Newer
Older
Ian Bell
committed
#include "teqp/types.hpp"
Ian Bell
committed
/**
\f$ \alpha^{\rm r}=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i}\f$
Ian Bell
committed
*/
class JustPowerEOSTerm {
public:
Eigen::ArrayXd n, t, d;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
Ian Bell
committed
result r = 0.0, lntau = log(tau);
double base_delta = getbaseval(delta);
if (base_delta == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau)*powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta);
}
Ian Bell
committed
}
return forceeval(r);
}
};
/**
\f$ \alpha^{\rm r}=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-c_i\delta^{l_i})\f$
*/
class PowerEOSTerm {
public:
Eigen::ArrayXd n, t, d, c, l;
Eigen::ArrayXi l_i;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
if (l_i.size() == 0 && n.size() > 0) {
throw std::invalid_argument("l_i cannot be zero length if some terms are provided");
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - c[i] * powi(delta, l_i[i])) * powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - c[i] * powi(delta, l_i[i]));
}
\f$ \alpha^{\rm r}=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\gamma_i\delta^{l_i})\f$
*/
class ExponentialEOSTerm {
public:
Eigen::ArrayXd n, t, d, g, l;
Eigen::ArrayXi l_i;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - g[i] * powi(delta, l_i[i]))*powi(delta,static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - g[i] * powi(delta, l_i[i]));
}
}
return forceeval(r);
/**
\f$ \alpha^{\rm r}=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\gamma_{d,i}\delta^{l_{d,i}}-\gamma_{t,i}\tau^{l_{t,i}})\f$
*/
class DoubleExponentialEOSTerm {
public:
Eigen::ArrayXd n, t, d, gd, ld, gt, lt;
Eigen::ArrayXi ld_i;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
if (ld_i.size() == 0 && n.size() > 0) {
throw std::invalid_argument("ld_i cannot be zero length if some terms are provided");
}
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * powi(delta, static_cast<int>(d[i])) * exp(t[i] * lntau - gd[i]*powi(delta, ld_i[i]) - gt[i]*pow(tau, lt[i]));
result lndelta = log(delta);
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - gd[i]*powi(delta, ld_i[i]) - gt[i]*pow(tau, lt[i]));
}
}
return forceeval(r);
}
};
\f$ \alpha^{\rm r} = \displaystyle\sum_i n_i \tau^{t_i}\delta^ {d_i} \exp(-\eta_i(\delta-\epsilon_i)^2 -\beta_i(\tau-\gamma_i)^2 )\f$
*/
class GaussianEOSTerm {
public:
Eigen::ArrayXd n, t, d, eta, beta, gamma, epsilon;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
auto square = [](auto x) { return x * x; };
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - eta[i] * square(delta - epsilon[i]) - beta[i] * square(tau - gamma[i]))*powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - eta[i] * square(delta - epsilon[i]) - beta[i] * square(tau - gamma[i]));
}
}
return forceeval(r);
\f$ \alpha^{\rm r} = \displaystyle\sum_i n_i \tau^{t_i}\delta^ {d_i} \exp(-\eta_i(\delta-\epsilon_i)^2 -\beta_i(\delta-\gamma_i) )\f$
*/
class GERG2004EOSTerm {
public:
Eigen::ArrayXd n, t, d, eta, beta, gamma, epsilon;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
auto square = [](auto x) { return x * x; };
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - eta[i] * square(delta - epsilon[i]) - beta[i] * (delta - gamma[i]))*powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - eta[i] * square(delta - epsilon[i]) - beta[i] * (delta - gamma[i]));
}
}
return forceeval(r);
\f$ \alpha^{\rm r} = \displaystyle\sum_i n_i \delta^ { d_i } \tau^ { t_i } \exp(-\delta^ { l_i } - \tau^ { m_i })\f$
*/
class Lemmon2005EOSTerm {
public:
Eigen::ArrayXd n, t, d, l, m;
Eigen::ArrayXi l_i;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - powi(delta, l_i[i]) - pow(tau, m[i]))*powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - powi(delta, l_i[i]) - pow(tau, m[i]));
Ian Bell
committed
}
}
return forceeval(r);
\f$ \alpha^{\rm r} = \displaystyle\sum_i n_i \tau^{t_i}\delta^ {d_i} \exp\left(-\eta_i(\delta-\epsilon_i)^2 + \frac{1}{\beta_i(\tau-\gamma_i)^2+b_i}\right)\f$
*/
class GaoBEOSTerm {
public:
Eigen::ArrayXd n, t, d, eta, beta, gamma, epsilon, b;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
using result = std::common_type_t<TauType, DeltaType>;
result r = 0.0, lntau = log(tau);
auto square = [](auto x) { return x * x; };
Ian Bell
committed
if (getbaseval(delta) == 0) {
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau - eta[i] * square(delta - epsilon[i]) + 1.0 / (beta[i] * square(tau - gamma[i]) + b[i]))*powi(delta, static_cast<int>(d[i]));
Ian Bell
committed
}
}
else {
result lndelta = log(delta);
Ian Bell
committed
for (auto i = 0; i < n.size(); ++i) {
r = r + n[i] * exp(t[i] * lntau + d[i] * lndelta - eta[i] * square(delta - epsilon[i]) + 1.0 / (beta[i] * square(tau - gamma[i]) + b[i]));
}
}
return forceeval(r);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/**
The contribution is a Chebyshev expansion in two dimensions
*/
class Chebyshev2DEOSTerm {
public:
Eigen::ArrayXXd a;
double taumin = -1, taumax = -1, deltamin = -1, deltamax = -1;
/// Clenshaw evaluation of a Chebyshev expansion in 1D
template<typename vectype, typename XType>
static auto Clenshaw1D(const vectype &c, const XType &ind){
int N = static_cast<int>(c.size()) - 1;
std::common_type_t<typename vectype::Scalar, XType> u_k = 0, u_kp1 = 0, u_kp2 = 0;
for (int k = N; k >= 0; --k){
// Do the recurrent calculation
u_k = 2.0*ind*u_kp1 - u_kp2 + c[k];
if (k > 0){
// Update the values
u_kp2 = u_kp1; u_kp1 = u_k;
}
}
return (u_k - u_kp2)/2.0;
}
/// Clenshaw evaluation of one dimensional flattening of the Chebyshev expansion
template<typename MatType, typename XType>
static auto Clenshaw1DByRow(const MatType& c, const XType &ind) {
int N = static_cast<int>(c.rows()) - 1;
constexpr int Cols = MatType::ColsAtCompileTime;
using NumType = std::common_type_t<typename MatType::Scalar, XType>;
static Eigen::Array<NumType, 1, Cols> u_k, u_kp1, u_kp2;
// Not statically sized, need to resize
if constexpr (Cols == Eigen::Dynamic) {
int M = static_cast<int>(c.rows());
u_k.resize(M);
u_kp1.resize(M);
u_kp2.resize(M);
}
u_k.setZero(); u_kp1.setZero(); u_kp2.setZero();
for (int k = N; k >= 0; --k) {
// Do the recurrent calculation
u_k = 2.0 * ind * u_kp1 - u_kp2 + c.row(k);
if (k > 0) {
// Update the values
u_kp2 = u_kp1; u_kp1 = u_k;
}
}
return (u_k - u_kp2) / 2.0;
}
/** Clenshaw evaluation of the complete expansion
* \param a Matrix
* \param x The first argument, in [-1,1]
* \param y The second argument, in [-1,1]
*/
template<typename MatType, typename XType, typename YType>
static auto Clenshaw2DEigen(const MatType& a, const XType &x, const YType &y) {
auto b = Clenshaw1DByRow(a, y);
return Clenshaw1D(b.matrix(), x);
}
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
TauType x = (2.0*tau - (taumax + taumin)) / (taumax - taumin);
DeltaType y = (2.0*delta - (deltamax + deltamin)) / (deltamax - deltamin);
return forceeval(Clenshaw2DEigen(a, forceeval(x), forceeval(y)));
}
};
/**
\f$ \alpha^r = 0\f$
*/
class NullEOSTerm {
public:
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
return static_cast<std::common_type_t<TauType, DeltaType>>(0.0);
}
};
class NonAnalyticEOSTerm {
public:
Eigen::ArrayXd A, B, C, D, a, b, beta, n;
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
// The non-analytic term
auto square = [](auto x) { return x * x; };
auto delta_min1_sq = square(delta - 1.0);
using result = std::common_type_t<TauType, DeltaType>;
for (auto i = 0; i < n.size(); ++i) {
auto Psi = exp(-C[i]*delta_min1_sq - D[i]*square(tau - 1.0));
auto k = 1.0 / (2.0 * beta[i]);
auto theta = (1.0 - tau) + A[i] * pow(delta_min1_sq, k);
auto Delta = square(theta) + B[i]*pow(delta_min1_sq, a[i]);
r = r + n[i]*pow(Delta, b[i])*delta*Psi;
}
result outval = forceeval(r);
// If we are really, really close to the critical point (tau=delta=1), then the term will become undefined, so let's just return 0 in that case
double dbl = static_cast<double>(getbaseval(outval));
if (std::isfinite(dbl)) {
return outval;
}
else {
return static_cast<decltype(outval)>(0.0);
}
}
};
template<typename... Args>
using varEOSTerms = std::variant<Args...>;
std::vector<varEOSTerms> coll;
public:
auto size() const { return coll.size(); }
template<typename Instance>
auto add_term(Instance&& instance) {
}
template <class Tau, class Delta>
auto alphar(const Tau& tau, const Delta& delta) const {
std::common_type_t <Tau, Delta> ar = 0.0;
for (const auto& term : coll) {
auto contrib = std::visit([&](auto& t) { return t.alphar(tau, delta); }, term);
}
return ar;
}
};
using EOSTerms = EOSTermContainer<JustPowerEOSTerm, PowerEOSTerm, GaussianEOSTerm, NonAnalyticEOSTerm, Lemmon2005EOSTerm, GaoBEOSTerm, ExponentialEOSTerm, DoubleExponentialEOSTerm>;
using DepartureTerms = EOSTermContainer<JustPowerEOSTerm, PowerEOSTerm, GaussianEOSTerm, GERG2004EOSTerm, NullEOSTerm, DoubleExponentialEOSTerm,Chebyshev2DEOSTerm>;