#include "teqp/core.hpp" #include "teqp/models/multifluid.hpp" #include <optional> template<typename J> void time_calls(const std::string &coolprop_root, const J &BIPcollection) { auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection); Eigen::ArrayXd rhovec(2); rhovec << 1.0, 2.0; double T = 300; { const auto molefrac = (Eigen::ArrayXd(2) << rhovec[0] / rhovec.sum(), rhovec[1] / rhovec.sum()).finished(); using vd = VirialDerivatives<decltype(model)>; auto B12 = vd::get_B12vir(model, T, molefrac); using id = IsochoricDerivatives<decltype(model), double, Eigen::ArrayXd>; auto mu = id::get_chempotVLE_autodiff(model, T, rhovec); const double rho = rhovec.sum(); double T = 300.0; constexpr int N = 10000; volatile double alphar; using tdx = TDXDerivatives<decltype(model)>; double rrrr = tdx::get_Ar01(model, T, rho, molefrac); double rrrr2 = tdx::get_Ar02(model, T, rho, molefrac); { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = model.alphar(T, rho, molefrac); } std::cout << alphar << " function call" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = tdx::get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac); } std::cout << alphar << "; 1st CSD" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = tdx::get_Ar01<ADBackends::autodiff>(model, T, rho, molefrac); } std::cout << alphar << "; 1st autodiff::autodiff" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = tdx::get_Ar01<ADBackends::multicomplex>(model, T, rho, molefrac); } std::cout << alphar << "; 1st MCX" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { alphar = tdx::get_Ar02(model, T, rho, molefrac); } std::cout << alphar << "; 2nd autodiff" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { auto o = vd::template get_Bnvir<3, ADBackends::autodiff>(model, T, molefrac)[3]; } std::cout << alphar << "; 3 derivs" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { auto o = vd::template get_Bnvir<4, ADBackends::autodiff>(model, T, molefrac)[4]; } std::cout << alphar << "; 4 derivs" << std::endl; } { Timer t(N); for (auto i = 0; i < N; ++i) { auto o = vd::template get_Bnvir<5, ADBackends::autodiff>(model, T, molefrac)[5]; } std::cout << alphar << "; 5 derivs" << std::endl; } } } int main(){ std::string coolprop_root = "C:/Users/ihb/Code/CoolProp"; coolprop_root = "../mycp"; auto BIPcollection = coolprop_root + "/dev/mixtures/mixture_binary_pairs.json"; { nlohmann::json flags = { {"estimate", true},{"another","key"} }; auto model = build_multifluid_model({ "CarbonDioxide", "Water" }, coolprop_root, BIPcollection, flags); } // // Critical curves //{ // Timer t(1); // trace_critical_loci(coolprop_root, BIPcollection); // }*/ time_calls(coolprop_root, BIPcollection); /*{ nlohmann::json flags = { {"estimate", true},{"another","key"} }; auto model = build_multifluid_model({ "Ethane", "R1234ze(E)" }, coolprop_root, BIPcollection, flags); nlohmann::json j = { {"betaT", 1.0},{"gammaT", 1.0},{"betaV", 1.0},{"gammaV", 1.0},{"Fij", 0.0} }; auto mutant = build_mutant(model, j); }*/ { auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection); Eigen::ArrayXd rhovec(2); rhovec << 1.0, 2.0; double T = 300; const auto molefrac = rhovec/rhovec.sum(); using tdx = TDXDerivatives<decltype(model), double, Eigen::ArrayXd>; const auto b = ADBackends::autodiff; auto rho = rhovec.sum(); auto alphar = model.alphar(T, rho, rhovec); auto Ar01 = tdx::get_Ar01<b>(model, T, rho, molefrac); auto Ar10 = tdx::get_Ar10<b>(model, T, rho, molefrac); auto Ar02 = tdx::get_Ar02<b>(model, T, rho, molefrac); auto Ar11 = tdx::get_Ar11<b>(model, T, rho, molefrac); //auto Ar11mcx = tdx::get_Ar11<ADBackends::multicomplex>(model, T, rho, molefrac); //auto Ar20 = tdx::get_Ar20(model, T, rho, molefrac); //using id = IsochoricDerivatives<decltype(model), double, Eigen::ArrayXd>; //auto splus = id::get_splus(model, T, rhovec);*/ int ttt = 0; } return EXIT_SUCCESS; }