Skip to content
Snippets Groups Projects
derivs.hpp 10.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Ian Bell's avatar
    Ian Bell committed
    #pragma once
    
    
    #include <optional>
    #include <complex>
    #include <tuple>
    
    #include <map>
    
    
    #include "MultiComplex/MultiComplex.hpp"
    
    
    // autodiff include
    #include <autodiff/forward/dual.hpp>
    #include <autodiff/forward/dual/eigen.hpp>
    using namespace autodiff;
    
    
    template<typename T>
    auto forceeval(T&& expr)
    {
        using namespace autodiff::detail;
        if constexpr (isDual<T> || isExpr<T> || isNumber<T>) {
            return eval(expr);
        }
        else {
            return expr;
        }
    }
    
    
    Ian Bell's avatar
    Ian Bell committed
    template <typename TType, typename ContainerType, typename FuncType>
    typename std::enable_if<is_container<ContainerType>::value, typename ContainerType::value_type>::type
    caller(const FuncType& f, TType T, const ContainerType& rho) {
    
    Ian Bell's avatar
    Ian Bell committed
        return f(T, rho);
    
    Ian Bell's avatar
    Ian Bell committed
    }
    
    
    /***
    * \brief Given a function, use complex step derivatives to calculate the derivative with 
    * respect to the first variable which here is temperature
    */
    
    Ian Bell's avatar
    Ian Bell committed
    template <typename TType, typename ContainerType, typename FuncType>
    
    typename ContainerType::value_type derivT(const FuncType& f, TType T, const ContainerType& rho) {
    
    Ian Bell's avatar
    Ian Bell committed
        double h = 1e-100;
        return f(std::complex<TType>(T, h), rho).imag() / h;
    
    Ian Bell's avatar
    Ian Bell committed
    }
    
    
    * \brief Given a function, use multicomplex derivatives to calculate the derivative with
    * respect to the first variable which here is temperature
    */
    template <typename TType, typename ContainerType, typename FuncType>
    
    typename ContainerType::value_type derivTmcx(const FuncType& f, TType T, const ContainerType& rho) {
    
        using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
    
        fcn_t wrapper = [&rho, &f](const auto& T_) {return f(T_, rho); };
    
        auto ders = diff_mcx1(wrapper, T, 1);
        return ders[0];
    }
    
    /***
    * \brief Given a function, use complex step derivatives to calculate the derivative with respect 
    * to the given composition variable
    
    template <typename TType, typename ContainerType, typename FuncType, typename Integer>
    
    typename ContainerType::value_type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer i) {
    
    Ian Bell's avatar
    Ian Bell committed
        double h = 1e-100;
    
    Ian Bell's avatar
    Ian Bell committed
        using comtype = std::complex<typename ContainerType::value_type>;
    
    Ian Bell's avatar
    Ian Bell committed
        std::valarray<comtype> rhocom(rho.size());
    
        for (auto j = 0; j < rho.size(); ++j) {
            rhocom[j] = comtype(rho[j], 0.0);
    
    Ian Bell's avatar
    Ian Bell committed
        }
    
        rhocom[i] = comtype(rho[i], h);
    
    Ian Bell's avatar
    Ian Bell committed
        return f(T, rhocom).imag() / h;
    
    Ian Bell's avatar
    Ian Bell committed
    }
    
    
    template <typename Model, typename TType, typename ContainerType>
    
    typename ContainerType::value_type get_Ar10(const Model& model, const TType T, const ContainerType& rhovec){
        auto rhotot = rhovec.sum();
        auto molefrac = rhovec / rhotot;
        return -T*derivT([&model, &rhotot, &molefrac](const auto& T, const auto& rhovec) { return model.alphar(T, rhotot, molefrac); }, T, rhovec);
    
    template <typename Model, typename TType, typename RhoType, typename ContainerType>
    typename ContainerType::value_type get_Ar10(const Model& model, const TType T, const RhoType &rho, const ContainerType& molefrac) {
    
    Ian Bell's avatar
    Ian Bell committed
        double h = 1e-100;
        return f(std::complex<TType>(T, h), rho).imag() / h;
        return -T*model.alphar(std::complex<TType>(T, h), rho, molefrac); // Complex step derivative
    
    enum class ADBackends { autodiff, multicomplex, complex_step } ;
    
    template <ADBackends be = ADBackends::autodiff, typename Model, typename TType, typename RhoType, typename MoleFracType>
    auto get_Ar01(const Model& model, const TType &T, const RhoType &rho, const MoleFracType& molefrac) {
        if constexpr(be == ADBackends::complex_step){
            double h = 1e-100;
            auto der = model.alphar(T, std::complex<double>(rho, h), molefrac).imag() / h;
            return der*rho;
        }
        else if constexpr(be == ADBackends::multicomplex){
            using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
            bool and_val = true;
            fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
            auto ders = diff_mcx1(f, rho, 1, and_val);
            return ders[1] * rho;
        }
        else if constexpr(be == ADBackends::autodiff){
            autodiff::dual rhodual = rho;
            auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); };
            auto der = derivative(f, wrt(rhodual), at(rhodual));
            return der * rho;
        }
    
    template <typename Model, typename TType, typename RhoType, typename MoleFracType>
    auto get_Ar02(const Model& model, const TType& T, const RhoType& rho, const MoleFracType& molefrac) {
    
        using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
    
        fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
    
        auto ders = diff_mcx1(f, rho, 2, and_val);
        return ders[2]*rho*rho;
    }
    
    
    template <typename Model, typename TType, typename ContainerType>
    typename ContainerType::value_type get_Ar01(const Model& model, const TType T, const ContainerType& rhovec) {
        auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
        decltype(rhovec[0] * T) Ar01 = 0.0;
        for (auto i = 0; i < rhovec.size(); ++i) {
            Ar01 += rhovec[i] * derivrhoi([&model](const auto& T, const auto& rhovec) { return model.alphar(T, rhovec); }, T, rhovec, i);
        }
        return Ar01;
    }
    
    template <typename Model, typename TType, typename ContainerType>
    typename ContainerType::value_type get_B2vir(const Model& model, const TType T, const ContainerType& molefrac) {
    
        double h = 1e-100;
    
        // B_2 = dalphar/drho|T,z at rho=0
        auto B2 = model.alphar(T, std::complex<double>(0.0, h), molefrac).imag()/h;
    
    * \f$
    * B_n = \frac{1}{(n-2)!} lim_rho\to 0 d^{n-1}alphar/drho^{n-1}|T,z
    * \f$
    * \param model The model providing the alphar function
    * \param Nderiv The maximum virial coefficient to return; e.g. 5: B_2, B_3, ..., B_5
    * \param T Temperature
    * \param molefrac The mole fractions
    
    template <int Nderiv, ADBackends be = ADBackends::autodiff, typename Model, typename TType, typename ContainerType>
    auto get_Bnvir(const Model& model, const TType T, const ContainerType& molefrac) 
    {
        std::map<int, double> dnalphardrhon;
        if constexpr(be == ADBackends::multicomplex){
            using namespace mcx;
            using fcn_t = std::function<MultiComplex<double>(const MultiComplex<double>&)>;
            fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
            auto derivs = diff_mcx1(f, 0.0, Nderiv+1, true /* and_val */);
            for (auto n = 1; n <= Nderiv; ++n){
                dnalphardrhon[n] = derivs[n];
            }
        }
        else if constexpr(be == ADBackends::autodiff){
            autodiff::HigherOrderDual<Nderiv+1, double> rhodual = 0.0;
            auto f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
            auto derivs = derivatives(f, wrt(rhodual), at(rhodual));
            for (auto n = 1; n <= Nderiv; ++n){
                 dnalphardrhon[n] = derivs[n];
            }
        }
        else{
            static_assert("algorithmic differentiation backend is invalid");
        }
    
        std::map<int, TType> o;
        for (int n = 2; n < Nderiv+1; ++n) {
    
            o[n] = dnalphardrhon[n-1];
    
            // 0!=1, 1!=1, so only n>3 terms need factorial correction
            if (n > 3) {
                auto factorial = [](int N) {return tgamma(N + 1); };
                o[n] /= factorial(n-2);
            }
        }
        return o;
    
    Ian Bell's avatar
    Ian Bell committed
    template <typename Model, typename TType, typename ContainerType>
    typename ContainerType::value_type get_B12vir(const Model& model, const TType T, const ContainerType& molefrac) {
        
        auto B2 = get_B2vir(model, T, molefrac); // Overall B2 for mixture
        auto B20 = get_B2vir(model, T, std::valarray<double>({ 1,0 })); // Pure first component with index 0
        auto B21 = get_B2vir(model, T, std::valarray<double>({ 0,1 })); // Pure second component with index 1
        auto z0 = molefrac[0];
        auto B12 = (B2 - z0*z0*B20 - (1-z0)*(1-z0)*B21)/(2*z0*(1-z0));
        return B12;
    }
    
    
    /***
    * \brief Calculate the residual entropy (s^+ = -sr/R) from derivatives of alphar
    
    */
    template <typename Model, typename TType, typename ContainerType>
    
    typename ContainerType::value_type get_splus(const Model& model, const TType T, const ContainerType& rhovec){
    
        auto rhotot = rhovec.sum();
        auto molefrac = rhovec/rhotot;
        return model.alphar(T, rhotot, molefrac) - get_Ar10(model, T, rhovec);
    }
    
    /***
    * \brief Calculate Psir=ar*rho
    */
    template <typename TType, typename ContainerType, typename Model>
    typename ContainerType::value_type get_Psir(const Model& model, const TType T, const ContainerType& rhovec) {
        auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
        return model.alphar(T, rhotot_, rhovec / rhotot_) * model.R * T * rhotot_;
    }
    
    /***
    * \brief Calculate the residual pressure from derivatives of alphar
    */
    template <typename Model, typename TType, typename ContainerType>
    typename ContainerType::value_type get_pr(const Model& model, const TType T, const ContainerType& rhovec)
    {
        auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
        return get_Ar01(model, T, rhotot_, rhovec / rhotot_) * rhotot_ * model.R * T;
    
    /***
    * \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations
    
    * Requires the use of autodiff derivatives to calculate second partial derivatives
    
    template<typename Model, typename TType, typename RhoType>
    
    auto build_Psir_Hessian_autodiff(const Model& model, const TType &T, const RhoType& rho) {
    
        // Double derivatives in each component's concentration
        // N^N matrix (symmetric)
    
        dual2nd u; // the output scalar u = f(x), evaluated together with Hessian below
        VectorXdual2nd g;
    
        VectorXdual2nd rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; }
    
        auto hfunc = [&model, &T](const VectorXdual2nd& rho_) {
    
            auto molefrac = (rho_ / rhotot_).eval();
    
            return eval(model.alphar(T, rhotot_, molefrac) * model.R * T * rhotot_);
    
    Ian Bell's avatar
    Ian Bell committed
        return autodiff::hessian(hfunc, wrt(rhovecc), at(rhovecc), u, g).eval(); // evaluate the function value u, its gradient, and its Hessian matrix H
    
    }
    
    /***
    * \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations
    * 
    * Requires the use of multicomplex derivatives to calculate second partial derivatives
    */
    template<typename Model, typename TType, typename RhoType>
    
    auto build_Psir_Hessian_mcx(const Model& model, const TType &T, const RhoType& rho) {
    
    Ian Bell's avatar
    Ian Bell committed
        // Double derivatives in each component's concentration
    
        // N^N matrix (symmetric)
    
        using namespace mcx;
    
    
        // Lambda function for getting Psir with multicomplex concentrations
    
        using fcn_t = std::function< MultiComplex<double>(const std::valarray<MultiComplex<double>>&)>;
    
        fcn_t func = [&model, &T](const auto& rhovec) {
    
            return get_Psir(model, T, rhovec);
    
        using mattype = Eigen::ArrayXXd;
        auto H = get_Hessian<mattype, fcn_t, std::valarray<double>, HessianMethods::Multiple>(func, rho);
    
        return H;
    
    Ian Bell's avatar
    Ian Bell committed
    }