/*** \brief This file contains the contributions that can be composed together to form SAFT models */ #pragma once #include "nlohmann/json.hpp" #include "teqp/types.hpp" #include "teqp/exceptions.hpp" #include "teqp/constants.hpp" #include "teqp/json_tools.hpp" #include "teqp/models/saft/polar_terms.hpp" #include <optional> namespace teqp { namespace PCSAFT { /// Coefficients for one fluid struct SAFTCoeffs { std::string name; ///< Name of fluid double m = -1, ///< number of segments sigma_Angstrom = -1, ///< [A] segment diameter epsilon_over_k = -1; ///< [K] depth of pair potential divided by Boltzman constant std::string BibTeXKey; ///< The BibTeXKey for the reference for these coefficients double mustar2 = 0, ///< nondimensional, the reduced dipole moment squared nmu = 0, ///< number of dipolar segments Qstar2 = 0, ///< nondimensional, the reduced quadrupole squared nQ = 0; ///< number of quadrupolar segments }; /// Manager class for PCSAFT coefficients class PCSAFTLibrary { std::map<std::string, SAFTCoeffs> coeffs; public: PCSAFTLibrary() { insert_normal_fluid("Methane", 1.0000, 3.7039, 150.03, "Gross-IECR-2001"); insert_normal_fluid("Ethane", 1.6069, 3.5206, 191.42, "Gross-IECR-2001"); insert_normal_fluid("Propane", 2.0020, 3.6184, 208.11, "Gross-IECR-2001"); } void insert_normal_fluid(const std::string& name, double m, const double sigma_Angstrom, const double epsilon_over_k, const std::string& BibTeXKey) { SAFTCoeffs coeff; coeff.name = name; coeff.m = m; coeff.sigma_Angstrom = sigma_Angstrom; coeff.epsilon_over_k = epsilon_over_k; coeff.BibTeXKey = BibTeXKey; coeffs.insert(std::pair<std::string, SAFTCoeffs>(name, coeff)); } const auto& get_normal_fluid(const std::string& name) { auto it = coeffs.find(name); if (it != coeffs.end()) { return it->second; } else { throw std::invalid_argument("Bad name:" + name); } } auto get_coeffs(const std::vector<std::string>& names){ std::vector<SAFTCoeffs> c; for (auto n : names){ c.push_back(get_normal_fluid(n)); } return c; } }; /// Eqn. A.11 /// Erratum: should actually be 1/RHS of equation A.11 according to sample /// FORTRAN code template <typename Eta, typename Mbar> auto C1(const Eta& eta, Mbar mbar) { return forceeval(1.0 / (1.0 + mbar * (8.0 * eta - 2.0 * eta * eta) / pow(1.0 - eta, 4) + (1.0 - mbar) * (20.0 * eta - 27.0 * eta * eta + 12.0 * pow(eta, 3) - 2.0 * pow(eta, 4)) / pow((1.0 - eta) * (2.0 - eta), 2))); } /// Eqn. A.31 template <typename Eta, typename Mbar> auto C2(const Eta& eta, Mbar mbar) { return forceeval(-pow(C1(eta, mbar), 2) * ( mbar * (-4.0 * eta * eta + 20.0 * eta + 8.0) / pow(1.0 - eta, 5) + (1.0 - mbar) * (2.0 * eta * eta * eta + 12.0 * eta * eta - 48.0 * eta + 40.0) / pow((1.0 - eta) * (2.0 - eta), 3) )); } /// Eqn. A.18 template<typename TYPE> auto get_a(TYPE mbar) { static Eigen::ArrayXd a_0 = (Eigen::ArrayXd(7) << 0.9105631445, 0.6361281449, 2.6861347891, -26.547362491, 97.759208784, -159.59154087, 91.297774084).finished(); static Eigen::ArrayXd a_1 = (Eigen::ArrayXd(7) << -0.3084016918, 0.1860531159, -2.5030047259, 21.419793629, -65.255885330, 83.318680481, -33.746922930).finished(); static Eigen::ArrayXd a_2 = (Eigen::ArrayXd(7) << -0.0906148351, 0.4527842806, 0.5962700728, -1.7241829131, -4.1302112531, 13.776631870, -8.6728470368).finished(); return forceeval(a_0.cast<TYPE>().array() + ((mbar - 1.0) / mbar) * a_1.cast<TYPE>().array() + ((mbar - 1.0) / mbar * (mbar - 2.0) / mbar) * a_2.cast<TYPE>().array()).eval(); } /// Eqn. A.19 template<typename TYPE> auto get_b(TYPE mbar) { // See https://stackoverflow.com/a/35170514/1360263 static Eigen::ArrayXd b_0 = (Eigen::ArrayXd(7) << 0.7240946941, 2.2382791861, -4.0025849485, -21.003576815, 26.855641363, 206.55133841, -355.60235612).finished(); static Eigen::ArrayXd b_1 = (Eigen::ArrayXd(7) << -0.5755498075, 0.6995095521, 3.8925673390, -17.215471648, 192.67226447, -161.82646165, -165.20769346).finished(); static Eigen::ArrayXd b_2 = (Eigen::ArrayXd(7) << 0.0976883116, -0.2557574982, -9.1558561530, 20.642075974, -38.804430052, 93.626774077, -29.666905585).finished(); return forceeval(b_0.cast<TYPE>().array() + (mbar - 1.0) / mbar * b_1.cast<TYPE>().array() + (mbar - 1.0) / mbar * (mbar - 2.0) / mbar * b_2.cast<TYPE>().array()).eval(); } /// Residual contribution to alphar from hard-sphere (Eqn. A.6) template<typename VecType> auto get_alphar_hs(const VecType& zeta) { // The limit of alphar_hs in the case of density going to zero is still zero, // but the way it goes to zero is subtle if (getbaseval(zeta[3]) == 0){ return forceeval(4.0*zeta[3]); } auto Upsilon = 1.0 - zeta[3]; return forceeval(1.0 / zeta[0] * (3.0 * zeta[1] * zeta[2] / Upsilon + zeta[2] * zeta[2] * zeta[2] / zeta[3] / Upsilon / Upsilon + (zeta[2] * zeta[2] * zeta[2] / (zeta[3] * zeta[3]) - zeta[0]) * log(1.0 - zeta[3]) )); } /// Term from Eqn. A.7 template<typename zVecType, typename dVecType> auto gij_HS(const zVecType& zeta, const dVecType& d, std::size_t i, std::size_t j) { auto Upsilon = 1.0 - zeta[3]; return forceeval(1.0 / (Upsilon)+d[i] * d[j] / (d[i] + d[j]) * 3.0 * zeta[2] / pow(Upsilon, 2) + pow(d[i] * d[j] / (d[i] + d[j]), 2) * 2.0 * pow(zeta[2], 2) / pow(Upsilon, 3)); } /// Eqn. A.16, Eqn. A.29 template <typename Eta, typename MbarType> auto get_I1(const Eta& eta, MbarType mbar) { auto avec = get_a(mbar); Eta summer_I1 = 0.0, summer_etadI1deta = 0.0; for (std::size_t i = 0; i < 7; ++i) { auto increment = avec(i) * powi(eta, static_cast<int>(i)); summer_I1 = summer_I1 + increment; summer_etadI1deta = summer_etadI1deta + increment * (i + 1.0); } return std::make_tuple(forceeval(summer_I1), forceeval(summer_etadI1deta)); } /// Eqn. A.17, Eqn. A.30 template <typename Eta, typename MbarType> auto get_I2(const Eta& eta, MbarType mbar) { auto bvec = get_b(mbar); Eta summer_I2 = 0.0 * eta, summer_etadI2deta = 0.0 * eta; for (std::size_t i = 0; i < 7; ++i) { auto increment = bvec(i) * powi(eta, static_cast<int>(i)); summer_I2 = summer_I2 + increment; summer_etadI2deta = summer_etadI2deta + increment * (i + 1.0); } return std::make_tuple(forceeval(summer_I2), forceeval(summer_etadI2deta)); } /** Sum up three array-like objects that can each have different container types and value types */ template<typename VecType1, typename NType> auto powvec(const VecType1& v1, NType n) { auto o = v1; for (auto i = 0; i < v1.size(); ++i) { o[i] = pow(v1[i], n); } return o; } /** Sum up the coefficient-wise product of three array-like objects that can each have different container types and value types */ template<typename VecType1, typename VecType2, typename VecType3> auto sumproduct(const VecType1& v1, const VecType2& v2, const VecType3& v3) { using ResultType = typename std::common_type_t<decltype(v1[0]), decltype(v2[0]), decltype(v3[0])>; return forceeval((v1.template cast<ResultType>().array() * v2.template cast<ResultType>().array() * v3.template cast<ResultType>().array()).sum()); } /// Parameters for model evaluation template<typename NumType, typename ProductType> class SAFTCalc { public: // Just temperature dependent things Eigen::ArrayX<NumType> d; // These things also have composition dependence ProductType m2_epsilon_sigma3_bar, ///< Eq. A. 12 m2_epsilon2_sigma3_bar; ///< Eq. A. 13 }; /*** * \brief This class provides the evaluation of the hard chain contribution from classic PC-SAFT */ class PCSAFTHardChainContribution{ protected: const Eigen::ArrayX<double> m, ///< number of segments mminus1, ///< m-1 sigma_Angstrom, ///< epsilon_over_k; ///< depth of pair potential divided by Boltzman constant const Eigen::ArrayXXd kmat; ///< binary interaction parameter matrix public: PCSAFTHardChainContribution(const Eigen::ArrayX<double> &m, const Eigen::ArrayX<double> &mminus1, const Eigen::ArrayX<double> &sigma_Angstrom, const Eigen::ArrayX<double> &epsilon_over_k, const Eigen::ArrayXXd &kmat) : m(m), mminus1(mminus1), sigma_Angstrom(sigma_Angstrom), epsilon_over_k(epsilon_over_k), kmat(kmat) {} PCSAFTHardChainContribution& operator=( const PCSAFTHardChainContribution& ) = delete; // non copyable template<typename TTYPE, typename RhoType, typename VecType> auto eval(const TTYPE& T, const RhoType& rhomolar, const VecType& mole_fractions) const { std::size_t N = m.size(); if (mole_fractions.size() != N) { throw std::invalid_argument("Length of mole_fractions (" + std::to_string(mole_fractions.size()) + ") is not the length of components (" + std::to_string(N) + ")"); } using TRHOType = std::common_type_t<std::decay_t<TTYPE>, std::decay_t<RhoType>, std::decay_t<decltype(mole_fractions[0])>, std::decay_t<decltype(m[0])>>; SAFTCalc<TTYPE, TRHOType> c; c.m2_epsilon_sigma3_bar = static_cast<TRHOType>(0.0); c.m2_epsilon2_sigma3_bar = static_cast<TRHOType>(0.0); c.d.resize(N); for (std::size_t i = 0; i < N; ++i) { c.d[i] = sigma_Angstrom[i]*(1.0 - 0.12 * exp(-3.0*epsilon_over_k[i]/T)); // [A] for (std::size_t j = 0; j < N; ++j) { // Eq. A.5 auto sigma_ij = 0.5 * sigma_Angstrom[i] + 0.5 * sigma_Angstrom[j]; auto eij_over_k = sqrt(epsilon_over_k[i] * epsilon_over_k[j]) * (1.0 - kmat(i,j)); c.m2_epsilon_sigma3_bar = c.m2_epsilon_sigma3_bar + mole_fractions[i] * mole_fractions[j] * m[i] * m[j] * eij_over_k / T * pow(sigma_ij, 3); c.m2_epsilon2_sigma3_bar = c.m2_epsilon2_sigma3_bar + mole_fractions[i] * mole_fractions[j] * m[i] * m[j] * pow(eij_over_k / T, 2) * pow(sigma_ij, 3); } } auto mbar = (mole_fractions.template cast<TRHOType>().array()*m.template cast<TRHOType>().array()).sum(); /// Convert from molar density to number density in molecules/Angstrom^3 RhoType rho_A3 = rhomolar * N_A * 1e-30; //[molecules (not moles)/A^3] constexpr double MY_PI = EIGEN_PI; double pi6 = (MY_PI / 6.0); /// Evaluate the components of zeta using ta = std::common_type_t<decltype(pi6), decltype(m[0]), decltype(c.d[0]), decltype(rho_A3)>; std::vector<ta> zeta(4); for (std::size_t n = 0; n < 4; ++n) { // Eqn A.8 auto dn = c.d.pow(n).eval(); TRHOType xmdn = forceeval((mole_fractions.template cast<TRHOType>().array()*m.template cast<TRHOType>().array()*dn.template cast<TRHOType>().array()).sum()); zeta[n] = forceeval(pi6*rho_A3*xmdn); } /// Packing fraction is the 4-th value in zeta, at index 3 auto eta = zeta[3]; auto [I1, etadI1deta] = get_I1(eta, mbar); auto [I2, etadI2deta] = get_I2(eta, mbar); // Hard chain contribution from G&S using tt = std::common_type_t<decltype(zeta[0]), decltype(c.d[0])>; Eigen::ArrayX<tt> lngii_hs(mole_fractions.size()); for (auto i = 0; i < lngii_hs.size(); ++i) { lngii_hs[i] = log(gij_HS(zeta, c.d, i, i)); } auto alphar_hc = forceeval(mbar * get_alphar_hs(zeta) - sumproduct(mole_fractions, mminus1, lngii_hs)); // Eq. A.4 // Dispersive contribution auto alphar_disp = forceeval(-2 * MY_PI * rho_A3 * I1 * c.m2_epsilon_sigma3_bar - MY_PI * rho_A3 * mbar * C1(eta, mbar) * I2 * c.m2_epsilon2_sigma3_bar); using eta_t = decltype(eta); using hc_t = decltype(alphar_hc); using disp_t = decltype(alphar_disp); struct PCSAFTHardChainContributionTerms{ eta_t eta; hc_t alphar_hc; disp_t alphar_disp; }; return PCSAFTHardChainContributionTerms{forceeval(eta), forceeval(alphar_hc), forceeval(alphar_disp)}; } }; /** A class used to evaluate mixtures using PC-SAFT model This is the classical Gross and Sadowski model from 2001: https://doi.org/10.1021/ie0003887 with the errors fixed as noted in a comment: https://doi.org/10.1021/acs.iecr.9b01515 */ class PCSAFTMixture { public: using PCSAFTDipolarContribution = SAFTpolar::DipolarContributionGrossVrabec; using PCSAFTQuadrupolarContribution = SAFTpolar::QuadrupolarContributionGrossVrabec; protected: Eigen::ArrayX<double> m, ///< number of segments mminus1, ///< m-1 sigma_Angstrom, ///< epsilon_over_k; ///< depth of pair potential divided by Boltzman constant std::vector<std::string> names; Eigen::ArrayXXd kmat; ///< binary interaction parameter matrix PCSAFTHardChainContribution hardchain; std::optional<PCSAFTDipolarContribution> dipolar; // Can be present or not std::optional<PCSAFTQuadrupolarContribution> quadrupolar; // Can be present or not void check_kmat(std::size_t N) { if (kmat.cols() != kmat.rows()) { throw teqp::InvalidArgument("kmat rows and columns are not identical"); } if (kmat.cols() == 0) { kmat.resize(N, N); kmat.setZero(); } else if (kmat.cols() != N) { throw teqp::InvalidArgument("kmat needs to be a square matrix the same size as the number of components"); } }; auto get_coeffs_from_names(const std::vector<std::string> &names){ PCSAFTLibrary library; return library.get_coeffs(names); } auto build_hardchain(const std::vector<SAFTCoeffs> &coeffs){ check_kmat(coeffs.size()); m.resize(coeffs.size()); mminus1.resize(coeffs.size()); sigma_Angstrom.resize(coeffs.size()); epsilon_over_k.resize(coeffs.size()); names.resize(coeffs.size()); auto i = 0; for (const auto &coeff : coeffs) { m[i] = coeff.m; mminus1[i] = m[i] - 1; sigma_Angstrom[i] = coeff.sigma_Angstrom; epsilon_over_k[i] = coeff.epsilon_over_k; names[i] = coeff.name; i++; } return PCSAFTHardChainContribution(m, mminus1, sigma_Angstrom, epsilon_over_k, kmat); } auto build_dipolar(const std::vector<SAFTCoeffs> &coeffs) -> std::optional<PCSAFTDipolarContribution>{ Eigen::ArrayXd mustar2(coeffs.size()), nmu(coeffs.size()); auto i = 0; for (const auto &coeff : coeffs) { mustar2[i] = coeff.mustar2; nmu[i] = coeff.nmu; i++; } if ((mustar2*nmu).cwiseAbs().sum() == 0){ return std::nullopt; // No dipolar contribution is present } // The dispersive and hard chain initialization has already happened at this point return PCSAFTDipolarContribution(m, sigma_Angstrom, epsilon_over_k, mustar2, nmu); } auto build_quadrupolar(const std::vector<SAFTCoeffs> &coeffs) -> std::optional<PCSAFTQuadrupolarContribution>{ // The dispersive and hard chain initialization has already happened at this point Eigen::ArrayXd Qstar2(coeffs.size()), nQ(coeffs.size()); auto i = 0; for (const auto &coeff : coeffs) { Qstar2[i] = coeff.Qstar2; nQ[i] = coeff.nQ; i++; } if ((Qstar2*nQ).cwiseAbs().sum() == 0){ return std::nullopt; // No quadrupolar contribution is present } return PCSAFTQuadrupolarContribution(m, sigma_Angstrom, epsilon_over_k, Qstar2, nQ); } public: PCSAFTMixture(const std::vector<std::string> &names, const Eigen::ArrayXXd& kmat = {}) : PCSAFTMixture(get_coeffs_from_names(names), kmat){}; PCSAFTMixture(const std::vector<SAFTCoeffs> &coeffs, const Eigen::ArrayXXd &kmat = {}) : kmat(kmat), hardchain(build_hardchain(coeffs)), dipolar(build_dipolar(coeffs)), quadrupolar(build_quadrupolar(coeffs)) {}; // PCSAFTMixture( const PCSAFTMixture& ) = delete; // non construction-copyable PCSAFTMixture& operator=( const PCSAFTMixture& ) = delete; // non copyable auto get_m() const { return m; } auto get_sigma_Angstrom() const { return sigma_Angstrom; } auto get_epsilon_over_k_K() const { return epsilon_over_k; } auto get_kmat() const { return kmat; } auto print_info() { std::string s = std::string("i m sigma / A e/kB / K \n ++++++++++++++") + "\n"; for (auto i = 0; i < m.size(); ++i) { s += std::to_string(i) + " " + std::to_string(m[i]) + " " + std::to_string(sigma_Angstrom[i]) + " " + std::to_string(epsilon_over_k[i]) + "\n"; } return s; } template<typename VecType> double max_rhoN(const double T, const VecType& mole_fractions) const { auto N = mole_fractions.size(); Eigen::ArrayX<double> d(N); for (auto i = 0; i < N; ++i) { d[i] = sigma_Angstrom[i] * (1.0 - 0.12 * exp(-3.0 * epsilon_over_k[i] / T)); } return 6 * 0.74 / EIGEN_PI / (mole_fractions*m*powvec(d, 3)).sum()*1e30; // particles/m^3 } template<class VecType> auto R(const VecType& molefrac) const { return get_R_gas<decltype(molefrac[0])>(); } template<typename TTYPE, typename RhoType, typename VecType> auto alphar(const TTYPE& T, const RhoType& rhomolar, const VecType& mole_fractions) const { // First values for the chain with dispersion (always included) auto vals = hardchain.eval(T, rhomolar, mole_fractions); auto alphar = forceeval(vals.alphar_hc + vals.alphar_disp); auto rho_A3 = forceeval(rhomolar*N_A*1e-30); // If dipole is present, add its contribution if (dipolar){ auto valsdip = dipolar.value().eval(T, rho_A3, vals.eta, mole_fractions); alphar += valsdip.alpha; } // If quadrupole is present, add its contribution if (quadrupolar){ auto valsquad = quadrupolar.value().eval(T, rho_A3, vals.eta, mole_fractions); alphar += valsquad.alpha; } return forceeval(alphar); } }; /// A JSON-based factory function for the PC-SAFT model inline auto PCSAFTfactory(const nlohmann::json& spec) { std::optional<Eigen::ArrayXXd> kmat; if (spec.contains("kmat") && spec.at("kmat").is_array() && spec.at("kmat").size() > 0){ kmat = build_square_matrix(spec["kmat"]); } if (spec.contains("names")){ std::vector<std::string> names = spec["names"]; if (kmat && kmat.value().rows() != names.size()){ throw teqp::InvalidArgument("Provided length of names of " + std::to_string(names.size()) + " does not match the dimension of the kmat of " + std::to_string(kmat.value().rows())); } return PCSAFTMixture(names, kmat.value_or(Eigen::ArrayXXd{})); } else if (spec.contains("coeffs")){ std::vector<SAFTCoeffs> coeffs; for (auto j : spec["coeffs"]) { SAFTCoeffs c; c.name = j.at("name"); c.m = j.at("m"); c.sigma_Angstrom = j.at("sigma_Angstrom"); c.epsilon_over_k = j.at("epsilon_over_k"); c.BibTeXKey = j.at("BibTeXKey"); if (j.contains("(mu^*)^2") && j.contains("nmu")){ c.mustar2 = j.at("(mu^*)^2"); c.nmu = j.at("nmu"); } if (j.contains("(Q^*)^2") && j.contains("nQ")){ c.Qstar2 = j.at("(Q^*)^2"); c.nQ = j.at("nQ"); } coeffs.push_back(c); } if (kmat && kmat.value().rows() != coeffs.size()){ throw teqp::InvalidArgument("Provided length of coeffs of " + std::to_string(coeffs.size()) + " does not match the dimension of the kmat of " + std::to_string(kmat.value().rows())); } return PCSAFTMixture(coeffs, kmat.value_or(Eigen::ArrayXXd{})); } else{ throw std::invalid_argument("you must provide names or coeffs, but not both"); } } } /* namespace PCSAFT */ }; // namespace teqp