Newer
Older
#include <optional>
#include <complex>
#include <tuple>
#include "MultiComplex/MultiComplex.hpp"
// autodiff include
#include <autodiff/forward/dual.hpp>
#include <autodiff/forward/dual/eigen.hpp>
using namespace autodiff;
template<typename T>
auto forceeval(T&& expr)
{
using namespace autodiff::detail;
if constexpr (isDual<T> || isExpr<T> || isNumber<T>) {
return eval(expr);
}
else {
return expr;
}
}
template <typename TType, typename ContainerType, typename FuncType>
typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type
caller(const FuncType& f, TType T, const ContainerType& rho) {
/***
* \brief Given a function, use complex step derivatives to calculate the derivative with
* respect to the first variable which here is temperature
*/
template <typename TType, typename ContainerType, typename FuncType>
typename ContainerType::value_type derivT(const FuncType& f, TType T, const ContainerType& rho) {
double h = 1e-100;
return f(std::complex<TType>(T, h), rho).imag() / h;
* \brief Given a function, use multicomplex derivatives to calculate the derivative with
* respect to the first variable which here is temperature
*/
template <typename TType, typename ContainerType, typename FuncType>
typename ContainerType::value_type derivTmcx(const FuncType& f, TType T, const ContainerType& rho) {
using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
fcn_t wrapper = [&rho, &f](const auto& T_) {return f(T_, rho); };
auto ders = diff_mcx1(wrapper, T, 1);
return ders[0];
}
/***
* \brief Given a function, use complex step derivatives to calculate the derivative with respect
* to the given composition variable
template <typename TType, typename ContainerType, typename FuncType, typename Integer>
typename ContainerType::value_type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer i) {
using comtype = std::complex<typename ContainerType::value_type>;
for (auto j = 0; j < rho.size(); ++j) {
rhocom[j] = comtype(rho[j], 0.0);
template <typename Model, typename TType, typename ContainerType>
Ian Bell
committed
typename ContainerType::value_type get_Ar10(const Model& model, const TType T, const ContainerType& rhovec){
auto rhotot = rhovec.sum();
auto molefrac = rhovec / rhotot;
return -T*derivT([&model, &rhotot, &molefrac](const auto& T, const auto& rhovec) { return model.alphar(T, rhotot, molefrac); }, T, rhovec);
Ian Bell
committed
template <typename Model, typename TType, typename RhoType, typename ContainerType>
typename ContainerType::value_type get_Ar10(const Model& model, const TType T, const RhoType &rho, const ContainerType& molefrac) {
double h = 1e-100;
return f(std::complex<TType>(T, h), rho).imag() / h;
return -T*model.alphar(std::complex<TType>(T, h), rho, molefrac); // Complex step derivative
Ian Bell
committed
enum class ADBackends { autodiff, multicomplex, complex_step } ;
Ian Bell
committed
template <ADBackends be = ADBackends::autodiff, typename Model, typename TType, typename RhoType, typename MoleFracType>
auto get_Ar01(const Model& model, const TType &T, const RhoType &rho, const MoleFracType& molefrac) {
if constexpr(be == ADBackends::complex_step){
double h = 1e-100;
auto der = model.alphar(T, std::complex<double>(rho, h), molefrac).imag() / h;
return der*rho;
}
else if constexpr(be == ADBackends::multicomplex){
using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
bool and_val = true;
fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto ders = diff_mcx1(f, rho, 1, and_val);
return ders[1] * rho;
}
else if constexpr(be == ADBackends::autodiff){
autodiff::dual rhodual = rho;
auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); };
auto der = derivative(f, wrt(rhodual), at(rhodual));
return der * rho;
}
}
Ian Bell
committed
template <typename Model, typename TType, typename RhoType, typename MoleFracType>
auto get_Ar02(const Model& model, const TType& T, const RhoType& rho, const MoleFracType& molefrac) {
using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
Ian Bell
committed
bool and_val = true;
fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
Ian Bell
committed
auto ders = diff_mcx1(f, rho, 2, and_val);
return ders[2]*rho*rho;
}
template <typename Model, typename TType, typename ContainerType>
typename ContainerType::value_type get_Ar01(const Model& model, const TType T, const ContainerType& rhovec) {
auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
decltype(rhovec[0] * T) Ar01 = 0.0;
for (auto i = 0; i < rhovec.size(); ++i) {
Ar01 += rhovec[i] * derivrhoi([&model](const auto& T, const auto& rhovec) { return model.alphar(T, rhovec); }, T, rhovec, i);
}
return Ar01;
}
template <typename Model, typename TType, typename ContainerType>
typename ContainerType::value_type get_B2vir(const Model& model, const TType T, const ContainerType& molefrac) {
// B_2 = dalphar/drho|T,z at rho=0
auto B2 = model.alphar(T, std::complex<double>(0.0, h), molefrac).imag()/h;
* \f$
* B_n = \frac{1}{(n-2)!} lim_rho\to 0 d^{n-1}alphar/drho^{n-1}|T,z
* \f$
* \param model The model providing the alphar function
* \param Nderiv The maximum virial coefficient to return; e.g. 5: B_2, B_3, ..., B_5
* \param T Temperature
* \param molefrac The mole fractions
template <int Nderiv, ADBackends be = ADBackends::autodiff, typename Model, typename TType, typename ContainerType>
auto get_Bnvir(const Model& model, const TType T, const ContainerType& molefrac)
{
std::map<int, double> dnalphardrhon;
if constexpr(be == ADBackends::multicomplex){
using namespace mcx;
using fcn_t = std::function<MultiComplex<double>(const MultiComplex<double>&)>;
fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto derivs = diff_mcx1(f, 0.0, Nderiv+1, true /* and_val */);
for (auto n = 1; n <= Nderiv; ++n){
dnalphardrhon[n] = derivs[n];
}
}
else if constexpr(be == ADBackends::autodiff){
autodiff::HigherOrderDual<Nderiv+1, double> rhodual = 0.0;
auto f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto derivs = derivatives(f, wrt(rhodual), at(rhodual));
for (auto n = 1; n <= Nderiv; ++n){
dnalphardrhon[n] = derivs[n];
}
}
else{
static_assert("algorithmic differentiation backend is invalid");
}
std::map<int, TType> o;
for (int n = 2; n < Nderiv+1; ++n) {
o[n] = dnalphardrhon[n-1];
// 0!=1, 1!=1, so only n>3 terms need factorial correction
if (n > 3) {
auto factorial = [](int N) {return tgamma(N + 1); };
o[n] /= factorial(n-2);
}
}
return o;
}
template <typename Model, typename TType, typename ContainerType>
typename ContainerType::value_type get_B12vir(const Model& model, const TType T, const ContainerType& molefrac) {
auto B2 = get_B2vir(model, T, molefrac); // Overall B2 for mixture
auto B20 = get_B2vir(model, T, std::valarray<double>({ 1,0 })); // Pure first component with index 0
auto B21 = get_B2vir(model, T, std::valarray<double>({ 0,1 })); // Pure second component with index 1
auto z0 = molefrac[0];
auto B12 = (B2 - z0*z0*B20 - (1-z0)*(1-z0)*B21)/(2*z0*(1-z0));
return B12;
}
/***
* \brief Calculate the residual entropy (s^+ = -sr/R) from derivatives of alphar
*/
template <typename Model, typename TType, typename ContainerType>
typename ContainerType::value_type get_splus(const Model& model, const TType T, const ContainerType& rhovec){
Ian Bell
committed
auto rhotot = rhovec.sum();
auto molefrac = rhovec/rhotot;
return model.alphar(T, rhotot, molefrac) - get_Ar10(model, T, rhovec);
}
/***
* \brief Calculate Psir=ar*rho
*/
template <typename TType, typename ContainerType, typename Model>
typename ContainerType::value_type get_Psir(const Model& model, const TType T, const ContainerType& rhovec) {
auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
return model.alphar(T, rhotot_, rhovec / rhotot_) * model.R * T * rhotot_;
}
/***
* \brief Calculate the residual pressure from derivatives of alphar
*/
template <typename Model, typename TType, typename ContainerType>
typename ContainerType::value_type get_pr(const Model& model, const TType T, const ContainerType& rhovec)
{
auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
return get_Ar01(model, T, rhotot_, rhovec / rhotot_) * rhotot_ * model.R * T;
/***
* \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations
* Requires the use of autodiff derivatives to calculate second partial derivatives
template<typename Model, typename TType, typename RhoType>
Ian Bell
committed
auto build_Psir_Hessian_autodiff(const Model& model, const TType &T, const RhoType& rho) {
// Double derivatives in each component's concentration
// N^N matrix (symmetric)
dual2nd u; // the output scalar u = f(x), evaluated together with Hessian below
VectorXdual2nd g;
VectorXdual2nd rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; }
auto hfunc = [&model, &T](const VectorXdual2nd& rho_) {
Ian Bell
committed
auto rhotot_ = rho_.sum();
auto molefrac = (rho_ / rhotot_).eval();
Ian Bell
committed
return eval(model.alphar(T, rhotot_, molefrac) * model.R * T * rhotot_);
return autodiff::hessian(hfunc, wrt(rhovecc), at(rhovecc), u, g).eval(); // evaluate the function value u, its gradient, and its Hessian matrix H
}
/***
* \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations
*
* Requires the use of multicomplex derivatives to calculate second partial derivatives
*/
template<typename Model, typename TType, typename RhoType>
Ian Bell
committed
auto build_Psir_Hessian_mcx(const Model& model, const TType &T, const RhoType& rho) {
// Lambda function for getting Psir with multicomplex concentrations
using fcn_t = std::function< MultiComplex<double>(const std::valarray<MultiComplex<double>>&)>;
fcn_t func = [&model, &T](const auto& rhovec) {
using mattype = Eigen::ArrayXXd;
auto H = get_Hessian<mattype, fcn_t, std::valarray<double>, HessianMethods::Multiple>(func, rho);