{ "cells": [ { "cell_type": "markdown", "id": "df447d16", "metadata": {}, "source": [ "# General cubics\n", "\n", "The reduced residual Helmholtz energy for the main cubic EOS (van der Waals, Peng-Robinson, and Soave-Redlich-Kwong) can be written in a common form:\n", "\n", "$$ \\begin{equation}\n", "\\label{eq:alphar_from_psi}\n", "\\alpha^r = \\psi^{(-)} - \\dfrac{\\tau a_m}{RT_r } \\psi^{(+)}.\n", "\\end{equation}$$\n", "\n", "$$ \\begin{eqnarray}\n", "\\psi^{(-)} &=& \\int_0^\\delta\\dfrac{b_m\\rho_r }{1-b_m\\delta\\rho_r }{\\rm d}\\delta \\label{eq:psiminusintegral}\\\\\n", " &=&-\\ln(1-b_m\\rho ). \\label{eq:psiminusresult}\n", "\\end{eqnarray} $$\n", "\n", "$$ \\begin{eqnarray}\n", "\\psi^{(+)} &=& \\int_0^\\delta \\dfrac{\\rho_r}{\\left(1+\\Delta_1 b_m\\delta\\rho_r \\right)\\left(1+\\Delta_2 b_m\\delta\\rho_r \\right)} {\\rm d}\\delta \\label{eq:psiplusintegral}\\\\\n", " &=& \\dfrac{\\ln\\left(\\dfrac{\\Delta_1 b_m\\rho+1}{\\Delta_2b_m\\rho+1}\\right)}{b_m(\\Delta_1-\\Delta_2)}\\label{eq:psiplusresult}\n", "\\end{eqnarray} $$\n", "\n", "with the constants given by:\n", "\n", "* vdW: $\\Delta_1=0$, $\\Delta_2=0$\n", "* SRK: $\\Delta_1=1$, $\\Delta_2=0$\n", "* PR: $\\Delta_1=1+\\sqrt{2}$, $\\Delta_2=1-\\sqrt{2}$\n", "\n", "The quantities $a_m$ and $b_m$ are described (with exact solutions for the numerical coefficients) for each of these EOS in https://pubs.acs.org/doi/abs/10.1021/acs.iecr.1c00847.\n", "\n", "The models in teqp are instantiated based on knowledge of the critical temperature, pressure, and acentric factor. Thereafter all quantities are obtained from derivatives of $\\alpha^r$." ] }, { "cell_type": "code", "execution_count": 4, "id": "9a884dab", "metadata": {}, "outputs": [], "source": [ "import teqp\n", "\n", "# Values taken from http://dx.doi.org/10.6028/jres.121.011\n", "Tc_K = [ 190.564, 154.581, 150.687 ]\n", "pc_Pa = [ 4599200, 5042800, 4863000 ]\n", "acentric = [ 0.011, 0.022, -0.002 ]\n", "\n", "# Instantiate Peng-Robinson model\n", "modelPR = teqp.canonical_PR(Tc_K, pc_Pa, acentric)\n", "\n", "# Instantiate Soave-Redlich-Kwong model\n", "modelSRK = teqp.canonical_SRK(Tc_K, pc_Pa, acentric)" ] }, { "cell_type": "markdown", "id": "615c7830", "metadata": {}, "source": [ "## Adjusting k_ij\n", "\n", "Fine-tuned values of $k_{ij}$ can be provided when instantiating the model, for Peng-Robinson and SRK. A complete matrix of all the $k_{ij}$ values must be provided. This allows for asymmetric mixing models in which $k_{ij}\\neq k_{ji}$." ] }, { "cell_type": "code", "execution_count": 7, "id": "a8c87890", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<teqp.teqp.GenericCubic at 0x20b222799b0>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k_12 = 0.01\n", "kmat = [[0,k_12,0],[k_12,0,0],[0,0,0]]\n", "teqp.canonical_PR(Tc_K, pc_Pa, acentric, kmat)\n", "teqp.canonical_SRK(Tc_K, pc_Pa, acentric, kmat)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 5 }