Skip to content
Snippets Groups Projects
multifluid.hpp 3.92 KiB
Newer Older
  • Learn to ignore specific revisions
  • #pragma once
    
    
    template<typename EOSCollection>
    class CorrespondingStatesContribution {
    
    private:
        const EOSCollection EOSs;
    public:
        CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
            using resulttype = decltype(tau* delta* molefracs[0]);
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
                alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
            }
            return alphar;
        }
    };
    
    template<typename FCollection, typename DepartureFunctionCollection>
    class DepartureContribution {
    
    private:
        const FCollection F;
        const DepartureFunctionCollection funcs;
    public:
        DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
            using resulttype = decltype(tau* delta* molefracs[0]);
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
                for (auto j = 0; j < N; ++j) {
                    alphar = alphar + molefracs[i] * molefracs[j] * F(i,j) * funcs[i][j].alphar(tau, delta);
                }
            }
            return alphar;
        }
    };
    
    template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
    class MultiFluid {
    private:
        const ReducingFunction redfunc;
        const CorrespondingTerm corr;
        const DepartureTerm dep;
    
    public:
    
        MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
    
        template<typename TType, typename RhoType>
        auto alphar(TType T,
            const RhoType& rhovec,
            const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
        {
            RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
            auto molefrac = rhovec / rhotot_;
            auto Tred = redfunc.Tr(molefrac);
            auto rhored = redfunc.rhor(molefrac);
            auto delta = rhotot_ / rhored;
            auto tau = Tred / T;
            using resulttype = decltype(T* rhovec[0]);
            return corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
        }
    };
    
    class DummyEOS {
    public:
        template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
    };
    class DummyReducingFunction {
    public:
        template<typename MoleFractions> auto Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
        template<typename MoleFractions> auto rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
    };
    auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
        std::vector<DummyEOS> EOSs(2);
        std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
        std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
    
        struct Fwrapper {
        private: 
            const std::vector<std::vector<double>> F_;
        public:
            Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
            auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
        };
        auto ff = Fwrapper(F);
        auto redfunc = DummyReducingFunction();
        return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
    }
    void test_dummy() {
        auto model = build_dummy_multifluid_model({ "A", "B" });
        std::valarray<double> rhovec = { 1.0, 2.0 };
        auto alphar = model.alphar(300.0, rhovec);
    }