Newer
Older
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
using Catch::Approx;
#include "teqp/models/cubics.hpp"
#include "teqp/derivs.hpp"
#include "teqp/algorithms/VLE.hpp"
#include <boost/numeric/odeint/stepper/euler.hpp>
#include <boost/numeric/odeint/stepper/runge_kutta_cash_karp54.hpp>
TEST_CASE("Test construction of cubic", "[cubic]")
{
// Values taken from http://dx.doi.org/10.6028/jres.121.011
std::valarray<double> Tc_K = { 190.564, 154.581, 150.687 },
pc_Pa = { 4599200, 5042800, 4863000 },
acentric = { 0.011, 0.022, -0.002};
auto modelSRK = canonical_SRK(Tc_K, pc_Pa, acentric);
auto modelPR = canonical_PR(Tc_K, pc_Pa, acentric);
double T = 800, rho = 5000;
auto molefrac = (Eigen::ArrayXd(3) << 0.5, 0.3, 0.2).finished();
auto Ar02SRK = TDXDerivatives<decltype(modelSRK)>::get_Ar02(modelSRK, T, rho, molefrac);
auto Ar01PR = TDXDerivatives<decltype(modelPR)>::get_Ar01(modelPR, T, rho, molefrac);
auto Ar02PR = TDXDerivatives<decltype(modelPR)>::get_Ar02(modelPR, T, rho, molefrac);
auto Ar03PR = TDXDerivatives<decltype(modelPR)>::get_Ar0n<3>(modelPR, T, rho, molefrac)[3];
auto Ar04PR = TDXDerivatives<decltype(modelPR)>::get_Ar0n<4>(modelPR, T, rho, molefrac)[4];
TEST_CASE("Check SRK with kij setting", "[cubic]")
{
// Values taken from http://dx.doi.org/10.6028/jres.121.011
std::valarray<double> Tc_K = { 190.564, 154.581, 150.687 },
pc_Pa = { 4599200, 5042800, 4863000 },
acentric = { 0.011, 0.022, -0.002 };
Eigen::ArrayXXd kij_right(3, 3); kij_right.setZero();
Eigen::ArrayXXd kij_bad(2, 20); kij_bad.setZero();
SECTION("No kij") {
CHECK_NOTHROW(canonical_SRK(Tc_K, pc_Pa, acentric));
}
SECTION("Correctly shaped kij matrix") {
CHECK_NOTHROW(canonical_SRK(Tc_K, pc_Pa, acentric, kij_right));
}
SECTION("Incorrectly shaped kij matrix") {
CHECK_THROWS(canonical_SRK(Tc_K, pc_Pa, acentric, kij_bad));
}
}
TEST_CASE("Check calling superancillary curves", "[cubic][superanc]")
{
std::valarray<double> Tc_K = { 150.687 };
std::valarray<double> pc_Pa = { 4863000.0 };
std::valarray<double> acentric = { 0.0 };
SECTION("PR") {
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
auto [rhoL, rhoV] = model.superanc_rhoLV(130.0);
CHECK(rhoL > rhoV);
}
SECTION("PR super large temp") {
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
CHECK_THROWS(model.superanc_rhoLV(1.3e6));
}
SECTION("PR super small temp") {
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
CHECK_THROWS(model.superanc_rhoLV(1.3e-10));
}
SECTION("SRK") {
auto model = canonical_SRK(Tc_K, pc_Pa, acentric);
auto [rhoL, rhoV] = model.superanc_rhoLV(130.0);
CHECK(rhoL > rhoV);
}
TEST_CASE("Check manual integration of subcritical VLE isotherm for binary mixture", "[cubic][isochoric][traceisotherm]")
{
using namespace boost::numeric::odeint;
// Values taken from http://dx.doi.org/10.6028/jres.121.011
std::valarray<double> Tc_K = { 190.564, 154.581},
pc_Pa = { 4599200, 5042800},
acentric = { 0.011, 0.022};
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
const auto N = Tc_K.size();
using state_type = std::vector<double>;
REQUIRE(N == 2);
auto get_start = [&](double T, auto i) {
std::valarray<double> Tc_(Tc_K[i], 1), pc_(pc_Pa[i], 1), acentric_(acentric[i], 1);
auto PR = canonical_PR(Tc_, pc_, acentric_);
auto [rhoL, rhoV] = PR.superanc_rhoLV(T);
state_type o(N*2);
o[i] = rhoL;
o[i + N] = rhoV;
return o;
};
double T = 120;
// Derivative function with respect to pressure
auto xprime = [&](const state_type& X, state_type& Xprime, double /*t*/) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for inputs and their derivatives
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X[0])+N, N);
auto drhovecdpL = Eigen::Map<Eigen::ArrayXd>(&(Xprime[0]), N);
auto drhovecdpV = Eigen::Map<Eigen::ArrayXd>(&(Xprime[0]) + N, N);
std::tie(drhovecdpL, drhovecdpV) = get_drhovecdp_Tsat(model, T, rhovecL.eval(), rhovecV.eval());
};
auto get_p = [&](const state_type& X) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for rho vector
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rho = rhovecL.sum();
auto molefrac = rhovecL / rhovecL.sum();
using id = IsochoricDerivatives<decltype(model)>;
auto pfromderiv = rho * model.R(molefrac) * T + id::get_pr(model, T, rhovecL);
return pfromderiv;
};
SECTION("Manual integration") {
for (int i : { 0 }) {
state_type X0 = get_start(T, i); // Starting point; liquid, then vapor
double p0 = get_p(X0);
state_type Xfinal = get_start(T, 1 - i); // Ending point; liquid, then vapor
double pfinal = get_p(Xfinal);
//euler<state_type> integrator;
runge_kutta_cash_karp54< state_type > integrator;
int Nstep = 10000;
double p = p0, pmax = pfinal, dp = (pmax - p0) / (Nstep - 1);
auto write = [&]() {
//std::cout << p << " " << X0[0] << "," << X0[1] << std::endl;
};
for (auto i = 0; p < pmax; ++i) {
if (p + dp > pmax) { break; }
write();
integrator.do_step(xprime, X0, p, dp);
p += dp;
// Try to polish the solution (but don't use the polished values)
{
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X0[0]), N).eval();
auto rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X0[0 + N]), N).eval();
auto x = (Eigen::ArrayXd(2) << rhovecL(0) / rhovecL.sum(), rhovecL(1) / rhovecL.sum()).finished();
auto [return_code, rhoL, rhoV] = mix_VLE_Tx(model, T, rhovecL, rhovecV, x, 1e-10, 1e-8, 1e-10, 1e-8, 10);
}
}
double diffs = 0;
for (auto i = 0; i < X0.size(); ++i) {
diffs += std::abs(X0[i] - Xfinal[i]);
}
CHECK(diffs < 0.1);
write();
}
}
SECTION("Parametric integration of isotherm") {
int i = 0;
auto X = get_start(T, 0);
state_type Xfinal = get_start(T, 1 - i); // Ending point; liquid, then vapor
double pfinal_goal = get_p(Xfinal);
auto N = X.size() / 2;
Eigen::ArrayXd rhovecL0 = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
Eigen::ArrayXd rhovecV0 = Eigen::Map<const Eigen::ArrayXd>(&(X[0]) + N, N);
TVLEOptions opt;
opt.abs_err = 1e-10;
opt.rel_err = 1e-10;
opt.integration_order = 5;
auto J = trace_VLE_isotherm_binary(model, T, rhovecL0, rhovecV0, opt);
auto Nstep = J.size();
std::ofstream file("isoT.json"); file << J;
double pfinal = J.back().at("pL / Pa").back();
CHECK(std::abs(pfinal / pfinal_goal-1) < 1e-5);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
TEST_CASE("Check infinite dilution of isoline VLE derivatives", "[cubic][isochoric][infdil]")
{
// Methane + propane
std::valarray<double> Tc_K = { 190.564, 369.89 },
pc_Pa = { 4599200, 4251200.0 },
acentric = { 0.011, 0.1521 };
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
const auto N = Tc_K.size();
using state_type = std::valarray<double>;
REQUIRE(N == 2);
auto get_start = [&](double T, auto i) {
std::valarray<double> Tc_(Tc_K[i], 1), pc_(pc_Pa[i], 1), acentric_(acentric[i], 1);
auto PR = canonical_PR(Tc_, pc_, acentric_);
auto [rhoL, rhoV] = PR.superanc_rhoLV(T);
auto z = (Eigen::ArrayXd(1) << 1.0).finished();
using tdx = TDXDerivatives<decltype(model)>;
auto p0 = rhoL * PR.R(z) * T * (1 + tdx::get_Ar01(PR, T, rhoL, z));
//std::cout << p << std::endl;
state_type o(N * 2);
o[i] = rhoL;
o[i + N] = rhoV;
return std::make_tuple(o, p0);
};
int i = 1;
double T = 250;
auto [rhostart_dil, p0] = get_start(T, i);
auto checker = [](auto & dernotdil, auto &derdil) {
auto err0 = (std::get<0>(dernotdil).array()/std::get<0>(derdil).array() - 1).cwiseAbs().maxCoeff();
auto err1 = (std::get<1>(dernotdil).array()/std::get<1>(derdil).array() - 1).cwiseAbs().maxCoeff();
CAPTURE(err0);
CAPTURE(err1);
return err0 < 1e-5 && err1 < 1e-5; // These are absolute fractional deviations
};
SECTION("Along isotherm") {
// Derivative function with respect to p
std::valarray<double> rhostart_notdil = rhostart_dil;
rhostart_notdil[1 - i] += 1e-3;
rhostart_notdil[1 - i + N] += 1e-3;
// Polish the pertubed solution
Eigen::ArrayXd rhoL0 = Eigen::Map<const Eigen::ArrayXd>(&(rhostart_notdil[0]), 2);
Eigen::ArrayXd rhoV0 = Eigen::Map<const Eigen::ArrayXd>(&(rhostart_notdil[0]) + N, N);
Eigen::ArrayXd xL0 = rhoL0 / rhoL0.sum();
auto [code, rhoL00, rhoV00] = mix_VLE_Tx(model, T, rhoL0, rhoV0, xL0, 1e-10, 1e-10, 1e-10, 1e-10, 10);
Eigen::Map<Eigen::ArrayXd>(&(rhostart_notdil[0]), 2) = rhoL00;
Eigen::Map<Eigen::ArrayXd>(&(rhostart_notdil[2]), 2) = rhoV00;
auto xprime = [&](const state_type& X) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for inputs and their derivatives
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X[0]) + N, N);
return get_drhovecdp_Tsat(model, T, rhovecL.eval(), rhovecV.eval());
};
auto dernotdil = xprime(rhostart_notdil);
auto derdil = xprime(rhostart_dil);
CHECK(checker(dernotdil, derdil));
}
SECTION("Along isobar") {
std::valarray<double> rhostart_notdil = rhostart_dil;
rhostart_notdil[1 - i] += 1e-3;
rhostart_notdil[1 - i + N] += 1e-3;
// Polish the pertubed solution
Eigen::ArrayXd rhoL0 = Eigen::Map<const Eigen::ArrayXd>(&(rhostart_notdil[0]), 2);
Eigen::ArrayXd rhoV0 = Eigen::Map<const Eigen::ArrayXd>(&(rhostart_notdil[0]) + N, N);
Eigen::ArrayXd xL0 = rhoL0 / rhoL0.sum();
auto [code, Tnew, rhoL00, rhoV00] = mixture_VLE_px(model, p0, xL0, T, rhoL0, rhoV0);
Eigen::Map<Eigen::ArrayXd>(&(rhostart_notdil[0]), 2) = rhoL00;
Eigen::Map<Eigen::ArrayXd>(&(rhostart_notdil[2]), 2) = rhoV00;
// Derivative function with respect to T
auto xprime = [&](double T, const state_type& X) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for inputs and their derivatives
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X[0]) + N, N);
return get_drhovecdT_psat(model, T, rhovecL.eval(), rhovecV.eval());
};
auto dernotdil = xprime(Tnew, rhostart_notdil);
auto derdil = xprime(T, rhostart_dil);
CHECK(checker(dernotdil, derdil));
}
}
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
TEST_CASE("Check manual integration of subcritical VLE isobar for binary mixture", "[cubic][isochoric][traceisobar]")
{
using namespace boost::numeric::odeint;
// Values taken from http://dx.doi.org/10.6028/jres.121.011
std::valarray<double> Tc_K = { 190.564, 154.581 },
pc_Pa = { 4599200, 5042800 },
acentric = { 0.011, 0.022 };
auto model = canonical_PR(Tc_K, pc_Pa, acentric);
const auto N = Tc_K.size();
using state_type = std::vector<double>;
REQUIRE(N == 2);
auto get_start = [&](double T, auto i) {
std::valarray<double> Tc_(Tc_K[i], 1), pc_(pc_Pa[i], 1), acentric_(acentric[i], 1);
auto PR = canonical_PR(Tc_, pc_, acentric_);
auto [rhoL, rhoV] = PR.superanc_rhoLV(T);
state_type o(N * 2);
o[i] = rhoL;
o[1 - i] = 0;
o[i + N] = rhoV;
o[(1 - i) + N] = 0;
return o;
};
double T0 = 120; // Just to get a pressure, start at this point
// Derivative function with respect to temperature at constant pressure
auto xprime = [&](const state_type& X, state_type& Xprime, double T) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for inputs and their derivatives
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X[0]) + N, N);
auto drhovecdTL = Eigen::Map<Eigen::ArrayXd>(&(Xprime[0]), N);
auto drhovecdTV = Eigen::Map<Eigen::ArrayXd>(&(Xprime[0]) + N, N);
std::tie(drhovecdTL, drhovecdTV) = get_drhovecdT_psat(model, T, rhovecL.eval(), rhovecV.eval());
};
auto get_p = [&](const state_type& X, double T) {
REQUIRE(X.size() % 2 == 0);
auto N = X.size() / 2;
// Memory maps into the state vector for rho vector
auto rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
auto rho = rhovecL.sum();
auto molefrac = rhovecL / rhovecL.sum();
using id = IsochoricDerivatives<decltype(model)>;
auto pfromderiv = rho * model.R(molefrac) * T + id::get_pr(model, T, rhovecL);
return pfromderiv;
};
SECTION("Manual integration") {
for (int i : { 0 }) {
state_type X0 = get_start(T0, i); // Starting point; liquid, then vapor
double Tfinal = T0 - 40;
double pinit = get_p(X0, T0);
//euler<state_type> integrator;
runge_kutta_cash_karp54< state_type > integrator;
int Nstep = 1000;
double T = T0, Tmax = Tfinal, dT = (Tmax - T0) / (Nstep - 1);
auto write = [&]() {
//std::cout << T << " " << X0[0] / (X0[0] + X0[1]) << std::endl;
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
};
for (auto k = 0; k < Nstep; ++k) {
write();
integrator.do_step(xprime, X0, T, dT);
T += dT;
// Try to polish the solution (but don't use the polished values)
{
Eigen::ArrayXd rhovecL = Eigen::Map<const Eigen::ArrayXd>(&(X0[0]), N).eval();
Eigen::ArrayXd rhovecV = Eigen::Map<const Eigen::ArrayXd>(&(X0[0 + N]), N).eval();
Eigen::ArrayXd x = (Eigen::ArrayXd(2) << rhovecL(0) / rhovecL.sum(), rhovecL(1) / rhovecL.sum()).finished();
double p = get_p(X0, T);
auto [return_code, Tnew, rhovecLnew, rhovecVnew] = mixture_VLE_px(model, p, x, T, rhovecL, rhovecV);
int rr = 0;
}
if (X0[0] / (X0[0] + X0[1]) < 0.01) {
break;
}
}
double pfinal = get_p(X0, T);
double diffs = 0;
for (auto i = 0; i < X0.size(); ++i) {
diffs += std::abs(pinit-pfinal);
}
CHECK(diffs < 0.1);
}
}
SECTION("Parametric integration of isobar") {
auto X = get_start(T0, 0);
double pinit = get_p(X, T0);
auto N = X.size() / 2;
Eigen::ArrayXd rhovecL0 = Eigen::Map<const Eigen::ArrayXd>(&(X[0]), N);
Eigen::ArrayXd rhovecV0 = Eigen::Map<const Eigen::ArrayXd>(&(X[0]) + N, N);
PVLEOptions opt;
opt.abs_err = 1e-10;
opt.rel_err = 1e-10;
opt.integration_order = 5;
auto J = trace_VLE_isobar_binary(model, pinit, T0, rhovecL0, rhovecV0, opt);
auto Nstep = J.size();
std::ofstream file("isoP.json"); file << J;
}