#include "teqp/core.hpp" #include <fstream> #include <Eigen/Dense> #include "json.hpp" #include "teqp/models/multifluid.hpp" template <typename Num> auto cube(Num x) { return x*x*x; } class MultiFluidReducingFunction { private: Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv; public: template<typename ArrayLike> MultiFluidReducingFunction( const Eigen::MatrixXd &betaT, const Eigen::MatrixXd& gammaT, const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV, const ArrayLike&Tc, const ArrayLike& vc) : betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV) { auto N = Tc.size(); YT.resize(N,N); YT.setZero(); Yv.resize(N, N); Yv.setZero(); for (auto i = 0; i < N; ++i) { for (auto j = i+1; j < N; ++j) { YT(i, j) = betaT(i, j)*gammaT(i, j)*sqrt(Tc[i]*Tc[j]); YT(j, i) = betaT(j, i)*gammaT(j, i)*sqrt(Tc[i]*Tc[j]); Yv(i, j) = 1.0/8.0*betaV(i, j)*gammaV(i, j)*cube(cbrt(vc[i]) + cbrt(vc[j])); Yv(j, i) = 1.0/8.0*betaV(j, i)*gammaV(j, i)*cube(cbrt(vc[i]) + cbrt(vc[j])); } } } template <typename MoleFractions> auto Y(const MoleFractions &z, const Eigen::MatrixXd &Yc, const Eigen::MatrixXd &beta, const Eigen::MatrixXd &Yij){ auto sum2 = 0.0; auto N = z.size(); for i in range(0, N - 1){ for j in range(i + 1, N){ sum2 += 2*z[i]*z[j]*(z[i] + z[j])/(beta[i, j]**2*z[i] + z[j])*Yij[i, j]; } } return (z*z*Yc).sum() + sum2; } static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& components) { for (auto& el : collection) { if (components[0] == el["Name1"] && components[1] == el["Name2"]) { return el; } if (components[0] == el["Name2"] && components[1] == el["Name1"]) { return el; } } } static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& components) { auto el = get_BIPdep(collection, components); double betaT = el["betaT"], gammaT = el["gammaT"], betaV = el["betaV"], gammaV = el["gammaV"]; // Backwards order of components, flip beta values if (components[0] == el["Name2"] && components[1] == el["Name1"]) { betaT = 1.0/betaT; betaV = 1.0/betaV; } return std::make_tuple(betaT, gammaT, betaV, gammaV); } static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components) { Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv; auto N = components.size(); betaT.resize(N, N); betaT.setZero(); gammaT.resize(N, N); gammaT.setZero(); betaV.resize(N, N); betaV.setZero(); gammaV.resize(N, N); gammaV.setZero(); for (auto i = 0; i < N; ++i) { for (auto j = i + 1; j < N; ++j) { auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, {components[i], components[j]}); betaT(i, j) = betaT_; betaT(j, i) = 1.0 / betaT(i, j); gammaT(i, j) = gammaT_; gammaT(j, i) = gammaT(i, j); betaV(i, j) = betaV_; betaV(j, i) = 1.0 / betaV(i, j); gammaV(i, j) = gammaV_; gammaV(j, i) = gammaV(i, j); } } return std::make_tuple(betaT, gammaT, betaV, gammaV); } static auto get_Tcvc(const std::string& coolprop_root, const std::vector<std::string>& components) { std::vector<double> Tc, vc; using namespace nlohmann; for (auto& c : components) { auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + c + ".json")); auto red = j["EOS"][0]["STATES"]["reducing"]; double Tc_ = red["T"]; double rhoc_ = red["rhomolar"]; Tc.push_back(Tc_); vc.push_back(1.0 / rhoc_); } return std::make_tuple(Tc, vc); } static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& components) { Eigen::MatrixXd F(components.size(), components.size()); auto N = components.size(); for (auto i = 0; i < N; ++i) { F(i,i) = 0.0; for (auto j = i+1; j < N; ++j) { auto el = get_BIPdep(collection, {components[i], components[j]}); F(i,j) = el["F"]; F(j,i) = el["F"]; } } return F; } template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(z, Tc, betaT, YT); } template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(z, vc, betaV, Yv); } }; auto build_multifluid_model(const std::vector<std::string>& components) { using namespace nlohmann; std::string coolprop_root = "C:/Users/ihb/Code/CoolProp"; auto BIPcollection = json::parse(std::ifstream(coolprop_root + "/dev/mixtures/mixture_binary_pairs.json")); std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); } std::vector<DummyEOS> EOSs(components.size()); auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(coolprop_root, components); auto F = MultiFluidReducingFunction::get_F_matrix(BIPcollection, components); auto [betaT, gammaT, betaV, gammaV] = MultiFluidReducingFunction::get_BIP_matrices(BIPcollection, components); auto redfunc = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc); return MultiFluid( std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(F), std::move(funcs))) ); } int main(){ test_dummy(); auto model = build_multifluid_model({ "Methane", "Ethane" }); return EXIT_SUCCESS; }