#define USE_AUTODIFF #include "teqp/core.hpp" #include "teqp/models/multifluid.hpp" #include <optional> class Timer { private: int N; decltype(std::chrono::steady_clock::now()) tic; public: Timer(int N) : N(N), tic(std::chrono::steady_clock::now()){} ~Timer() { auto elap = std::chrono::duration<double>(std::chrono::steady_clock::now()-tic).count(); std::cout << elap/N*1e6 << " us/call" << std::endl; } }; void trace_critical_loci(const std::string &coolprop_root, const nlohmann::json &BIPcollection) { std::vector<std::vector<std::string>> pairs = { { "CarbonDioxide", "R1234YF" }, { "CarbonDioxide","R1234ZE(E)" }, { "ETHYLENE","R1243ZF" }, { "R1234YF","R1234ZE(E)" }, { "R134A","R1234YF" }, { "R23","R1234YF" }, { "R32","R1123" }, { "R32","R1234YF" }, { "R32","R1234ZE(E)" } }; for (auto &pp : pairs) { using ModelType = decltype(build_multifluid_model(pp, coolprop_root, BIPcollection)); std::optional<ModelType> optmodel{std::nullopt}; try { optmodel.emplace(build_multifluid_model(pp, coolprop_root, BIPcollection)); } catch (std::exception &e) { std::cout << e.what() << std::endl; std::cout << pp[0] << "&" << pp[1] << std::endl; continue; } for (int i : {0, 1}){ const auto &model = optmodel.value(); auto rhoc0 = 1.0 / model.redfunc.vc[i]; auto T0 = model.redfunc.Tc[i]; std::valarray<double> rhovec(2); rhovec[i] = { rhoc0 }; rhovec[1L - i] = 0.0; // Non-analytic terms make it impossible to initialize AT the pure components if (pp[0] == "CarbonDioxide" || pp[1] == "CarbonDioxide") { if (i == 0) { rhovec[i] *= 0.9999; rhovec[1L - i] = 0.9999; } else { rhovec[i] *= 1.0001; rhovec[1L - i] = 1.0001; } double zi = rhovec[i] / rhovec.sum(); double T = zi * model.redfunc.Tc[i] + (1 - zi) * model.redfunc.Tc[1L - i]; double z0 = (i == 0) ? zi : 1-zi; auto [Tnew, rhonew] = critical_polish_molefrac(model, T, rhovec, z0); T0 = Tnew; rhoc0 = rhovec.sum(); } std::string filename = pp[0] + "_" + pp[1] + ".csv"; trace_critical_arclength_binary(model, rhovec, T0, filename); } } } int main(){ std::string coolprop_root = "C:/Users/ihb/Code/CoolProp"; coolprop_root = "../mycp"; auto BIPcollection = nlohmann::json::parse( std::ifstream(coolprop_root + "/dev/mixtures/mixture_binary_pairs.json") ); // Critical curves { Timer t(1); trace_critical_loci(coolprop_root, BIPcollection); } { auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection); std::valarray<double> rhovec = { 1.0, 2.0 }; double T = 300; { const std::valarray<double> molefrac = { rhovec[0]/rhovec.sum(), rhovec[1]/rhovec.sum() }; const double rho = rhovec.sum(); volatile double T = 300.0; constexpr int N = 10000; volatile double alphar; double rrrr = get_Ar01(model, T, rho, molefrac); double rrrr2 = get_Ar02(model, T, rho, molefrac); { Timer t(N); for (auto i = 0; i < N; ++i){ alphar = model.alphar(T, rho, molefrac); } std::cout << alphar << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac); } std::cout << alphar << "; 1st CSD" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = get_Ar01<ADBackends::autodiff>(model, T, rho, molefrac); } std::cout << alphar << "; 1st autodiff::autodiff" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = get_Ar01<ADBackends::multicomplex>(model, T, rho, molefrac); } std::cout << alphar << "; 1st MCX" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = get_Ar02(model, T, rho, molefrac); } std::cout << alphar << std::endl; } } auto alphar = model.alphar(T, rhovec); auto Ar01 = get_Ar01(model, T, rhovec); auto Ar10 = get_Ar10(model, T, rhovec); auto splus = get_splus(model, T, rhovec); std::valarray<double> molefrac = { 1.0/3.0, 2.0/3.0 }; auto B2 = get_B2vir(model, T, molefrac); std::valarray<double> dilrho = 0.00000000001*molefrac; auto B2other = get_Ar01(model, T, dilrho)/dilrho.sum(); std::valarray<double> zerorho = 0.0*rhovec; auto Ar01dil = get_Ar01(model, T, zerorho); int ttt =0 ; } return EXIT_SUCCESS; }