Skip to content
Snippets Groups Projects
model_test.py 3.73 KiB
Newer Older
  • Learn to ignore specific revisions
  • Anna Neumann's avatar
    Anna Neumann committed
    # initializing
    
    #!/usr/bin/env python3
    # -*- coding: utf8 -*-
    import ctypes
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
    os.environ['TF_ENABLE_XLA'] = '1'
    os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
    os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1'
    os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1'
    os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1'
    
    
    import numpy as np
    import tensorflow as tf
    
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
        except RuntimeError as e:
            print(e)
    
    from keras.models import Sequential
    from keras.layers import InputLayer, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D
    from keras.activations import selu, linear
    from keras.constraints import max_norm
    from keras.optimizers import Adam, SGD
    from keras.utils import to_categorical, normalize
    from keras.callbacks import ModelCheckpoint
    from keras.datasets import mnist
    from keras import losses
    from keras import backend as K
    import matplotlib.pyplot as plt
    import numpy as np
    import random
    
    #custom generator import
    # from Generators.DataGenerator_whole import DataGenerator
    #
    # train = os.listdir(path_train)
    # train = sorted(train)
    # valid = os.listdir(path_valid)
    # valid = sorted(valid)
    #
    # train_generator = DataGenerator(path_train, option, batch_size, True)
    # valid_generator = DataGenerator(path_valid, option, batch_size, True)
    
    # BUILD MODEL
    
    max_norm_value = 100.0
    model = Sequential([
        InputLayer(input_shape=(260,128,1)),
        BatchNormalization(),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv1"),
        LeakyReLU(),
        Dropout(0.3, name="enc_drop1"),
        MaxPooling2D(pool_size=(2,2), name="enc_pool1"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"),
        LeakyReLU(),
        MaxPooling2D(pool_size=(2,2), name="enc_pool2"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"),
        LeakyReLU(),
        MaxPooling2D(pool_size=(2,2), name="enc_pool3"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"),
        LeakyReLU(),
        MaxPooling2D(pool_size=(2,2), name="enc_pool4"),
        Flatten(),
        Dense(units = 4352),
        Reshape((17,8,32)),
        UpSampling2D(size=(2,2), name="dec_up1"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"),
        LeakyReLU(),
        UpSampling2D(size=(2,2), name="dec_up2"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"),
        LeakyReLU(),
        UpSampling2D(size=(2,2), name="dec_up3"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3"),
        LeakyReLU(),
        Dropout(0.3, name="dec_drop1"),
        UpSampling2D(size=(2,2), name="dec_up4"),
        Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation="linear", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv4")
    ])
    
    model.compile(loss='mape', optimizer='adam', metrics=['mse', 'accuracy'])
    
    model.summary()