Newer
Older
/* A (very) simple implementation of the van der Waals EOS*/
const double R = 1.380649e-23*6.02214076e23; ///< Exact value, given by k_B*N_A
auto alphar(const TType T, const RhoType& rho) const {
auto rhotot = std::accumulate(std::begin(rho), std::end(rho), (RhoType::value_type)0.0);
auto Psiminus = -log(1.0 - b * rhotot);
auto Psiplus = rhotot;
return Psiminus - a / (R * T) * Psiplus;
}
/* A slightly more involved implementation of van der Waals,
this time with mixture properties */
std::valarray<NumType> ai, bi;
std::valarray<std::valarray<NumType>> k;
auto get_ai(TType T, IndexType i) const { return ai[i]; }
auto get_bi(TType T, IndexType i) const { return bi[i]; }
template<typename TType, typename CompType>
auto a(TType T, const CompType& molefracs) const {
CompType::value_type a_ = 0.0;
auto ai = this->ai;
for (auto i = 0; i < molefracs.size(); ++i) {
for (auto j = 0; j < molefracs.size(); ++j) {
auto aij = (1 - k[i][j]) * sqrt(ai[i] * ai[j]);
template<typename CompType>
auto b(const CompType& molefracs) const {
CompType::value_type b_ = 0.0;
for (auto i = 0; i < molefracs.size(); ++i) {
public:
vdWEOS(const std::valarray<NumType>& Tc_K, const std::valarray<NumType>& pc_Pa)
{
ai.resize(Tc_K.size());
bi.resize(Tc_K.size());
for (auto i = 0; i < Tc_K.size(); ++i) {
ai[i] = 27.0 / 64.0 * pow(R * Tc_K[i], 2) / pc_Pa[i];
bi[i] = 1.0 / 8.0 * R * Tc_K[i] / pc_Pa[i];
}
k = std::valarray<std::valarray<NumType>>(std::valarray<NumType>(0.0, Tc_K.size()), Tc_K.size());
};
const NumType R = get_R_gas<double>();
template<typename TType, typename RhoType>
auto alphar(TType T,
const RhoType& rho,
const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
{
RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rho), std::end(rho), (decltype(rho[0]))0.0);
auto molefrac = rho / rhotot_;
auto Psiminus = -log(1.0 - b(molefrac) * rhotot_);
auto Psiplus = rhotot_;
return Psiminus - a(T, molefrac) / (R * T) * Psiplus;
}