#pragma once #include <optional> #include "teqp/constants.hpp" #include "teqp/types.hpp" /** To add: 1. Other cubic EOS (PR, SRK) 2. LKP (Stefan Herrig's thesis) */ /* A (very) simple implementation of the van der Waals EOS*/ class vdWEOS1 { private: double a, b; public: vdWEOS1(double a, double b) : a(a), b(b) {}; const double Ru = 1.380649e-23 * 6.02214076e23; ///< Exact value, given by k_B*N_A template<class VecType> auto R(const VecType& molefrac) const { return Ru; } template<typename TType, typename RhoType, typename VecType> auto alphar(const TType &T, const RhoType& rhotot, const VecType &molefrac) const { auto Psiminus = -log(1.0 - b * rhotot); auto Psiplus = rhotot; auto val = Psiminus - a / (R(molefrac) * T) * Psiplus; return forceeval(val); } double p(double T, double v) { return Ru*T/(v - b) - a/(v*v); } }; /* A slightly more involved implementation of van der Waals, this time with mixture properties */ template <typename NumType> class vdWEOS { protected: std::valarray<NumType> ai, bi; std::valarray<std::valarray<NumType>> k; template<typename TType, typename IndexType> auto get_ai(TType T, IndexType i) const { return ai[i]; } template<typename TType, typename IndexType> auto get_bi(TType T, IndexType i) const { return bi[i]; } public: vdWEOS(const std::valarray<NumType>& Tc_K, const std::valarray<NumType>& pc_Pa) { ai.resize(Tc_K.size()); bi.resize(Tc_K.size()); for (auto i = 0; i < Tc_K.size(); ++i) { ai[i] = 27.0 / 64.0 * pow(Ru * Tc_K[i], 2) / pc_Pa[i]; bi[i] = 1.0 / 8.0 * Ru * Tc_K[i] / pc_Pa[i]; } k = std::valarray<std::valarray<NumType>>(std::valarray<NumType>(0.0, Tc_K.size()), Tc_K.size()); }; template<typename TType, typename CompType> auto a(TType T, const CompType& molefracs) const { typename CompType::value_type a_ = 0.0; auto ai = this->ai; for (auto i = 0; i < molefracs.size(); ++i) { for (auto j = 0; j < molefracs.size(); ++j) { auto aij = (1 - k[i][j]) * sqrt(ai[i] * ai[j]); a_ = a_ + molefracs[i] * molefracs[j] * aij; } } return forceeval(a_); } template<typename CompType> auto b(const CompType& molefracs) const { typename CompType::value_type b_ = 0.0; for (auto i = 0; i < molefracs.size(); ++i) { b_ = b_ + molefracs[i] * bi[i]; } return forceeval(b_); } const NumType Ru = get_R_gas<double>(); /// Universal gas constant, exact number template<class VecType> auto R(const VecType& molefrac) const { return Ru; } template<typename TType, typename RhoType, typename MoleFracType> auto alphar(const TType &T, const RhoType& rho, const MoleFracType &molefrac) const { auto Psiminus = -log(1.0 - b(molefrac) * rho); auto Psiplus = rho; auto val = Psiminus - a(T, molefrac) / (Ru * T) * Psiplus; return forceeval(val); } };