Newer
Older
#include <iostream>
#include <algorithm>
#include <numeric>
#include <valarray>
// autodiff include
#include <autodiff/forward/dual.hpp>
#include <autodiff/forward/dual/eigen.hpp>
using namespace autodiff;
auto build_simple() {
// Argon + Xenon
std::valarray<double> Tc_K = { 150.687, 289.733 };
std::valarray<double> pc_Pa = { 4863000.0, 5842000.0 };
auto R = 1.380649e-23 * 6.02214076e23; ///< Exact value, given by k_B*N_A
int i = 0;
double ai = 27.0 / 64.0 * pow(R * Tc_K[i], 2) / pc_Pa[i];
double bi = 1.0 / 8.0 * R * Tc_K[i] / pc_Pa[i];
return vdWEOS1(ai, bi);
}
auto build_vdW() {
// Argon + Xenon
std::valarray<double> Tc_K = { 150.687, 289.733 };
std::valarray<double> pc_Pa = { 4863000.0, 5842000.0 };
return vdWEOS(Tc_K, pc_Pa);
}
template<typename Model>
void test_autodiff(Model model) {
Ian Bell
committed
double rho = 3.0;
auto rhotot = rho;
const std::valarray<double> rhovec = { rhotot / 2, rhotot / 2 };
Ian Bell
committed
const std::valarray<double> molefrac = { 0.5, 0.5 };
double v1, v2, v3;
int Nrep = 10000;
auto ticn1 = std::chrono::steady_clock::now();
for (int i = 0; i < Nrep; ++i) {
Ian Bell
committed
volatile double rr = model.alphar(T+i*1e-16, rho, molefrac);
}
auto tic0 = std::chrono::steady_clock::now();
// autodiff derivatives
for (int i = 0; i < Nrep; ++i) {
Ian Bell
committed
autodiff::dual4th varT = static_cast<double>(T);
auto f = [&model, &rho, &molefrac](auto& T) {return eval(model.alphar(T, rho, molefrac)); };
auto [alphar, dalphardT,d2,d3,d4] = derivatives(f, wrt(varT), at(varT));
v1 = dalphardT;
}
auto tic1 = std::chrono::steady_clock::now();
// complex step (first) derivative
constexpr double h = 1e-100;
for (int i = 0; i < Nrep; ++i){
Ian Bell
committed
volatile auto dalphardT_comstep = model.alphar(std::complex<double>(T,h), rho, molefrac).imag()/h;
v2 = dalphardT_comstep;
}
auto tic2 = std::chrono::steady_clock::now();
// Multicomplex derivatives
for (int i = 0; i < Nrep; ++i) {
Ian Bell
committed
volatile auto diffs = diff_mcx1<double>([&model, &rho, &molefrac](auto& T) {return model.alphar(T, rho, molefrac); }, T, 1, true)[1];
v3 = diffs;
}
auto tic3 = std::chrono::steady_clock::now();
std::cout << std::chrono::duration<double>(tic0 - ticn1).count()/Nrep*1e6 << " us (function evaluation in double)" << std::endl;
std::cout << std::chrono::duration<double>(tic1 - tic0).count()/Nrep*1e6 << " us (autodiff)" << std::endl;
std::cout << std::chrono::duration<double>(tic2 - tic1).count()/Nrep*1e6 << " us (CSD)" << std::endl;
std::cout << std::chrono::duration<double>(tic3 - tic2).count()/Nrep*1e6 << " us (MCX)" << std::endl;
Ian Bell
committed
std::cout << v1 << "," << v2 << "," << v3 << std::endl;
// Test evaluation of Hessian of Psir
dual2nd u; // the output scalar u = f(x), evaluated together with Hessian below
VectorXdual2nd g;
VectorXdual2nd rhovecc(2); rhovecc << rhovec[0], rhovec[1];
auto hfunc = [&model, &T](const VectorXdual2nd& rho_) {
Ian Bell
committed
auto rhotot_ = rho_.sum();
auto molefrac = rho_/rhotot_;
return eval(model.alphar(T, rhotot_, molefrac)*model.R*T*rhotot_);
};
Eigen::MatrixXd H = autodiff::hessian(hfunc, wrt(rhovecc), at(rhovecc), u, g); // evaluate the function value u, its gradient, and its Hessian matrix H
Ian Bell
committed
std::cout << H << std::endl;
std::cout << build_Psir_Hessian_mcx(model, T, rhovec) << std::endl;
std::cout << build_Psir_Hessian_autodiff(model, T, rhovec) << std::endl;
test_autodiff(build_simple());
test_autodiff(build_vdW());