#pragma once #include <optional> #include <complex> #include <tuple> #include "MultiComplex/MultiComplex.hpp" template <typename TType, typename ContainerType, typename FuncType> typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type caller(const FuncType& f, TType T, const ContainerType& rho) { return f(T, rho); } /*** * \brief Given a function, use complex step derivatives to calculate the derivative with * respect to the first variable which here is temperature */ template <typename TType, typename ContainerType, typename FuncType> typename ContainerType::value_type derivT(const FuncType& f, TType T, const ContainerType& rho) { double h = 1e-100; return f(std::complex<TType>(T, h), rho).imag() / h; } /*** * \brief Given a function, use multicomplex derivatives to calculate the derivative with * respect to the first variable which here is temperature */ template <typename TType, typename ContainerType, typename FuncType> typename ContainerType::value_type derivTmcx(const FuncType& f, TType T, const ContainerType& rho) { using fcn_t = std::function<MultiComplex<double>(const MultiComplex<double>&)>; fcn_t wrapper = [&rho, &f](const MultiComplex<TType>& T_) {return f(T_, rho); }; auto ders = diff_mcx1(wrapper, T, 1); return ders[0]; } /*** * \brief Given a function, use complex step derivatives to calculate the derivative with respect * to the given composition variable */ template <typename TType, typename ContainerType, typename FuncType, typename Integer> typename ContainerType::value_type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer i) { double h = 1e-100; using comtype = std::complex<ContainerType::value_type>; std::valarray<comtype> rhocom(rho.size()); for (auto j = 0; j < rho.size(); ++j) { rhocom[j] = comtype(rho[j], 0.0); } rhocom[i] = comtype(rho[i], h); return f(T, rhocom).imag() / h; } /*** * \brief Calculate the Psir=ar*rho */ template <typename TType, typename ContainerType, typename Model> typename ContainerType::value_type get_Psir(const Model& model, const TType T, const ContainerType& rhovec) { using container = decltype(rhovec); auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0); return model.alphar(T, rhovec)*model.R*T*rhotot_; } /*** * \brief Calculate the residual pressure from derivatives of alphar */ template <typename Model, typename TType, typename ContainerType> typename ContainerType::value_type get_pr(const Model& model, const TType T, const ContainerType& rhovec) { auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0); decltype(rhovec[0] * T) pr = 0.0; for (auto i = 0; i < rhovec.size(); ++i) { pr += rhovec[i]*derivrhoi([&model](const auto& T, const auto& rhovec){ return model.alphar(T, rhovec); }, T, rhovec, i); } return pr*rhotot_*model.R*T; } template <typename Model, typename TType, typename ContainerType> typename ContainerType::value_type get_Ar10(const Model& model, const TType T, const ContainerType& rhovec){ return T*derivT([&model](const auto& T, const auto& rhovec) { return model.alphar(T, rhovec); }, T, rhovec); } /*** * \brief Calculate the residual entropy (s^+ = -sr/R) from derivatives of alphar */ template <typename Model, typename TType, typename ContainerType> typename ContainerType::value_type get_splus(const Model& model, const TType T, const ContainerType& rhovec){ return model.alphar(T, rhovec) - get_Ar10(model, T, rhovec); } /*** * \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations * * Requires the use of multicomplex derivatives to calculate second partial derivatives */ template<typename Model, typename TType, typename RhoType> auto build_Psir_Hessian(const Model& model, const TType T, const RhoType& rho) { // Double derivatives in each component's concentration // N^N matrix (symmetric) for (auto i = 0; i < rho.size(); ++i) { for (auto j = i; j < rho.size(); ++j) { auto val = diff_mcxN(); H(i,j) = val; H(j,i) = val; } } return H; }