/** * Demonstration of how to specify your own EOS at runtime. In this case, * the EOS of Monika Thol and colleagues: https://doi.org/10.1063/1.4945000 */ #include "teqp/models/multifluid.hpp" #include "teqp/derivs.hpp" #include "teqp/json_builder.hpp" #include <array> std::string contents = R"( { "EOS": [ { "BibTeX_CP0": "", "BibTeX_EOS": "Thol-THESIS-2015", "STATES": { "reducing": { "T": 1.32, "T_units": "LJ units", "rhomolar": 0.31, "rhomolar_units": "LJ units" } }, "T_max": 1200, "T_max_units": "LJ units", "Ttriple": 290.25, "Ttriple_units": "LJ units", "alphar": [ { "d": [4, 1, 1, 2, 2, 3, 1, 1, 3, 2, 2, 5], "l": [0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 2, 1], "n": [0.52080730e-2, 0.21862520e+1, -0.21610160e+1, 0.14527000e+1, -0.20417920e+1, 0.18695286e+0, -0.62086250e+0, -0.56883900e+0, -0.80055922e+0, 0.10901431e+0, -0.49745610e+0, -0.90988445e-1], "t": [1.000, 0.320, 0.505, 0.672, 0.843, 0.898, 1.205, 1.786, 2.770, 1.786, 2.590, 1.294], "type": "ResidualHelmholtzPower" }, { "beta": [0.625, 0.638, 3.91, 0.156, 0.157, 0.153, 1.16, 1.73, 383, 0.112, 0.119], "d": [1, 1, 2, 3, 3, 2, 1, 2, 3, 1, 1], "epsilon": [ 0.2053, 0.409, 0.6, 1.203, 1.829, 1.397, 1.39, 0.539, 0.934, 2.369, 2.43], "eta": [2.067, 1.522, 8.82, 1.722, 0.679, 1.883, 3.925, 2.461, 28.2, 0.753, 0.82], "gamma": [0.71, 0.86, 1.94, 1.48, 1.49, 1.945, 3.02, 1.11, 1.17, 1.33, 0.24], "n": [-0.14667177e+1, 0.18914690e+1, -0.13837010e+0, -0.38696450e+0, 0.12657020e+0, 0.60578100e+0, 0.11791890e+1, -0.47732679e+0, -0.99218575e-1, -0.57479320e+0, 0.37729230e-2], "t": [2.830, 2.548, 4.650, 1.385, 1.460, 1.351, 0.660, 1.496, 1.830, 1.616, 4.970], "type": "ResidualHelmholtzGaussian" } ], "gas_constant": 1.0, "gas_constant_units": "LJ units", "molar_mass": 1.0, "molar_mass_units": "LJ units", "p_max": 100000, "p_max_units": "LJ units", "pseudo_pure": false } ], "INFO":{ "NAME": "LennardJones", "REFPROP_NAME": "LJF", "CAS": "N/A" } } )"; int main() { std::vector <std::string> componentJSON = { contents }; auto model = teqp::build_multifluid_JSONstr(componentJSON, "{}", "{}"); // Test values from https://aip.scitation.org/doi/suppl/10.1063/1.4945000/suppl_file/additional_information_ljf.pdf std::vector<std::array<double, 7> > data = { {0.8, 0.005, 3.8430053e-3, -5.4597389e-2, 5.5672903e-2, 1.1324263e0, 2.7768170e-1}, {0.8, 0.8, 1.5894013e-2, -5.7174120e0, 9.5995160e-1, 5.0522400e0, 1.1838093e0}, {1.0, 0.02, 1.7886470e-2, -1.8772644e-1, 1.3016045e-1, 1.2290934e0, 1.8318141e0}, {1.0, 0.71, 7.5247483e-2, -4.9564222e0, 6.8903536e-1, 4.1644650e0, 2.9792860e0}, {2.0, 0.5, 1.0751638e0, -3.1525021e0, 3.1068090e-1, 3.5186329e0, 9.5274193e0}, {5.0, 0.6, 6.9432008e0, -2.6956781e0, 3.1772707e-1, 6.8375197e0, 2.6122755e1}, {7.0, 1.0, 4.1531352e1, -6.2393078e-1, 7.3348579e-1, 1.4201978e1, 4.8074394e-1}, }; std::valarray<double> z(1.0, 1); std::cout << "**************** With general JSON interface **************" << std::endl; std::cout << "All in L-J units:" << std::endl; { constexpr int errmsg_length = 300; char uuid[33] = "", errmsg[errmsg_length] = ""; double val = -1, Ar01, Ar00; auto molefrac = (Eigen::ArrayXd(1) << 1.0).finished(); nlohmann::json jmodel = nlohmann::json::object(); jmodel["components"] = nlohmann::json::array(); jmodel["components"].push_back(nlohmann::json::parse(contents)); jmodel["departure"] = nlohmann::json::array(); jmodel["BIP"] = nlohmann::json::array(); jmodel["flags"] = nlohmann::json::object(); nlohmann::json j = { {"kind", "multifluid"}, {"model", jmodel} }; auto m = teqp::build_model(j); for (auto& el : data) { auto [T_, rho_, p, ur, cvr, w, a] = el; double T = T_, rho = rho_; // It is not possible to capture tuple-unpacked variables auto NT = 0, ND = 0; // Lambda function to extract the given derivative from the thing contained in the variant auto f = [&](const auto& model) { using tdx = teqp::TDXDerivatives<decltype(model), double, decltype(molefrac)>; return tdx::get_Ar(NT, ND, model, T, rho, molefrac); }; // Now call the visitor function to get the value auto Ar00 = std::visit(f, m); NT = 0; ND = 1; auto Ar01 = std::visit(f, m); NT = 1; ND = 0; auto Ar10 = std::visit(f, m); NT = 2; ND = 0; auto Ar20 = std::visit(f, m); double pcalc = T * rho * (1 + Ar01); double urcalc = T * Ar10; double cvrcalc = -Ar20; std::cout << "@ (T,rho): " << T << "," << rho << std::endl; std::cout << "p: " << pcalc << ", " << p << std::endl; std::cout << "ur: " << urcalc << ", " << ur << std::endl; std::cout << "cvr: " << cvrcalc << ", " << cvr << std::endl; } } std::cout << "**************** With normal interface **************" << std::endl; using tdx = teqp::TDXDerivatives<decltype(model), double, decltype(z)>; std::cout << "All in L-J units:" << std::endl; for (auto &el : data) { auto [T, rho, p, ur, cvr, w, a] = el; // I double Ar01 = tdx::get_Ar01(model, T, rho, z); double Ar10 = tdx::get_Ar10(model, T, rho, z); double Ar20 = tdx::get_Ar20(model, T, rho, z); double pcalc = T*rho*(1 + Ar01); double urcalc = T*Ar10; double cvrcalc = -Ar20; std::cout << "@ (T,rho): " << T << "," << rho << std::endl; std::cout << "p: " << pcalc << ", " << p << std::endl; std::cout << "ur: " << urcalc << ", " << ur << std::endl; std::cout << "cvr: " << cvrcalc << ", " << cvr << std::endl; } }