#pragma once #include <optional> #include <complex> #include <tuple> #include <map> #include "teqp/types.hpp" #include "MultiComplex/MultiComplex.hpp" // autodiff include #include <autodiff/forward/dual.hpp> #include <autodiff/forward/dual/eigen.hpp> using namespace autodiff; /*** * \brief Given a function, use complex step derivatives to calculate the derivative with * respect to the first variable which here is temperature */ template <typename TType, typename ContainerType, typename FuncType> typename ContainerType::value_type derivT(const FuncType& f, TType T, const ContainerType& rho) { double h = 1e-100; return f(std::complex<TType>(T, h), rho).imag() / h; } /*** * \brief Given a function, use multicomplex derivatives to calculate the derivative with * respect to the first variable which here is temperature */ template <typename TType, typename ContainerType, typename FuncType> typename ContainerType::value_type derivTmcx(const FuncType& f, TType T, const ContainerType& rho) { using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>; fcn_t wrapper = [&rho, &f](const auto& T_) {return f(T_, rho); }; auto ders = diff_mcx1(wrapper, T, 1); return ders[0]; } /*** * \brief Given a function, use complex step derivatives to calculate the derivative with respect * to the given composition variable */ template <typename TType, typename ContainerType, typename FuncType, typename Integer> typename ContainerType::value_type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer i) { double h = 1e-100; using comtype = std::complex<typename ContainerType::value_type>; Eigen::ArrayX<comtype> rhocom(rho.size()); for (auto j = 0; j < rho.size(); ++j) { rhocom[j] = comtype(rho[j], 0.0); } rhocom[i] = comtype(rho[i], h); return f(T, rhocom).imag() / h; } enum class ADBackends { autodiff, multicomplex, complex_step }; template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd> struct TDXDerivatives { static auto get_Ar00(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { return model.alphar(T, rho, molefrac); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar10(const Model& model, const Scalar &T, const Scalar &rho, const VectorType& molefrac) { if constexpr (be == ADBackends::complex_step) { double h = 1e-100; return -T * model.alphar(std::complex<Scalar>(T, h), rho, molefrac).imag() / h; // Complex step derivative } else if constexpr (be == ADBackends::multicomplex) { using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>; bool and_val = true; fcn_t f = [&model, &rho, &molefrac](const auto& Trecip_) { return model.alphar(1.0/Trecip_, rho, molefrac); }; auto ders = diff_mcx1(f, 1.0/T, 1, and_val); return (1.0/T)*ders[1]; } else if constexpr (be == ADBackends::autodiff) { autodiff::dual Trecipdual = 1.0/T; auto f = [&model, &rho, &molefrac](const auto& Trecip_) { return eval(model.alphar(eval(1.0/Trecip_), rho, molefrac)); }; auto der = derivative(f, wrt(Trecipdual), at(Trecipdual)); return (1.0/T)*der; } else { //static_assert(false, "algorithmic differentiation backend is invalid in get_Ar10"); } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar10"); } template<ADBackends be = ADBackends::autodiff> static Scalar get_Ar01(const Model& model, const Scalar&T, const Scalar &rho, const VectorType& molefrac){ if constexpr(be == ADBackends::complex_step){ double h = 1e-100; auto der = model.alphar(T, std::complex<Scalar>(rho, h), molefrac).imag() / h; return rho*der; } else if constexpr(be == ADBackends::multicomplex){ using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>; bool and_val = true; fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); }; auto ders = diff_mcx1(f, rho, 1, and_val); return rho*ders[1]; } else if constexpr(be == ADBackends::autodiff){ autodiff::dual rhodual = rho; auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); }; auto der = derivative(f, wrt(rhodual), at(rhodual)); return rho*der; } else { //static_assert(false, "algorithmic differentiation backend is invalid in get_Ar01"); } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar01"); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar02(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { if constexpr (be == ADBackends::autodiff) { autodiff::dual2nd rhodual = rho; auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); }; auto ders = derivatives(f, wrt(rhodual), at(rhodual)); return rho*rho*ders[2]; } else { using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>; bool and_val = true; fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); }; return powi(rho, 2)*diff_mcx1(f, rho, 2, and_val)[2]; } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar02"); } template<int Nderiv, ADBackends be = ADBackends::autodiff> static auto get_Ar0n(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { std::valarray<double> o(Nderiv+1); if constexpr (be == ADBackends::autodiff) { autodiff::HigherOrderDual<Nderiv, double> rhodual = rho; auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); }; auto ders = derivatives(f, wrt(rhodual), at(rhodual)); for (auto n = 0; n <= Nderiv; ++n) { o[n] = powi(rho, n) * ders[n]; } return o; } else { using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>; bool and_val = true; fcn_t f = [&](const auto& rhomcx) { return model.alphar(T, rhomcx, molefrac); }; auto ders = diff_mcx1(f, rho, Nderiv, and_val); for (auto n = 0; n <= Nderiv; ++n) { o[n] = powi(rho, n) * ders[n]; } return o; } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar0n"); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar20(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { if constexpr (be == ADBackends::autodiff) { autodiff::dual2nd Trecipdual = 1 / T; auto f = [&model, &rho, &molefrac](const auto& Trecip) { return eval(model.alphar(eval(1 / Trecip), rho, molefrac)); }; auto ders = derivatives(f, wrt(Trecipdual), at(Trecipdual)); return (1 / T) * (1 / T) * ders[2]; } else { //static_assert(false, "algorithmic differentiation backend is invalid in get_Ar20"); } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar20"); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar11(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { if constexpr (be == ADBackends::multicomplex) { using fcn_t = std::function< mcx::MultiComplex<double>(const std::valarray<mcx::MultiComplex<double>>&)>; const fcn_t func = [&model, &molefrac](const auto& zs) { auto rhomolar = zs[0], Trecip = zs[1]; return model.alphar(1.0 / Trecip, rhomolar, molefrac); }; std::vector<double> xs = { rho, 1.0 / T }; std::vector<int> order = { 1, 1 }; auto der = mcx::diff_mcxN(func, xs, order); return (1.0 / T) * rho * der; } else if constexpr (be == ADBackends::autodiff) { autodiff::dual2nd rhodual = rho, Trecipdual = 1 / T; auto f = [&model, &molefrac](const autodiff::dual2nd& Trecip, const autodiff::dual2nd& rho_) { return eval(model.alphar(eval(1 / Trecip), rho_, molefrac)); }; //auto der = derivative(f, wrt(Trecipdual, rhodual), at(Trecipdual, rhodual)); // d^2alphar/drhod(1/T) // This should work, but gives instead 1,0 derivative auto [u01, u10, u11] = derivatives(f, wrt(Trecipdual, rhodual), at(Trecipdual, rhodual)); // d^2alphar/drhod(1/T) return (1.0 / T) * rho * u11; } else { //static_assert(false, "algorithmic differentiation backend is invalid in get_Ar11"); } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar11"); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar12(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { if constexpr (be == ADBackends::multicomplex) { using fcn_t = std::function< mcx::MultiComplex<double>(const std::valarray<mcx::MultiComplex<double>>&)>; const fcn_t func = [&model, &molefrac](const auto& zs) { auto rhomolar = zs[0], Trecip = zs[1]; return model.alphar(1.0 / Trecip, rhomolar, molefrac); }; std::vector<double> xs = { rho, 1.0 / T }; std::vector<int> order = { 1, 2 }; auto der = mcx::diff_mcxN(func, xs, order); return (1.0 / T) * rho * rho * der; } else if constexpr (be == ADBackends::autodiff) { //static_assert("bug in autodiff, can't use autodiff for cross derivative"); autodiff::dual3rd rhodual = rho, Trecipdual = 1 / T; auto f = [&model, &molefrac](const auto& Trecip, const auto& rho_) { return eval(model.alphar(eval(1 / Trecip), rho_, molefrac)); }; auto ders = derivatives(f, wrt(Trecipdual, rhodual, rhodual), at(Trecipdual, rhodual)); return (1.0 / T) * rho * rho * ders.back(); } else { //static_assert(false, "algorithmic differentiation backend is invalid in get_Ar12"); } throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Ar12"); } template<ADBackends be = ADBackends::autodiff> static auto get_Ar(const int itau, const int idelta, const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { if (itau == 0) { if (idelta == 0) { return get_Ar00(model, T, rho, molefrac); } //else if (idelta == 1) { // return get_Ar01(model, T, rho, molefrac); //} //else if (idelta == 2) { // return get_Ar02(model, T, rho, molefrac); //} else { throw std::invalid_argument("Invalid value for idelta"); } } else if (itau == 1){ if (idelta == 0) { return get_Ar10(model, T, rho, molefrac); } //else if (idelta == 1) { // return get_Ar11(model, T, rho, molefrac); //} /*else if (idelta == 2) { return get_Ar12(model, T, rho, molefrac); }*/ else { throw std::invalid_argument("Invalid value for idelta"); } } else if (itau == 2) { if (idelta == 0) { return get_Ar20(model, T, rho, molefrac); } else { throw std::invalid_argument("Invalid value for idelta"); } } else { throw std::invalid_argument("Invalid value for idelta"); } } template<ADBackends be = ADBackends::autodiff> static auto get_neff(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) { auto Ar01 = get_Ar01<be>(model, T, rho, molefrac); auto Ar11 = get_Ar11<be>(model, T, rho, molefrac); auto Ar20 = get_Ar20<be>(model, T, rho, molefrac); return -3*(Ar01-Ar11)/Ar20; } }; template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd> struct VirialDerivatives { static auto get_B2vir(const Model& model, const Scalar &T, const VectorType& molefrac) { Scalar h = 1e-100; // B_2 = dalphar/drho|T,z at rho=0 auto B2 = model.alphar(T, std::complex<Scalar>(0.0, h), molefrac).imag()/h; return B2; } /** * \f$ * B_n = \frac{1}{(n-2)!} lim_rho\to 0 d^{n-1}alphar/drho^{n-1}|T,z * \f$ * \param model The model providing the alphar function * \param Nderiv The maximum virial coefficient to return; e.g. 5: B_2, B_3, ..., B_5 * \param T Temperature * \param molefrac The mole fractions */ template <int Nderiv, ADBackends be = ADBackends::autodiff> static auto get_Bnvir(const Model& model, const Scalar &T, const VectorType& molefrac) { std::map<int, double> dnalphardrhon; if constexpr(be == ADBackends::multicomplex){ using namespace mcx; using fcn_t = std::function<MultiComplex<double>(const MultiComplex<double>&)>; fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); }; auto derivs = diff_mcx1(f, 0.0, Nderiv+1, true /* and_val */); for (auto n = 1; n <= Nderiv; ++n){ dnalphardrhon[n] = derivs[n]; } } else if constexpr(be == ADBackends::autodiff){ autodiff::HigherOrderDual<Nderiv+1, double> rhodual = 0.0; auto f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); }; auto derivs = derivatives(f, wrt(rhodual), at(rhodual)); for (auto n = 1; n <= Nderiv; ++n){ dnalphardrhon[n] = derivs[n]; } } else{ //static_assert(false, "algorithmic differentiation backend is invalid"); throw std::invalid_argument("algorithmic differentiation backend is invalid in get_Bnvir"); } std::map<int, Scalar> o; for (int n = 2; n < Nderiv+1; ++n) { o[n] = dnalphardrhon[n-1]; // 0!=1, 1!=1, so only n>3 terms need factorial correction if (n > 3) { auto factorial = [](int N) {return tgamma(N + 1); }; o[n] /= factorial(n-2); } } return o; } static auto get_B12vir(const Model& model, const Scalar &T, const VectorType& molefrac) { auto B2 = get_B2vir(model, T, molefrac); // Overall B2 for mixture const auto xpure0 = (Eigen::ArrayXd(2) << 1,0).finished(); const auto xpure1 = (Eigen::ArrayXd(2) << 0,1).finished(); auto B20 = get_B2vir(model, T, xpure0); // Pure first component with index 0 auto B21 = get_B2vir(model, T, xpure1); // Pure second component with index 1 auto z0 = molefrac[0]; auto B12 = (B2 - z0*z0*B20 - (1-z0)*(1-z0)*B21)/(2*z0*(1-z0)); return B12; } }; template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd> struct IsochoricDerivatives{ /*** * \brief Calculate the residual entropy (s^+ = -sr/R) from derivatives of alphar */ static auto get_splus(const Model& model, const Scalar &T, const VectorType& rhovec) { auto rhotot = rhovec.sum(); auto molefrac = rhovec / rhotot; return model.alphar(T, rhotot, molefrac) - get_Ar10(model, T, rhovec); } /*** * \brief Calculate the residual pressure from derivatives of alphar */ static auto get_pr(const Model& model, const Scalar &T, const VectorType& rhovec) { auto rhotot_ = rhovec.sum(); auto molefrac = (rhovec / rhotot_).eval(); auto h = 1e-100; auto Ar01 = model.alphar(T, std::complex<double>(rhotot_, h), molefrac).imag() / h * rhotot_; return Ar01*rhotot_*model.R(molefrac)*T; } static auto get_Ar00(const Model& model, const Scalar& T, const VectorType& rhovec) { auto rhotot = rhovec.sum(); auto molefrac = (rhovec / rhotot).eval(); return model.alphar(T, rhotot, molefrac); } static auto get_Ar10(const Model& model, const Scalar& T, const VectorType& rhovec) { auto rhotot = rhovec.sum(); auto molefrac = (rhovec / rhotot).eval(); return -T * derivT([&model, &rhotot, &molefrac](const auto& T, const auto& rhovec) { return model.alphar(T, rhotot, molefrac); }, T, rhovec); } static auto get_Ar01(const Model& model, const Scalar &T, const VectorType& rhovec) { auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0); decltype(rhovec[0] * T) Ar01 = 0.0; for (auto i = 0; i < rhovec.size(); ++i) { auto Ar00 = [&model](const auto &T, const auto&rhovec) { auto rhotot = rhovec.sum(); auto molefrac = rhovec / rhotot; return model.alphar(T, rhotot, molefrac); }; Ar01 += rhovec[i] * derivrhoi(Ar00, T, rhovec, i); } return Ar01; } /*** * \brief Calculate Psir=ar*rho */ static auto get_Psir(const Model& model, const Scalar &T, const VectorType& rhovec) { auto rhotot_ = rhovec.sum(); auto molefrac = rhovec / rhotot_; return model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_; } /*** * \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations * * Requires the use of autodiff derivatives to calculate second partial derivatives */ static auto build_Psir_Hessian_autodiff(const Model& model, const Scalar& T, const VectorType& rho) { // Double derivatives in each component's concentration // N^N matrix (symmetric) dual2nd u; // the output scalar u = f(x), evaluated together with Hessian below ArrayXdual2nd g; ArrayXdual2nd rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; } auto hfunc = [&model, &T](const ArrayXdual2nd& rho_) { auto rhotot_ = rho_.sum(); auto molefrac = (rho_ / rhotot_).eval(); return eval(model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_); }; return autodiff::hessian(hfunc, wrt(rhovecc), at(rhovecc), u, g).eval(); // evaluate the function value u, its gradient, and its Hessian matrix H } /*** * \brief Calculate the Hessian of Psi = a*rho w.r.t. the molar concentrations * * Uses autodiff derivatives to calculate second partial derivatives */ static auto build_Psi_Hessian_autodiff(const Model& model, const Scalar& T, const VectorType& rho) { auto rhotot_ = rho.sum(); auto molefrac = (rho / rhotot_).eval(); auto H = build_Psir_Hessian_autodiff(model, T, rho).eval(); for (auto i = 0; i < 2; ++i) { H(i, i) += model.R(molefrac) * T / rho[i]; } return H; } /*** * \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations (residual contribution only) * * Requires the use of multicomplex derivatives to calculate second partial derivatives */ static auto build_Psir_Hessian_mcx(const Model& model, const Scalar& T, const VectorType& rho) { // Double derivatives in each component's concentration // N^N matrix (symmetric) using namespace mcx; // Lambda function for getting Psir with multicomplex concentrations using fcn_t = std::function< MultiComplex<double>(const Eigen::ArrayX<MultiComplex<double>>&)>; fcn_t func = [&model, &T](const auto& rhovec) { auto rhotot_ = rhovec.sum(); auto molefrac = (rhovec / rhotot_).eval(); return model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_; }; using mattype = Eigen::ArrayXXd; auto H = get_Hessian<mattype, fcn_t, VectorType, HessianMethods::Multiple>(func, rho); return H; } /*** * \brief Gradient of Psir = ar*rho w.r.t. the molar concentrations * * Uses autodiff to calculate derivatives */ static auto build_Psir_gradient_autodiff(const Model& model, const Scalar& T, const VectorType& rho) { ArrayXdual rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; } auto psirfunc = [&model, &T](const ArrayXdual& rho_) { auto rhotot_ = rho_.sum(); auto molefrac = (rho_ / rhotot_).eval(); return eval(model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_); }; auto val = autodiff::gradient(psirfunc, wrt(rhovecc), at(rhovecc)).eval(); // evaluate the gradient return val; } /*** * \brief Gradient of Psir = ar*rho w.r.t. the molar concentrations * * Uses multicomplex to calculate derivatives */ static auto build_Psir_gradient_multicomplex(const Model& model, const Scalar& T, const VectorType& rho) { using rho_type = VectorType::value_type; Eigen::ArrayX<mcx::MultiComplex<rho_type>> rhovecc(rho.size()); //for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; } auto psirfunc = [&model](const auto &T, const auto& rho_) { auto rhotot_ = rho_.sum(); auto molefrac = (rho_ / rhotot_).eval(); return eval(model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_); }; VectorType out(rho.size()); for (int i = 0; i < rho.size(); ++i) { out[i] = derivrhoi(psirfunc, T, rho, i); } return out; } /*** * \brief Gradient of Psir = ar*rho w.r.t. the molar concentrations * * Uses complex step to calculate derivatives */ static auto build_Psir_gradient_complex_step(const Model& model, const Scalar& T, const VectorType& rho) { using rho_type = VectorType::value_type; Eigen::ArrayX<std::complex<rho_type>> rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; } auto psirfunc = [&model](const auto& T, const auto& rho_) { auto rhotot_ = rho_.sum(); auto molefrac = (rho_ / rhotot_).eval(); return forceeval(model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_); }; VectorType out(rho.size()); for (int i = 0; i < rho.size(); ++i) { auto rhocopy = rhovecc; rho_type h = 1e-100; rhocopy[i] = rhocopy[i] + std::complex<rho_type>(0,h); auto calc = psirfunc(T, rhocopy); out[i] = calc.imag / static_cast<double>(h); } return out; } /* Convenience function to select the correct implementation at compile-time */ template<ADBackends be = ADBackends::autodiff> static auto build_Psir_gradient(const Model& model, const Scalar& T, const VectorType& rho) { if constexpr (be == ADBackends::multicomplex) { return build_Psir_gradient_multicomplex(model, T, rho); } else if constexpr (be == ADBackends::autodiff) { return build_Psir_gradient_autodiff(model, T, rho); } else if constexpr (be == ADBackends::complex_step) { return build_Psir_gradient_complex_step(model, T, rho); } } /*** * \brief Calculate the chemical potential of each component * * Uses autodiff to calculate derivatives * See Eq. 5 of https://doi.org/10.1002/aic.16730, but the rho in the denominator should be a rhoref (taken to be 1) * \note: Some contributions to the ideal gas part are missing (reference state and cp0), but are not relevant to phase equilibria */ static auto get_chempotVLE_autodiff(const Model& model, const Scalar& T, const VectorType& rho) { typename VectorType::value_type rhotot = rho.sum(); auto molefrac = (rho / rhotot).eval(); auto rhorefideal = 1.0; return (build_Psir_gradient_autodiff(model, T, rho).array() + model.R(molefrac)*T*(rhorefideal + log(rho / rhorefideal))).eval(); } /*** * \brief Calculate the fugacity coefficient of each component * * Uses autodiff to calculate derivatives */ template<ADBackends be = ADBackends::autodiff> static auto get_fugacity_coefficients(const Model& model, const Scalar& T, const VectorType& rhovec) { auto rhotot = forceeval(rhovec.sum()); auto molefrac = (rhovec / rhotot).eval(); auto R = model.R(molefrac); using tdx = TDXDerivatives<Model, Scalar, VectorType>; auto Z = 1.0 + tdx::get_Ar01<be>(model, T, rhotot, molefrac); auto grad = build_Psir_gradient<be>(model, T, rhovec).eval(); auto RT = R * T; auto lnphi = ((grad / RT).array() - log(Z)).eval(); return exp(lnphi).eval(); } static auto build_d2PsirdTdrhoi_autodiff(const Model& model, const Scalar& T, const VectorType& rho) { VectorType deriv(rho.size()); // d^2psir/dTdrho_i for (auto i = 0; i < rho.size(); ++i) { auto psirfunc = [&model, &rho, i](const auto& T, const auto& rhoi) { ArrayXdual2nd rhovecc(rho.size()); for (auto j = 0; j < rho.size(); ++j) { rhovecc[j] = rho[j]; } rhovecc[i] = rhoi; auto rhotot_ = rhovecc.sum(); auto molefrac = (rhovecc / rhotot_).eval(); return eval(model.alphar(T, rhotot_, molefrac) * model.R(molefrac) * T * rhotot_); }; dual2nd Tdual = T, rhoidual = rho[i]; auto [u00, u10, u11] = derivatives(psirfunc, wrt(Tdual, rhoidual), at(Tdual, rhoidual)); deriv[i] = u11; } return deriv; } /*** * \brief Calculate the temperature derivative of the chemical potential of each component * \note: Some contributions to the ideal gas part are missing (reference state and cp0), but are not relevant to phase equilibria */ static auto get_dchempotdT_autodiff(const Model& model, const Scalar& T, const VectorType& rhovec) { auto rhotot = rhovec.sum(); auto molefrac = (rhovec / rhotot).eval(); auto rhorefideal = 1.0; return build_d2PsirdTdrhoi_autodiff(model, T, rhovec) + model.R(molefrac)*(rhorefideal + log(rhovec/rhorefideal)); } };