#pragma once /// Coefficients for one fluid struct SAFTCoeffs { std::string name; ///< Name of fluid double m, ///< number of segments sigma_Angstrom, ///< [A] segment diameter epsilon_over_k; ///< [K] depth of pair potential divided by Boltzman constant std::string BibTeXKey; ///< The BibTeXKey for the reference for these coefficients }; /// Manager class for PCSAFT coefficients class PCSAFTLibrary { std::map<std::string, SAFTCoeffs> coeffs; public: PCSAFTLibrary() { insert_normal_fluid("Methane", 1.0000, 3.7039, 150.03, "Gross-IECR-2001"); insert_normal_fluid("Ethane", 1.6069, 3.5206, 191.42, "Gross-IECR-2001"); } void insert_normal_fluid(const std::string& name, double m, const double sigma_Angstrom, const double epsilon_over_k, const std::string& BibTeXKey) { SAFTCoeffs coeff; coeff.name = name; coeff.m = m; coeff.sigma_Angstrom = sigma_Angstrom; coeff.epsilon_over_k = epsilon_over_k; coeff.BibTeXKey = BibTeXKey; coeffs.insert(std::pair<std::string, SAFTCoeffs>(name, coeff)); } const auto& get_normal_fluid(const std::string& name) { auto it = coeffs.find(name); if (it != coeffs.end()) { return it->second; } else { throw std::invalid_argument("Bad name:" + name); } } }; /// Eqn. A.11 /// Erratum: should actually be 1/RHS of equation A.11 according to sample /// FORTRAN code template <typename Eta, typename Mbar> auto C1(const Eta& eta, Mbar mbar) { return 1.0 / (1.0 + mbar * (8.0 * eta - 2.0 * eta * eta) / pow(1.0 - eta, 4) + (1.0 - mbar) * (20.0 * eta - 27.0 * eta * eta + 12.0 * pow(eta, 3) - 2.0 * pow(eta, 4)) / pow((1.0 - eta) * (2.0 - eta), 2)); } /// Eqn. A.31 template <typename Eta, typename Mbar> auto C2(const Eta& eta, Mbar mbar) { return -pow(C1(eta, mbar), 2) * ( mbar * (-4.0 * eta * eta + 20.0 * eta + 8.0) / pow(1.0 - eta, 5) + (1.0 - mbar) * (2.0 * eta * eta * eta + 12.0 * eta * eta - 48.0 * eta + 40.0) / pow((1.0 - eta) * (2.0 - eta), 3) ); } /// Eqn. A.18 template<typename TYPE> auto get_a(TYPE mbar) { static Eigen::ArrayXd a_0 = (Eigen::ArrayXd(7) << 0.9105631445, 0.6361281449, 2.6861347891, -26.547362491, 97.759208784, -159.59154087, 91.297774084).finished(); static Eigen::ArrayXd a_1 = (Eigen::ArrayXd(7) << -0.3084016918, 0.1860531159, -2.5030047259, 21.419793629, -65.255885330, 83.318680481, -33.746922930).finished(); static Eigen::ArrayXd a_2 = (Eigen::ArrayXd(7) << -0.0906148351, 0.4527842806, 0.5962700728, -1.7241829131, -4.1302112531, 13.776631870, -8.6728470368).finished(); return forceeval(a_0 + ((mbar - 1.0) / mbar) * a_1 + ((mbar - 1.0) / mbar * (mbar - 2.0) / mbar) * a_2).eval(); } /// Eqn. A.19 template<typename TYPE> auto get_b(TYPE mbar) { // See https://stackoverflow.com/a/35170514/1360263 static Eigen::ArrayXd b_0 = (Eigen::ArrayXd(7) << 0.724094694, 2.2382791861, -4.0025849485, -21.003576815, 26.855641363, 206.55133841, -355.60235612).finished(); static Eigen::ArrayXd b_1 = (Eigen::ArrayXd(7) << -0.5755498075, 0.6995095521, 3.8925673390, -17.215471648, 192.67226447, -161.82646165, -165.20769346).finished(); static Eigen::ArrayXd b_2 = (Eigen::ArrayXd(7) << 0.0976883116, -0.2557574982, -9.1558561530, 20.642075974, -38.804430052, 93.626774077, -29.666905585).finished(); return forceeval(b_0 + (mbar - 1.0) / mbar * b_1 + (mbar - 1.0) / mbar * (mbar - 2.0) / mbar * b_2).eval(); } /// Residual contribution to alphar from hard-sphere (Eqn. A.6) template<typename VecType> auto get_alphar_hs(const VecType& zeta) { auto Upsilon = 1.0 - zeta[3]; return forceeval(1.0 / zeta[0] * (3.0 * zeta[1] * zeta[2] / Upsilon + zeta[2] * zeta[2] * zeta[2] / zeta[3] / Upsilon / Upsilon + (zeta[2] * zeta[2] * zeta[2] / (zeta[3] * zeta[3]) - zeta[0]) * log(1.0 - zeta[3]) )); } /// Residual contribution from hard-sphere (Eqn. A.26) template<typename VecType> auto Z_hs(const VecType& zeta) { auto Upsilon = 1.0 - zeta[3]; return forceeval(zeta[3] / Upsilon + 3.0 * zeta[1] * zeta[2] / (zeta[0] * pow(Upsilon, 2)) + (3.0 * pow(zeta[2], 3) - zeta[3] * pow(zeta[2], 3)) / (zeta[0] * pow(Upsilon, 3))); } /// Derivative term from Eqn. A.27 template<typename zVecType, typename dVecType> auto rho_A3_dgij_HS_drhoA3(const zVecType& zeta, const dVecType& d, std::size_t i, std::size_t j) { auto Upsilon = 1.0 - zeta[3]; return forceeval(zeta[3] / pow(Upsilon, 2) + d[i] * d[j] / (d[i] + d[j]) * (3.0 * zeta[2] / pow(Upsilon, 2) + 6.0 * zeta[2] * zeta[3] / pow(Upsilon, 3)) + pow(d[i] * d[j] / (d[i] + d[j]), 2) * (4.0 * pow(zeta[2], 2) / pow(Upsilon, 3) + 6.0 * pow(zeta[2], 2) * zeta[3] / pow(Upsilon, 4))); } /// Term from Eqn. A.7 template<typename zVecType, typename dVecType> auto gij_HS(const zVecType& zeta, const dVecType& d, std::size_t i, std::size_t j) { auto Upsilon = 1.0 - zeta[3]; return forceeval(1.0 / (Upsilon)+d[i] * d[j] / (d[i] + d[j]) * 3.0 * zeta[2] / pow(Upsilon, 2) + pow(d[i] * d[j] / (d[i] + d[j]), 2) * 2.0 * pow(zeta[2], 2) / pow(Upsilon, 3)); } /// Eqn. A.16, Eqn. A.29 template <typename Eta, typename MbarType> auto get_I1(const Eta& eta, MbarType mbar) { auto avec = get_a(mbar); Eta summer_I1 = 0.0, summer_etadI1deta = 0.0; for (std::size_t i = 0; i < 7; ++i) { auto increment = avec(i) * pow(eta, static_cast<int>(i)); summer_I1 = summer_I1 + increment; summer_etadI1deta = summer_etadI1deta + increment * (i + 1.0); } return std::make_tuple(forceeval(summer_I1), forceeval(summer_etadI1deta)); } /// Eqn. A.17, Eqn. A.30 template <typename Eta, typename MbarType> auto get_I2(const Eta& eta, MbarType mbar) { auto bvec = get_b(mbar); Eta summer_I2 = 0.0 * eta, summer_etadI2deta = 0.0 * eta; for (std::size_t i = 0; i < 7; ++i) { auto increment = bvec(i) * pow(eta, static_cast<int>(i)); summer_I2 = summer_I2 + increment; summer_etadI2deta = summer_etadI2deta + increment * (i + 1.0); } return std::make_tuple(forceeval(summer_I2), forceeval(summer_etadI2deta)); } PCSAFTLibrary library; /** Sum up three array-like objects that can each have different container types and value types */ template<typename VecType1, typename NType> auto powvec(const VecType1& v1, NType n) { auto o = v1; for (auto i = 0; i < v1.size(); ++i) { o[i] = pow(v1[i], n); } return o; } /** Sum up the coefficient-wise product of three array-like objects that can each have different container types and value types */ template<typename VecType1, typename VecType2, typename VecType3> auto sumproduct(const VecType1& v1, const VecType2& v2, const VecType3& v3) { using ResultType = typename std::common_type_t<decltype(v1[0]), decltype(v2[0]), decltype(v3[0])>; return forceeval((v1.template cast<ResultType>() * v2.template cast<ResultType>() * v3.template cast<ResultType>()).sum()); } /// Parameters for model evaluation template<typename NumType, typename ProductType> class SAFTCalc { public: // Just temperature dependent things Eigen::ArrayX<NumType> d; // These things also have composition dependence ProductType m2_epsilon_sigma3_bar, ///< Eq. A. 12 m2_epsilon2_sigma3_bar; ///< Eq. A. 13 }; /// A class used to evaluate mixtures using PC-SAFT model class PCSAFTMixture { private: Eigen::ArrayX<double> m, ///< number of segments mminus1, ///< m-1 sigma_Angstrom, ///< epsilon_over_k; ///< depth of pair potential divided by Boltzman constant std::vector<std::string> names; double k_ij; ///< binary interaction parameter public: PCSAFTMixture(const std::vector<std::string> &names) : names(names) { m.resize(names.size()); mminus1.resize(names.size()); sigma_Angstrom.resize(names.size()); epsilon_over_k.resize(names.size()); auto i = 0; for (auto name : names) { const SAFTCoeffs& coeff = library.get_normal_fluid(name); m[i] = coeff.m; mminus1[i] = m[i] - 1; sigma_Angstrom[i] = coeff.sigma_Angstrom; epsilon_over_k[i] = coeff.epsilon_over_k; i++; } k_ij = 0; }; PCSAFTMixture(const std::vector<SAFTCoeffs> &coeffs) { m.resize(coeffs.size()); mminus1.resize(coeffs.size()); sigma_Angstrom.resize(coeffs.size()); epsilon_over_k.resize(coeffs.size()); names.resize(coeffs.size()); auto i = 0; for (const auto &coeff : coeffs) { m[i] = coeff.m; mminus1[i] = m[i] - 1; sigma_Angstrom[i] = coeff.sigma_Angstrom; epsilon_over_k[i] = coeff.epsilon_over_k; names[i] = coeff.name; i++; } k_ij = 0; }; auto get_m(){ return m; } auto get_sigma_Angstrom() { return sigma_Angstrom; } auto get_epsilon_over_k_K() { return epsilon_over_k; } void print_info() { std::cout << "i m sigma / A e/kB / K \n ++++++++++++++" << std::endl; for (auto i = 0; i < m.size(); ++i) { std::cout << i << " " << m[i] << " " << sigma_Angstrom[i] << " " << epsilon_over_k[i] << std::endl; } } template<typename VecType> auto max_rhoN(double T, const VecType& mole_fractions) { auto N = mole_fractions.size(); Eigen::ArrayX<decltype(T)> d(N); for (auto i = 0; i < N; ++i) { d[i] = sigma_Angstrom[i] * (1.0 - 0.12 * exp(-3.0 * epsilon_over_k[i] / T)); } return 6 * 0.74 / EIGEN_PI / (mole_fractions*m*powvec(d, 3)).sum()*1e30; // particles/m^3 } template<class VecType> auto R(const VecType& molefrac) const { return get_R_gas<decltype(molefrac[0])>(); } template<typename TTYPE, typename RhoType, typename VecType> auto alphar(const TTYPE& T, const RhoType& rhomolar, const VecType& mole_fractions) const { std::size_t N = m.size(); if (mole_fractions.size() != N) { throw std::invalid_argument("Length of mole_fractions (" + std::to_string(mole_fractions.size()) + ") is not the length of components (" + std::to_string(N) + ")"); } using TRHOType = std::common_type_t<decltype(T), decltype(mole_fractions[0]), decltype(m[0])>; SAFTCalc<TTYPE, TRHOType> c; c.m2_epsilon_sigma3_bar = 0; c.m2_epsilon2_sigma3_bar = 0; c.d = sigma_Angstrom*(1.0 - 0.12*exp(-3.0*epsilon_over_k/T)); // [A] for (std::size_t i = 0; i < N; ++i) { for (std::size_t j = 0; j < N; ++j) { // Eq. A.5 auto sigma_ij = 0.5 * sigma_Angstrom[i] + 0.5 * sigma_Angstrom[j]; auto eij_over_k = sqrt(epsilon_over_k[i] * epsilon_over_k[j]) * (1.0 - k_ij); c.m2_epsilon_sigma3_bar = c.m2_epsilon_sigma3_bar + mole_fractions[i] * mole_fractions[j] * m[i] * m[j] * eij_over_k / T * pow(sigma_ij, 3); c.m2_epsilon2_sigma3_bar = c.m2_epsilon2_sigma3_bar + mole_fractions[i] * mole_fractions[j] * m[i] * m[j] * pow(eij_over_k / T, 2) * pow(sigma_ij, 3); } } auto mbar = (mole_fractions*m).sum(); /// Convert from molar density to number density in molecules/Angstrom^3 RhoType rho_A3 = rhomolar * N_A * 1e-30; //[molecules (not moles)/A^3] constexpr double MY_PI = EIGEN_PI; double pi6 = (MY_PI / 6.0); /// Evaluate the components of zeta using ta = std::common_type_t<decltype(pi6), decltype(m[0]), decltype(c.d[0]), decltype(rho_A3)>; std::vector<ta> zeta(4); for (std::size_t n = 0; n < 4; ++n) { // Eqn A.8 auto dn = c.d.pow(n).eval(); TRHOType xmdn = forceeval((mole_fractions*m*dn).sum()); zeta[n] = forceeval(pi6*rho_A3*xmdn); } /// Packing fraction is the 4-th value in zeta, at index 3 const auto &eta = zeta[3]; auto [I1, etadI1deta] = get_I1(eta, mbar); auto [I2, etadI2deta] = get_I2(eta, mbar); using tt = std::common_type_t<decltype(zeta[0]), decltype(c.d[0])>; Eigen::ArrayX<tt> lngii_hs(mole_fractions.size()); for (std::size_t i = 0; i < lngii_hs.size(); ++i) { lngii_hs[i] = log(gij_HS(zeta, c.d, i, i)); } auto alphar_hc = mbar * get_alphar_hs(zeta) - sumproduct(mole_fractions, mminus1, lngii_hs); // Eq. A.4 auto alphar_disp = -2 * MY_PI * rho_A3 * I1 * c.m2_epsilon_sigma3_bar - MY_PI * rho_A3 * mbar * C1(eta, mbar) * I2 * c.m2_epsilon2_sigma3_bar; return forceeval(alphar_hc + alphar_disp); } };