Skip to content
Snippets Groups Projects
VLE.hpp 4.56 KiB
Newer Older
  • Learn to ignore specific revisions
  • #pragma once
    
    #include "teqp/derivs.hpp"
    #include <Eigen/Dense>
    
    template<typename Model, typename TYPE = double>
    class IsothermPureVLEResiduals  {
        typedef Eigen::Array<TYPE, 2, 1> EigenArray;
        typedef Eigen::Array<TYPE, 1, 1> EigenArray1;
        typedef Eigen::Array<TYPE, 2, 2> EigenMatrix;
    private:
        const Model& m_model;
        TYPE m_T;
        EigenMatrix J;
        EigenArray y;
    
    public:
        std::size_t icall = 0;
    
        double Rr, R0;
    
        IsothermPureVLEResiduals(const Model& model, TYPE T) : m_model(model), m_T(T) {
            Rr = m_model.R;
            R0 = m_model.R;
        };
    
    
        const auto& get_errors() { return y; };
    
        auto call(const EigenArray& rhovec) {
            assert(rhovec.size() == 2);
    
            const EigenArray1 rhovecL = rhovec.head(1);
            const EigenArray1 rhovecV = rhovec.tail(1);
            const auto rhomolarL = rhovecL.sum(), rhomolarV = rhovecV.sum();
            const auto molefracs = (EigenArray1() << 1.0).finished();
    
            using id = IsochoricDerivatives<Model,TYPE,EigenArray1>;
            using tdx = TDXDerivatives<Model,TYPE,EigenArray1>;
    
            const TYPE &T = m_T;
            const TYPE R = m_model.R;
    
            double R0_over_Rr = R0 / Rr;
    
            auto derL = tdx::template get_Ar0n<2>(m_model, T, rhomolarL, molefracs);
    
            auto pRTL = rhomolarL*(R0_over_Rr + derL[1]); // p/(R*T)
            auto dpRTLdrhoL = R0_over_Rr + 2*derL[1] + derL[2];
            auto hatmurL = derL[1] + derL[0] + R0_over_Rr*log(rhomolarL);
            auto dhatmurLdrho = (2*derL[1] + derL[2])/rhomolarL + R0_over_Rr/rhomolarL;
    
            auto derV = tdx::template get_Ar0n<2>(m_model, T, rhomolarV, molefracs);
    
            auto pRTV = rhomolarV*(R0_over_Rr + derV[1]); // p/(R*T)
            auto dpRTVdrhoV = R0_over_Rr + 2*derV[1] + derV[2];
            auto hatmurV = derV[1] + derV[0] + R0_over_Rr *log(rhomolarV);
            auto dhatmurVdrho = (2*derV[1] + derV[2])/rhomolarV + R0_over_Rr/rhomolarV;
    
            y(0) = pRTL - pRTV;
            J(0, 0) = dpRTLdrhoL;
            J(0, 1) = -dpRTVdrhoV;
    
    
            y(1) = hatmurL - hatmurV;
            J(1, 0) = dhatmurLdrho;
            J(1, 1) = -dhatmurVdrho;
    
            icall++;
            return y;
        }
        auto Jacobian(const EigenArray& rhovec){
            return J;
        }
    
        //auto numJacobian(const EigenArray& rhovec) {
        //    EigenArray plus0 = rhovec, plus1 = rhovec;
        //    double dr = 1e-6 * rhovec[0];
        //    plus0[0] += dr; plus1[1] += dr;
        //    EigenMatrix J;
        //    J.col(0) = (call(plus0) - call(rhovec))/dr;
        //    J.col(1) = (call(plus1) - call(rhovec))/dr;
        //    return J;
        //}
    
    Ian Bell's avatar
    Ian Bell committed
    
    template<typename Residual, typename Scalar>
    
    auto do_pure_VLE_T(Residual &resid, Scalar rhoL, Scalar rhoV, int maxiter) {
    
    Ian Bell's avatar
    Ian Bell committed
        auto rhovec = (Eigen::ArrayXd(2) << rhoL, rhoV).finished();
        auto r0 = resid.call(rhovec);
        auto J = resid.Jacobian(rhovec);
    
        for (int iter = 0; iter < maxiter; ++iter){
    
    Ian Bell's avatar
    Ian Bell committed
            if (iter > 0) {
                r0 = resid.call(rhovec);
                J = resid.Jacobian(rhovec); 
            }
            auto v = J.matrix().colPivHouseholderQr().solve(-r0.matrix()).array().eval();
            auto rhovecnew = (rhovec + v).eval();
            
            // If the solution has stopped improving, stop. The change in rhovec is equal to v in infinite precision, but 
    
            // not when finite precision is involved, use the minimum non-denormal float as the determination of whether
    
    Ian Bell's avatar
    Ian Bell committed
            // the values are done changing
            if (((rhovecnew - rhovec).cwiseAbs() < std::numeric_limits<Scalar>::min()).all()) {
                break;
            }
    
            rhovec = rhovecnew;
    
    Ian Bell's avatar
    Ian Bell committed
        }
    
        return (Eigen::ArrayXd(2) << rhovec[0], rhovec[1]).finished();
    }
    
    template<typename Model, typename Scalar>
    auto extrapolate_from_critical(const Model& model, const Scalar Tc, const Scalar rhoc, const Scalar T) {
        
        using tdx = TDXDerivatives<Model>;
        auto z = (Eigen::ArrayXd(1) << 1.0).finished();
        auto R = model.R;
    
    Ian Bell's avatar
    Ian Bell committed
        auto ders = tdx::template get_Ar0n<4>(model, Tc, rhoc, z);
    
        auto dpdrho = R*Tc*(1 + 2 * ders[1] + ders[2]); // Should be zero
        auto d2pdrho2 = R*Tc/rhoc*(2 * ders[1] + 4 * ders[2] + ders[3]); // Should be zero
        auto d3pdrho3 = R*Tc/(rhoc*rhoc)*(6 * ders[2] + 6 * ders[3] + ders[4]);
    
    Ian Bell's avatar
    Ian Bell committed
        auto Ar11 = tdx::template get_Ar11(model, Tc, rhoc, z);
        auto Ar12 = tdx::template get_Ar12(model, Tc, rhoc, z);
    
        auto d2pdrhodT = R * (1 + 2 * ders[1] + ders[2] - 2 * Ar11 - Ar12);
        auto Brho = sqrt(6*d2pdrhodT*Tc/d3pdrho3);
    
        auto drhohat_dT = Brho / Tc;
        auto dT = T - Tc;
    
        auto drhohat = dT * drhohat_dT;
        auto rholiq = -drhohat/sqrt(1 - T/Tc) + rhoc;
        auto rhovap = drhohat/sqrt(1 - T/Tc) + rhoc;
        return (Eigen::ArrayXd(2) << rholiq, rhovap).finished();
    
    Ian Bell's avatar
    Ian Bell committed
    }