#pragma once template <typename TType, typename ContainerType, typename FuncType> typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type caller(const FuncType& f, TType T, const ContainerType& rho) { return f(T, rho); } /// Given a function, use complex step derivatives to calculate the derivative with respect to the first variable /// which here is temperature template <typename TType, typename ContainerType, typename FuncType> typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type derivT(const FuncType& f, TType T, const ContainerType& rho) { double h = 1e-100; return f(std::complex<TType>(T, h), rho).imag() / h; } /// Given a function, use complex step derivatives to calculate the derivative with respect to the first composition variable template <typename TType, typename ContainerType, typename FuncType, typename Integer> typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer j) { double h = 1e-100; using comtype = std::complex<ContainerType::value_type>; std::valarray<comtype> rhocom(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhocom[i] = comtype(rho[i], 0.0); } rhocom[j] = comtype(rho[j], h); return f(T, rhocom).imag() / h; } template<typename Model, typename TType, typename RhoType> auto build_Psir_Hessian(const Model& model, const TType T, const RhoType& rho) { // Double derivatives in each component's concentration }