCSAFTMixture(names); const double T = 100.0; const double rho = 126.1856883066021; const auto rhovec = (Eigen::ArrayXd(2) << rho, 0).finished(); const auto molefrac = rhovec / rhovec.sum(); using my_float_type = boost::multiprecision::number<boost::multiprecision::cpp_bin_float<100U>>; my_float_type D = rho, h = pow(my_float_type(10.0), -10); auto fD = [&](const auto& x) { return model.alphar(T, x, molefrac); }; auto fTrecip = [&](const auto& x) { return model.alphar(forceeval(1.0/x), rho, molefrac); }; using tdx = TDXDerivatives<decltype(model)>; SECTION("0n"){ auto Ar02 = tdx::get_Ar02(model, T, rho, molefrac); auto Ar02n = tdx::get_Ar0n<2>(model, T, rho, molefrac)[2]; auto Ar02mp = static_cast<double>((D * D) * centered_diff<2, 4>(fD, D, h)); auto Ar02mcx = tdx::get_Ar0n<2, ADBackends::multicomplex>(model, T, rho, molefrac)[2]; CAPTURE(Ar02); CAPTURE(Ar02n); CAPTURE(Ar02mp); CAPTURE(Ar02mcx); CHECK(std::abs(Ar02 - Ar02n) < 1e-13); CHECK(std::abs(Ar02 - Ar02mp) < 1e-13); CHECK(std::abs(Ar02 - Ar02mcx) < 1e-13); auto Ar01 = tdx::get_Ar01(model, T, rho, molefrac); auto Ar01n = tdx::get_Ar0n<1>(model, T, rho, molefrac)[1]; auto Ar01mcx = tdx::get_Ar0n<1, ADBackends::multicomplex>(model, T, rho, molefrac)[1]; auto Ar01csd = tdx::get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac); auto Ar01mp = static_cast<double>(D * centered_diff<1, 4>(fD, D, h)); CAPTURE(Ar01); CAPTURE(Ar01n); CAPTURE(Ar01mp); CAPTURE(Ar01mcx); CAPTURE(Ar01csd); CHECK(std::abs(Ar01 - Ar01n) < 1e-13); CHECK(std::abs(Ar01 - Ar01mp) < 1e-13); CHECK(std::abs(Ar01 - Ar01mcx) < 1e-13); CHECK(std::abs(Ar01 - Ar01csd) < 1e-13); auto Ar03 = tdx::get_Arxy<0, 3, ADBackends::autodiff>(model, T, rho, molefrac); auto Ar03n = tdx::get_Ar0n<3>(model, T, rho, molefrac)[3]; auto Ar03mp = static_cast<double>((D * D * D) * centered_diff<3, 4>(fD, D, h)); auto Ar03mcx = tdx::get_Ar0n<3, ADBackends::multicomplex>(model, T, rho, molefrac)[3]; CAPTURE(Ar03); CAPTURE(Ar03n); CAPTURE(Ar03mp); CAPTURE(Ar03mcx); CHECK(std::abs(Ar03 - Ar03n) < 1e-13); CHECK(std::abs(Ar03 - Ar03mp) < 1e-13); CHECK(std::abs(Ar03 - Ar03mcx) < 1e-13); auto Ar04 = tdx::get_Arxy<0, 4, ADBackends::autodiff>(model, T, rho, molefrac); auto Ar04n = tdx::get_Ar0n<4>(model, T, rho, molefrac)[4]; auto Ar04mp = static_cast<double>((D * D * D * D) * centered_diff<4, 4>(fD, D, h)); auto Ar04mcx = tdx::get_Ar0n<4, ADBackends::multicomplex>(model, T, rho, molefrac)[4]; CAPTURE(Ar04); CAPTURE(Ar04n); CAPTURE(Ar04mp); CAPTURE(Ar04mcx); CHECK(std::abs(Ar04 - Ar04n) < 1e-13); CHECK(std::abs(Ar04 - Ar04mp) < 1e-13); CHECK(std::abs(Ar04 - Ar04mcx) < 1e-13); } SECTION("10"){ auto Ar10 = tdx::get_Ar10(model, T, rho, molefrac); auto Ar10n = tdx::get_Arn0<1>(model, T, rho, molefrac)[1]; auto Ar10mcx = tdx::get_Arn0<1, ADBackends::multicomplex>(model, T, rho, molefrac)[1]; my_float_type Tinv = 1/T; auto Ar10mp = static_cast<double>(Tinv * centered_diff<1, 4>(fTrecip, Tinv, h)); CAPTURE(Ar10); CAPTURE(Ar10n); CAPTURE(Ar10mp); CAPTURE(Ar10mcx); CHECK(std::abs(Ar10 - Ar10n) < 1e-13); CHECK(std::abs(Ar10 - Ar10mp) < 1e-13); CHECK(std::abs(Ar10 - Ar10mcx) < 1e-13); } SECTION("20"){ auto Ar20 = tdx::get_Ar20(model, T, rho, molefrac); auto Ar20n = tdx::get_Arn0<2>(model, T, rho, molefrac)[2]; auto Ar20mcx = tdx::get_Arn0<2, ADBackends::multicomplex>(model, T, rho, molefrac)[2]; my_float_type Tinv = 1/T; auto Ar20mp = static_cast<double>(Tinv * Tinv * centered_diff<2, 4>(fTrecip, Tinv, h)); CAPTURE(Ar20); CAPTURE(Ar20n); CAPTURE(Ar20mp); CAPTURE(Ar20mcx); CHECK(std::abs(Ar20 - Ar20n) < 1e-13); CHECK(std::abs(Ar20 - Ar20mp) < 1e-13); CHECK(std::abs(Ar20 - Ar20mcx) < 1e-13); } } TEST_CASE("Check neff", "[virial]") { double T = 298.15; double rho = 3.0; const Eigen::Array2d molefrac = { 0.5, 0.5 }; auto f = [&T, &rho, &molefrac](const auto& model) { auto neff = TDXDerivatives<decltype(model)>::get_neff(model, T, rho, molefrac); CAPTURE(neff); CHECK(neff > 0); CHECK(neff < 100); }; // This quantity is undefined for the van der Waals EOS because Ar20 is always 0 //SECTION("vdW") { // f(build_simple()); //} SECTION("PCSAFT") { std::vector<std::string> names = { "Methane", "Ethane" }; f(PCSAFTMixture(names)); } } TEST_CASE("Check dBdT", "[virial]") { double T = 298.15; const Eigen::Array2d molefrac = { 0.5, 0.5 }; auto f = [&T, &molefrac](const auto& model) { auto dBdT = VirialDerivatives<decltype(model)>::template get_dmBnvirdTm<2,1>(model, T, molefrac); CAPTURE(dBdT); CHECK(std::isfinite(dBdT)); }; SECTION("PCSAFT") { std::vector<std::string> names = { "Methane", "Ethane" }; f(PCSAFTMixture(names)); } } TEST_CASE("Check PCSAFT with kij", "[PCSAFT]") { std::vector<std::string> names = { "Methane", "Ethane" }; Eigen::ArrayXXd kij_right(2, 2); kij_right.setZero(); Eigen::ArrayXXd kij_bad(2, 20); kij_bad.setZero(); SECTION("No kij") { CHECK_NOTHROW(PCSAFTMixture(names)); } SECTION("Correctly shaped kij matrix") { CHECK_NOTHROW(PCSAFTMixture(names, kij_right)); } SECTION("Incorrectly shaped kij matrix") { CHECK_THROWS(PCSAFTMixture(names, kij_bad)); } } TEST_CASE("Check PCSAFT with kij and coeffs", "[PCSAFT]") { std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; std::vector<double> eoverk = { 120,130 }, m = { 1,2 }, sigma = { 0.9, 1.1 }; for (auto i = 0; i < eoverk.size(); ++i) { teqp::PCSAFT::SAFTCoeffs c; c.m = m[i]; c.sigma_Angstrom = sigma[i]; c.epsilon_over_k = eoverk[i]; coeffs.push_back(c); } Eigen::ArrayXXd kij_right(2, 2); kij_right.setZero(); Eigen::ArrayXXd kij_bad(2, 20); kij_bad.setZero(); SECTION("No kij") { CHECK_NOTHROW(PCSAFTMixture(coeffs)); } SECTION("Correctly shaped kij matrix") { CHECK_NOTHROW(PCSAFTMixture(coeffs, kij_right)); } SECTION("Incorrectly shaped kij matrix") { CHECK_THROWS(PCSAFTMixture(coeffs, kij_bad)); } } TEST_CASE("Check PCSAFT with dipole for acetone", "[PCSAFTD]") { std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; std::vector<double> eoverk = { 232.99 }, m = { 2.7447 }, sigma = { 3.2742 }; // The conversion factor with inputs in Debye, Angstroms, and K to non-dimensional quantity auto conv_factor = pow(3.33564e-30,2)/(4*EIGEN_PI*8.8541878128e-12*1.380649e-23*1e-30); conv_factor = 1e4/1.3807; auto muD = 2.88; // [D] auto mustar2 = conv_factor*muD*muD/(m[0]*eoverk[0]*pow(sigma[0], 3)); for (auto i = 0; i < eoverk.size(); ++i) { teqp::PCSAFT::SAFTCoeffs c; c.m = m[i]; c.sigma_Angstrom = sigma[i]; c.epsilon_over_k = eoverk[i]; c.mustar2 = mustar2; c.nmu = 1; coeffs.push_back(c); } auto z = (Eigen::ArrayXd(1) << 1.0).finished(); auto model = PCSAFT::PCSAFTMixture(coeffs, {}); auto alphar = model.alphar(300.0, 300.0, z); // Build from JSON nlohmann::json jcoeffs = nlohmann::json::array(); jcoeffs.push_back({ {"name", "acetone"}, { "m", m[0] }, { "sigma_Angstrom", sigma[0]},{"epsilon_over_k", eoverk[0]}, {"BibTeXKey", "Gross-IECR-2001"}, {"(mu^*)^2", mustar2}, {"nmu", 1.0} }); nlohmann::json jmodel = { {"coeffs", jcoeffs} }; nlohmann::json j = { {"kind", "PCSAFT"}, {"model", jmodel} }; auto modelj = cppinterface::make_model(j); auto alpharj = modelj->get_Ar00(300.0, 300.0, z); double rhoc = 275/0.05808; // [kg/m^3] to [mol/m^3] auto crit = solve_pure_critical(model, 510.0, rhoc); CHECK(std::get<0>(crit) == Approx(520).margin(10)); CHECK(alphar == alpharj); } TEST_CASE("Check PCSAFT with quadrupole for CO2", "[PCSAFTQ]") { std::vector<teqp::PCSAFT::SAFTCoeffs> coeffs; std::vector<double> eoverk = { 169.33 }, m = { 1.5131 }, sigma = { 3.1869 }; // The conversion factor with inputs in Debye, Angstroms, and K to non-dimensional quantity auto conv_factor = 1e-69/1.380649e-23/1e-50; auto QDA = 4.4; // [DA] auto conv_factorme = pow(3.33564e-40,2)/(4*EIGEN_PI*8.8541878128e-12*1.380649e-23*1e-50); auto Qstar2 = conv_factor*QDA*QDA/(m[0]*eoverk[0]*pow(sigma[0], 5)); auto z = (Eigen::ArrayXd(1) << 1.0).finished(); // Build from JSON nlohmann::json jcoeffs = nlohmann::json::array(); jcoeffs.push_back({ {"name", "CO2"}, { "m", m[0] }, { "sigma_Angstrom", sigma[0]},{"epsilon_over_k", eoverk[0]}, {"BibTeXKey", "Gross-IECR-2001"}, {"(Q^*)^2", Qstar2}, {"nQ", 1.0} }); nlohmann::json jmodel = { {"coeffs", jcoeffs} }; nlohmann::json j = { {"kind", "PCSAFT"}, {"model", jmodel} }; auto modelj = cppinterface::make_model(j); auto alpharj = modelj->get_Ar00(300.0, 300.0, z); for (auto i = 0; i < eoverk.size(); ++i) { teqp::PCSAFT::SAFTCoeffs c; c.m = m[i]; c.sigma_Angstrom = sigma[i]; c.epsilon_over_k = eoverk[i]; c.Qstar2 = Qstar2; c.nQ = 1; coeffs.push_back(c); } auto model = PCSAFT::PCSAFTMixture(coeffs, {}); auto alphar = model.alphar(300.0, 300.0, z); CHECK(alpharj == Approx(alphar)); double rhoc = 275/0.05808; // [kg/m^3] to [mol/m^3] auto crit = solve_pure_critical(model, 310.0, rhoc); CHECK(std::get<0>(crit) == Approx(325).margin(10)); } TEST_CASE("Check PCSAFT with kmat options", "[PCSAFT],[kmat]") { SECTION("null; ok"){ auto j = nlohmann::json::parse(R"({ "kind": "PCSAFT", "model": { "names": ["Methane"], "kmat": null } })"); CHECK_NOTHROW(teqp::cppinterface::make_model(j)); } SECTION("empty; ok"){ auto j = nlohmann::json::parse(R"({ "kind": "PCSAFT", "model": { "names": ["Methane"], "kmat": [] } })"); CHECK_NOTHROW(teqp::cppinterface::make_model(j)); } SECTION("empty for two components; ok"){ auto j = nlohmann::json::parse(R"({ "kind": "PCSAFT", "model": { "names": ["Methane","Ethane"], "kmat": [] } })"); CHECK_NOTHROW(teqp::cppinterface::make_model(j)); } SECTION("wrong size for two components; fail"){ auto j = nlohmann::json::parse(R"({ "kind": "PCSAFT", "model": { "names": ["Methane","Ethane","Propane"], "kmat": [0.001] } })"); CHECK_THROWS(teqp::cppinterface::make_model(j)); } } TEST_CASE("Check B and its temperature derivatives", "[PCSAFT],[B]") { auto j = nlohmann::json::parse(R"({ "kind": "PCSAFT", "model": { "names": ["Methane"] } })"); CHECK_NOTHROW(teqp::cppinterface::make_model(j)); auto model = teqp::cppinterface::make_model(j); double rhotest = 1e-3; double Tspec = 100; Eigen::ArrayXd z(1); z[0] = 1.0; auto Bnondilute = model->get_Ar00(Tspec, rhotest, z)/rhotest; auto B = model->get_dmBnvirdTm(2, 0, Tspec, z); CHECK(B == Approx(Bnondilute)); auto TdBdTnondilute = -model->get_Ar10(Tspec, rhotest, z)/rhotest; auto TdBdT = Tspec*model->get_dmBnvirdTm(2, 1, Tspec, z); CHECK(TdBdT == Approx(TdBdTnondilute)); }