Skip to content
Snippets Groups Projects
PDSIMintegrators.py 16.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • """
    These integrator classes started their life in PDSim (https://pdsim.readthedocs.io/en/latest/) and since have 
    been updated and some additional functionality has been added
    """
    
    
    6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    from __future__ import division, print_function
    
    import abc, math
    import numpy as np
    import matplotlib.pyplot as plt
    
    class AbstractODEIntegrator(object):
        __metaclass__ = abc.ABCMeta
        
        @abc.abstractmethod
        def get_initial_array(self):
            pass
            
        @abc.abstractmethod
        def pre_step_callback(self):
            pass
            
        @abc.abstractmethod
        def post_deriv_callback(self):
            pass
            
        @abc.abstractmethod
        def post_step_callback(self):
            pass
            
        @abc.abstractmethod
        def derivs(self):
            pass
            
        @abc.abstractmethod
        def do_integration(self):
            pass
        
    class AbstractSimpleEulerODEIntegrator(AbstractODEIntegrator):
        __metaclass__ = abc.ABCMeta
            
        def do_integration(self,N,tmin,tmax):
            """
            The simple Euler ODE integrator
            
            Parameters
            ----------
            N : integer
                Number of steps taken (not including the initial step).
            tmin : float
                Starting value of the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``]
            tmax : float
                Ending value for the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``] 
                
            Returns
            -------
            abort_flag
                If an abort has been requested (by returning a value other than ``False`` from ``premature_termination``), return value from ``premature_termination``.  ``None`` otherwise
            """
            
            # Step variables
            self.t0 = tmin
            self.h = (tmax-tmin)/(N)
            
            # Get the initial value
            self.xold = self.get_initial_array()
            
            for self.Itheta in range(N):
                
                # Check for termination
                abort = self.premature_termination()
                if abort != False: return abort
                
                # Call the pre-step callback
                self.pre_step_callback()
                
                # Derivatives evaluated at old values of t = t0
                self.f1 = self.derivs(self.t0, self.xold)
                
                # Call post derivative callback after the first derivative evaluation (which might cache values)
                self.post_deriv_callback()
                
                # Calculate the new values
                self.xnew = self.xold + self.h*self.f1
                
                # Everything from this step is finished, now update for the next
                # step coming
                self.t0 += self.h
                self.xold = self.xnew[:]
                
                # Call the post-step callback
                self.post_step_callback()
                
            # Bump up once more
            self.Itheta += 1
            
            # Make sure we end up at the right place
            assert((self.t0 - tmax) < 1e-10)
            
            # No termination was requested
            return False
    
    class AbstractHeunODEIntegrator(AbstractODEIntegrator):
        __metaclass__ = abc.ABCMeta
            
        def do_integration(self, N, tmin, tmax):
            """
            The Heun system of ODE integrator
            
            Parameters
            ----------
            N : integer
                Number of steps taken.  There will be N+1 entries in the state matrices
            tmin : float
                Starting value of the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``]
            tmax : float
                Ending value for the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``] 
                
            Returns
            -------
            abort_flag
                If an abort has been requested (by returning a value other than ``False`` from ``premature_termination``), return value from ``premature_termination``.  ``None`` otherwise
            
            """
            
            # Step variables
            self.t0 = tmin
            self.h = (tmax-tmin)/(N)
            
            # Get the initial value
            self.xold = self.get_initial_array()
            
            for self.Itheta in range(N):
                
                # Check for termination
                abort = self.premature_termination()
                if abort != False: return abort
                
                # Call the pre-step callback
                self.pre_step_callback()
                
                # Step 1: derivatives evaluated at old values
                self.f1 = self.derivs(self.t0, self.xold)
                
                # Call post derivative callback after the first derivative evaluation (which might cache values)
                self.post_deriv_callback()
                
                # Predicted values based on extrapolation using initial derivatives
                self.xtemp = self.xold + self.h*self.f1
                
                # Step 2: Evaluated at predicted step
                self.f2 = self.derivs(self.t0 + self.h, self.xtemp)
                
                # Get corrected values
                self.xnew = self.xold + self.h/2.0*(self.f1 + self.f2)
                
                # Everything from this step is finished, now update for the next
                # step coming
                self.t0 += self.h
                self.xold = self.xnew
                
                # Call the post-step callback
                self.post_step_callback()
            
            # Bump up once more
            self.Itheta += 1
            
            # No termination was requested
            return False
                
    class AbstractRK45ODEIntegrator(AbstractODEIntegrator):
        __metaclass__ = abc.ABCMeta
            
        def do_integration(self,
                       tmin=0,
                       tmax=2.0*math.pi,
                       hmin=1e-4,
                       atol=1e-3,
                       rtol=1e-10,
                       step_relax=0.9,
                       **kwargs):
            """
            
            This function implements an adaptive Runge-Kutta-Feldberg 4th/5th order
            solver for the system of equations
            
            Parameters
            ----------
            hmin : float
                Minimum step size, something like 1e-5 usually is good.  Don't make this too big or you may not be able to get a stable solution
            tmin : float
                Starting value of the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``]
            tmax : float
                Ending value for the independent variable.  ``t`` is in the closed range [``tmin``, ``tmax``]
            eps_allowed : float
                Maximum absolute error of any CV per step allowed.  Don't make this parameter too big or you may not be able to get a stable solution.  Also don't make it too small because then you are going to run into truncation error.
            step_relax : float, optional
                The relaxation factor that is used in the step resizing algorithm.  Should be less than 1.0; you can play with this parameter to improve the adaptive resizing, but should not be necessary.
                
            Returns
            -------
            abort_flag
                If an abort has been requested (by returning a value other than ``False`` from ``premature_termination``), return value from ``premature_termination``.  ``None`` otherwise
            
            Notes
            -----
            
            Mathematically the adaptive solver can be expressed as::
            
                k1=h*dy(xn                                                                   ,t)
                k2=h*dy(xn+1.0/4.0*k1                                                        ,t+1.0/4.0*h)
                k3=h*dy(xn+3.0/32.0*k1+9.0/32.0*k2                                           ,t+3.0/8.0*h)
                k4=h*dy(xn+1932.0/2197.0*k1-7200.0/2197.0*k2+7296.0/2197.0*k3                ,t+12.0/13.0*h)
                k5=h*dy(xn+439.0/216.0*k1-8.0*k2+3680.0/513.0*k3-845.0/4104.0*k4             ,t+h)
                k6=h*dy(xn-8.0/27.0*k1+2.0*k2-3544.0/2565.0*k3+1859.0/4104.0*k4-11.0/40.0*k5 ,t+1.0/2.0*h)
    
            where the function dy(y,t) returns a vector of the ODE expressions.
            The new value is calculated from::
            
                xnplus=xn+gamma1*k1+gamma2*k2+gamma3*k3+gamma4*k4+gamma5*k5+gamma6*k6
    
            In the adaptive solver, the errors for a given step can be calculated from::
    
                error=1.0/360.0*k1-128.0/4275.0*k3-2197.0/75240.0*k4+1.0/50.0*k5+2.0/55.0*k6
    
            If the maximum absolute error is above allowed error, the step size is decreased and the step is 
            tried again until the error is below tolerance.  If the error is better than required, the step
            size is increased to minimize the number of steps required.
            
            Before the step is run, a callback the ``step_callback`` method of this class is called.  In the ``step_callback`` callback function you can do anything you want, but you must return 
            """
            
            # Get the starting array of variables
            self.xold = self.get_initial_array()
            
            # Start at an index of 0
            self.Itheta = 0
            self.t0 = tmin
            self.tmax = tmax
            self.h = hmin
            self.minstepcount = 0
            
            # gamma1=16.0/135.0
            # gamma2=0.0
            # gamma3=6656.0/12825.0
            # gamma4=28561.0/56430.0
            # gamma5=-9.0/50.0
            # gamma6=2.0/55.0
            
            #t is the independent variable here, where t takes on values in the bounded range [tmin,tmax]
            while (self.t0 < self.tmax - 1e-10):
                
                # Check for termination
                abort = self.premature_termination()
                if abort != False: return abort
    
                self.stepAccepted = False
                
                while not self.stepAccepted:
    
                    # reset the flag
                    self.disableAdaptive = False
                    
                    if self.t0 + self.h > self.tmax:
                        self.disableAdaptive = True
                        self.h = self.tmax - self.t0
                
                    # 
                    self.pre_step_callback()
                    
                    # We check stepAccepted again because if the derived class
                    # sets the variable stepAccepted, we should not actually do the evaluation
                    if not self.stepAccepted:
                        
                        if self.h < hmin and not self.disableAdaptive:
                            # Step is too small, just use the minimum step size
                            self.h = 1.0*hmin
                            self.disableAdaptive = True
                        if self.h == hmin:
                            self.minstepcount += 1
                        else:
                            self.minstepcount = 0
                    
                        # Step 1: derivatives evaluated at old values
                        self.f1 = self.derivs(self.t0, self.xold)
                        
                        # Call post derivative callback after the first derivative evaluation (which might cache values)
                        self.post_deriv_callback()
                    
                        self.xnew1 = self.xold+self.h*(1.0/5.0)*self.f1
                        
                        self.f2 = self.derivs(self.t0+1.0/5.0*self.h, self.xnew1)
                        self.xnew2 = self.xold+self.h*(+3.0/40.0*self.f1+9.0/40.0*self.f2)
    
                        self.f3 = self.derivs(self.t0+3.0/10.0*self.h, self.xnew2)
                        self.xnew3 = self.xold+self.h*(3.0/10.0*self.f1-9.0/10.0*self.f2+6.0/5.0*self.f3)
    
                        self.f4 = self.derivs(self.t0+3.0/5.0*self.h, self.xnew3)
                        self.xnew4 = self.xold+self.h*(-11.0/54.0*self.f1+5.0/2.0*self.f2-70/27.0*self.f3+35.0/27.0*self.f4)
                        
                        self.f5 = self.derivs(self.t0+self.h, self.xnew4)
                        self.xnew5 = self.xold+self.h*(1631.0/55296*self.f1+175.0/512.0*self.f2+575.0/13824.0*self.f3+44275.0/110592.0*self.f4+253.0/4096.0*self.f5)
                        
                        self.f6 = self.derivs(self.t0+7/8*self.h, self.xnew5)
                        
                        # Updated values at the next step using 5-th order
                        self.xnew = self.xold + self.h*(37/378*self.f1 + 250/621*self.f3 + 125/594*self.f4 + 512/1771*self.f6)
                        
                        # Estimation of error
                        error = abs(self.h*(-277/64512*self.f1+6925/370944*self.f3-6925/202752*self.f4-277.0/14336*self.f5+277/7084*self.f6))
    
                        error_threshold = atol + rtol*abs(self.xnew)
    
                        # max_error = np.sqrt(np.sum(np.power(error, 2)))
    
                        # rel_error = error/self.xnew
                        # rel_error[self.xnew == 0] = error[self.xnew == 0]
                        # max_error = np.max(np.abs(rel_error))
    
                        # print(max_error, error, self.xnew)
                        # print('error @h=',self.h, abs(error), abs(error_threshold))
                        
                        # If the error is too large, make the step size smaller and try
                        # the step again
                        if (any(error > error_threshold)):
                            if not self.disableAdaptive:
                                # Take a smaller step next time, try again on this step
                                # But only if adaptive mode is on
                                downsize_factor = np.min(error_threshold/error)**(0.3)
                                # print('downsize', downsize_factor, error, error_threshold)
                                self.h *= step_relax*downsize_factor
                                self.stepAccepted=False
                            else:
                                # Accept the step regardless of whether the error 
                                # is too large or not
                                self.stepAccepted = True
                        else:
                            self.stepAccepted = True
                    else:
                        pass
                        # print('accepted')  
    
                self.t0 += self.h
                self.Itheta += 1
                self.xold = self.xnew
    
                self.post_step_callback()
                
                # The error is already below the threshold
                if (all(abs(error) < error_threshold) and self.disableAdaptive == False and np.max(error) > 0):
                    # Take a bigger step next time, since eps_allowed>max_error
                    upsize_factor = step_relax*np.max(error_threshold/error)**(0.2)
                    # print('upsizing', upsize_factor, (error_threshold/error)**(0.2), self.h, self.h*upsize_factor)
                    self.h *= upsize_factor
                   
            if not (self.t0 - tmax) < 1e-3:
                raise AssertionError('(self.t0 - tmax) [' + str(self.t0 - tmax) + '] > 1e-3')
            
            # No termination was requested
            return False
                
    if __name__ == '__main__':
        
        class TestIntegrator(object):
            """
            Implements the functions needed to satisfy the ABC requirements
            
            This is the problem from wikipedia, where y' = y, with the explicit solution y = exp(t)
            """
            
            def __init__(self):
                self.x, self.y = [], []
                
            def post_deriv_callback(self): pass
            
            def premature_termination(self): return False
                
            def get_initial_array(self):
                return np.array([1.0])
            
            def pre_step_callback(self): 
                if self.Itheta == 0:
                    self.x.append(self.t0)
                    self.y.append(self.xold[0])
            
            def post_step_callback(self): 
                self.x.append(self.t0)
                self.y.append(self.xold[0])
            
            def derivs(self, t0, xold):
                return np.array([xold[0]])
                
        class TestEulerIntegrator(TestIntegrator, AbstractSimpleEulerODEIntegrator):
            """ Mixin class using the functions defined in TestIntegrator """
            pass
    
        class TestHeunIntegrator(TestIntegrator, AbstractHeunODEIntegrator):
            """ Mixin class using the functions defined in TestIntegrator """
            pass
                
        class TestRK45Integrator(TestIntegrator, AbstractRK45ODEIntegrator):
            """ Mixin class using the functions defined in TestIntegrator """
            pass
        
        for N in [4, 11, 21]:
            TEI = TestEulerIntegrator()
            TEI.do_integration(N, 0.0, 4.0)
            plt.plot(TEI.x, TEI.y, 'o-', label = 'Euler: ' + str(N))
            
        for N in [4, 11]:
            THI = TestHeunIntegrator()
            THI.do_integration(N, 0.0, 4.0)
            plt.plot(THI.x, THI.y, '^-', label = 'Heun: ' + str(N))
            
        TRKI = TestRK45Integrator()
        TRKI.do_integration(0.0, 4.0, rtol=1e-10)
        plt.plot(TRKI.x, TRKI.y, '^-', label = 'RK45')
            
        t = np.linspace(0, 4, 500)
        plt.plot(t, np.exp(t), 'k', lw = 1)
        plt.legend(loc='best')
        plt.show()