Newer
Older
#include <optional>
#include <complex>
#include <tuple>
#include "MultiComplex/MultiComplex.hpp"
// autodiff include
#include <autodiff/forward/dual.hpp>
#include <autodiff/forward/dual/eigen.hpp>
using namespace autodiff;
template<typename T>
auto forceeval(T&& expr)
{
using namespace autodiff::detail;
if constexpr (isDual<T> || isExpr<T> || isNumber<T>) {
return eval(expr);
}
else {
return expr;
}
}
/***
* \brief Given a function, use complex step derivatives to calculate the derivative with
* respect to the first variable which here is temperature
*/
template <typename TType, typename ContainerType, typename FuncType>
typename ContainerType::value_type derivT(const FuncType& f, TType T, const ContainerType& rho) {
double h = 1e-100;
return f(std::complex<TType>(T, h), rho).imag() / h;
* \brief Given a function, use multicomplex derivatives to calculate the derivative with
* respect to the first variable which here is temperature
*/
template <typename TType, typename ContainerType, typename FuncType>
typename ContainerType::value_type derivTmcx(const FuncType& f, TType T, const ContainerType& rho) {
using fcn_t = std::function<mcx::MultiComplex<double>(const mcx::MultiComplex<double>&)>;
fcn_t wrapper = [&rho, &f](const auto& T_) {return f(T_, rho); };
auto ders = diff_mcx1(wrapper, T, 1);
return ders[0];
}
/***
* \brief Given a function, use complex step derivatives to calculate the derivative with respect
* to the given composition variable
template <typename TType, typename ContainerType, typename FuncType, typename Integer>
typename ContainerType::value_type derivrhoi(const FuncType& f, TType T, const ContainerType& rho, Integer i) {
using comtype = std::complex<typename ContainerType::value_type>;
Eigen::ArrayX<comtype> rhocom(rho.size());
for (auto j = 0; j < rho.size(); ++j) {
rhocom[j] = comtype(rho[j], 0.0);
enum class ADBackends { autodiff, multicomplex, complex_step };
template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd>
struct TDXDerivatives {
template<ADBackends be = ADBackends::autodiff>
static auto get_Ar10(const Model& model, const Scalar &T, const Scalar &rho, const VectorType& molefrac) {
if constexpr (be == ADBackends::complex_step) {
double h = 1e-100;
return -T * model.alphar(std::complex<Scalar>(T, h), rho, molefrac).imag() / h; // Complex step derivative
}
else if constexpr (be == ADBackends::multicomplex) {
using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>;
bool and_val = true;
fcn_t f = [&model, &rho, &molefrac](const auto& Trecip_) { return model.alphar(1.0/Trecip_, rho, molefrac); };
auto ders = diff_mcx1(f, 1.0/T, 1, and_val);
return (1.0/T)*ders[1];
}
else if constexpr (be == ADBackends::autodiff) {
autodiff::dual Trecipdual = 1.0/T;
auto f = [&model, &rho, &molefrac](const auto& Trecip_) { return eval(model.alphar(eval(1.0/Trecip_), rho, molefrac)); };
auto der = derivative(f, wrt(Trecipdual), at(Trecipdual));
return (1.0/T)*der;
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar10");
}
Ian Bell
committed
}
template<ADBackends be = ADBackends::autodiff>
static auto get_Ar01(const Model& model, const Scalar&T, const Scalar &rho, const VectorType& molefrac) {
if constexpr(be == ADBackends::complex_step){
double h = 1e-100;
auto der = model.alphar(T, std::complex<Scalar>(rho, h), molefrac).imag() / h;
}
else if constexpr(be == ADBackends::multicomplex){
using fcn_t = std::function<mcx::MultiComplex<Scalar>(const mcx::MultiComplex<Scalar>&)>;
bool and_val = true;
fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto ders = diff_mcx1(f, rho, 1, and_val);
}
else if constexpr(be == ADBackends::autodiff){
autodiff::dual rhodual = rho;
auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); };
auto der = derivative(f, wrt(rhodual), at(rhodual));
return rho*der;
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar01");
Ian Bell
committed
}
template<ADBackends be = ADBackends::autodiff>
static auto get_Ar02(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) {
if constexpr (be == ADBackends::autodiff) {
autodiff::dual2nd rhodual = rho;
auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); };
auto ders = derivatives(f, wrt(rhodual), at(rhodual));
return rho*rho*ders[2];
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar02");
}
}
template<int Nderiv, ADBackends be = ADBackends::autodiff>
static auto get_Ar0n(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) {
std::map<int, double> o;
if constexpr (be == ADBackends::autodiff) {
autodiff::HigherOrderDual<Nderiv, double> rhodual = rho;
auto f = [&model, &T, &molefrac](const auto& rho_) { return eval(model.alphar(T, rho_, molefrac)); };
auto ders = derivatives(f, wrt(rhodual), at(rhodual));
for (auto n = 1; n <= Nderiv; ++n) {
o[n] = pow(rho, n)*ders[n];
}
return o;
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar0n");
}
}
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
template<ADBackends be = ADBackends::autodiff>
static auto get_Ar20(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) {
if constexpr (be == ADBackends::autodiff) {
autodiff::dual2nd Trecipdual = 1/T;
auto f = [&model, &rho, &molefrac](const auto& Trecip) { return eval(model.alphar(eval(1/Trecip), rho, molefrac)); };
auto ders = derivatives(f, wrt(Trecipdual), at(Trecipdual));
return (1/T)*(1/T)*ders[2];
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar20");
}
}
template<ADBackends be = ADBackends::autodiff>
static auto get_Ar11(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) {
if constexpr (be == ADBackends::multicomplex) {
using fcn_t = std::function< mcx::MultiComplex<double>(const std::valarray<mcx::MultiComplex<double>>&)>;
const fcn_t func = [&model, &molefrac](const auto& zs) {
auto rhomolar = zs[0], Trecip = zs[1];
return model.alphar(1.0/Trecip, rhomolar, molefrac);
};
std::vector<double> xs = { rho, 1.0/T};
std::vector<int> order = { 1, 1 };
auto der = mcx::diff_mcxN(func, xs, order);
return (1.0/T)*rho*der;
}
else if constexpr (be == ADBackends::autodiff) {
//static_assert("bug in autodiff, can't use autodiff for cross derivative");
autodiff::dual2nd rhodual = rho, Trecipdual=1/T;
auto f = [&model, &molefrac](const auto& Trecip, const auto&rho_) { return eval(model.alphar(eval(1/Trecip), rho_, molefrac)); };
//auto der = derivative(f, wrt(Trecipdual, rhodual), at(Trecipdual, rhodual)); // d^2alphar/drhod(1/T) // This should work, but gives instead 1,0 derivative
auto [u01, u10, u11] = derivatives(f, wrt(Trecipdual, rhodual), at(Trecipdual, rhodual)); // d^2alphar/drhod(1/T)
return (1.0/T)*rho*u11;
}
else {
static_assert("algorithmic differentiation backend is invalid in get_Ar11");
}
}
template<ADBackends be = ADBackends::autodiff>
static auto get_neff(const Model& model, const Scalar& T, const Scalar& rho, const VectorType& molefrac) {
auto Ar01 = get_Ar01<be>(model, T, rho, molefrac);
auto Ar11 = get_Ar11<be>(model, T, rho, molefrac);
auto Ar20 = get_Ar20(model, T, rho, molefrac);
return -3*(Ar01-Ar11)/Ar20;
Ian Bell
committed
}
template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd>
struct VirialDerivatives {
static auto get_B2vir(const Model& model, const Scalar &T, const VectorType& molefrac) {
double h = 1e-100;
// B_2 = dalphar/drho|T,z at rho=0
auto B2 = model.alphar(T, std::complex<double>(0.0, h), molefrac).imag()/h;
return B2;
}
/**
* \f$
* B_n = \frac{1}{(n-2)!} lim_rho\to 0 d^{n-1}alphar/drho^{n-1}|T,z
* \f$
* \param model The model providing the alphar function
* \param Nderiv The maximum virial coefficient to return; e.g. 5: B_2, B_3, ..., B_5
* \param T Temperature
* \param molefrac The mole fractions
*/
template <int Nderiv, ADBackends be = ADBackends::autodiff>
static auto get_Bnvir(const Model& model, const Scalar &T, const VectorType& molefrac)
{
std::map<int, double> dnalphardrhon;
if constexpr(be == ADBackends::multicomplex){
using namespace mcx;
using fcn_t = std::function<MultiComplex<double>(const MultiComplex<double>&)>;
fcn_t f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto derivs = diff_mcx1(f, 0.0, Nderiv+1, true /* and_val */);
for (auto n = 1; n <= Nderiv; ++n){
dnalphardrhon[n] = derivs[n];
}
else if constexpr(be == ADBackends::autodiff){
autodiff::HigherOrderDual<Nderiv+1, double> rhodual = 0.0;
auto f = [&model, &T, &molefrac](const auto& rho_) { return model.alphar(T, rho_, molefrac); };
auto derivs = derivatives(f, wrt(rhodual), at(rhodual));
for (auto n = 1; n <= Nderiv; ++n){
dnalphardrhon[n] = derivs[n];
}
else{
static_assert("algorithmic differentiation backend is invalid");
std::map<int, Scalar> o;
for (int n = 2; n < Nderiv+1; ++n) {
o[n] = dnalphardrhon[n-1];
// 0!=1, 1!=1, so only n>3 terms need factorial correction
if (n > 3) {
auto factorial = [](int N) {return tgamma(N + 1); };
o[n] /= factorial(n-2);
}
}
return o;
static auto get_B12vir(const Model& model, const Scalar &T, const VectorType& molefrac) {
auto B2 = get_B2vir(model, T, molefrac); // Overall B2 for mixture
const auto xpure0 = (Eigen::ArrayXd(2) << 1,0).finished();
const auto xpure1 = (Eigen::ArrayXd(2) << 0,1).finished();
auto B20 = get_B2vir(model, T, xpure0); // Pure first component with index 0
auto B21 = get_B2vir(model, T, xpure1); // Pure second component with index 1
auto z0 = molefrac[0];
auto B12 = (B2 - z0*z0*B20 - (1-z0)*(1-z0)*B21)/(2*z0*(1-z0));
return B12;
}
};
template<typename Model, typename Scalar = double, typename VectorType = Eigen::ArrayXd>
struct IsochoricDerivatives{
Ian Bell
committed
/***
* \brief Calculate the residual entropy (s^+ = -sr/R) from derivatives of alphar
*/
static auto get_splus(const Model& model, const Scalar &T, const VectorType& rhovec) {
auto rhotot = rhovec.sum();
auto molefrac = rhovec / rhotot;
return model.alphar(T, rhotot, molefrac) - get_Ar10(model, T, rhovec);
}
/***
* \brief Calculate the residual pressure from derivatives of alphar
*/
static auto get_pr(const Model& model, const Scalar &T, const VectorType& rhovec)
{
auto rhotot_ = rhovec.sum();
auto molefrac = (rhovec / rhotot_).eval();
auto h = 1e-100;
auto Ar01 = model.alphar(T, std::complex<double>(rhotot_, h), molefrac).imag() / h * rhotot_;
return Ar01*rhotot_*model.R*T;
}
static auto get_Ar00(const Model& model, const Scalar& T, const VectorType& rhovec) {
auto rhotot = rhovec.sum();
return model.alphar(T, rhotot, molefrac);
}
static auto get_Ar10(const Model& model, const Scalar& T, const VectorType& rhovec) {
auto rhotot = rhovec.sum();
auto molefrac = (rhovec / rhotot).eval();
return -T * derivT([&model, &rhotot, &molefrac](const auto& T, const auto& rhovec) { return model.alphar(T, rhotot, molefrac); }, T, rhovec);
}
static auto get_Ar01(const Model& model, const Scalar &T, const VectorType& rhovec) {
auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
decltype(rhovec[0] * T) Ar01 = 0.0;
for (auto i = 0; i < rhovec.size(); ++i) {
auto Ar00 = [&model](const auto &T, const auto&rhovec) {
auto rhotot = rhovec.sum();
auto molefrac = rhovec / rhotot;
return model.alphar(T, rhotot, molefrac);
};
Ar01 += rhovec[i] * derivrhoi(Ar00, T, rhovec, i);
/***
* \brief Calculate Psir=ar*rho
*/
static auto get_Psir(const Model& model, const Scalar &T, const VectorType& rhovec) {
auto rhotot_ = std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
return model.alphar(T, rhotot_, rhovec / rhotot_) * model.R * T * rhotot_;
}
/***
* \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations
*
* Requires the use of autodiff derivatives to calculate second partial derivatives
*/
static auto build_Psir_Hessian_autodiff(const Model& model, const Scalar& T, const VectorType& rho) {
// Double derivatives in each component's concentration
// N^N matrix (symmetric)
dual2nd u; // the output scalar u = f(x), evaluated together with Hessian below
ArrayXdual2nd g;
ArrayXdual2nd rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; }
auto hfunc = [&model, &T](const ArrayXdual2nd& rho_) {
auto rhotot_ = rho_.sum();
auto molefrac = (rho_ / rhotot_).eval();
return eval(model.alphar(T, rhotot_, molefrac) * model.R * T * rhotot_);
};
return autodiff::hessian(hfunc, wrt(rhovecc), at(rhovecc), u, g).eval(); // evaluate the function value u, its gradient, and its Hessian matrix H
}
/***
* \brief Calculate the Hessian of Psi = a*rho w.r.t. the molar concentrations
*
* Uses autodiff derivatives to calculate second partial derivatives
*/
static auto build_Psi_Hessian_autodiff(const Model& model, const Scalar& T, const VectorType& rho) {
auto H = build_Psir_Hessian_autodiff(model, T, rho);
for (auto i = 0; i < 2; ++i) {
H(i, i) += model.R * T / rho[i];
}
return H;
}
/***
* \brief Calculate the Hessian of Psir = ar*rho w.r.t. the molar concentrations (residual contribution only)
*
* Requires the use of multicomplex derivatives to calculate second partial derivatives
*/
static auto build_Psir_Hessian_mcx(const Model& model, const Scalar& T, const VectorType& rho) {
// Double derivatives in each component's concentration
// N^N matrix (symmetric)
using namespace mcx;
// Lambda function for getting Psir with multicomplex concentrations
using fcn_t = std::function< MultiComplex<double>(const Eigen::ArrayX<MultiComplex<double>>&)>;
fcn_t func = [&model, &T](const auto& rhovec) {
auto rhotot_ = rhovec.sum();
auto molefrac = (rhovec / rhotot_).eval();
return model.alphar(T, rhotot_, molefrac) * model.R * T * rhotot_;
};
using mattype = Eigen::ArrayXXd;
auto H = get_Hessian<mattype, fcn_t, VectorType, HessianMethods::Multiple>(func, rho);
return H;
}
/***
* \brief Gradient of Psir = ar*rho w.r.t. the molar concentrations
*
* Uses autodiff to calculate second partial derivatives
*/
static auto build_Psir_gradient_autodiff(const Model& model, const Scalar& T, const VectorType& rho) {
ArrayXdual2nd rhovecc(rho.size()); for (auto i = 0; i < rho.size(); ++i) { rhovecc[i] = rho[i]; }
auto psirfunc = [&model, &T](const ArrayXdual2nd& rho_) {
auto rhotot_ = rho_.sum();
auto molefrac = (rho_ / rhotot_).eval();
return eval(model.alphar(T, rhotot_, molefrac) * model.R * T * rhotot_);
};
auto val = autodiff::gradient(psirfunc, wrt(rhovecc), at(rhovecc)).eval(); // evaluate the gradient
return val;
}
/***
* \brief Calculate the chemical potential of each component
*
* Uses autodiff derivatives to calculate second partial derivatives
* See Eq. 9 of https://doi.org/10.1002/aic.16730
* \note: Some contributions to the ideal gas part are missing (reference state and cp0), but are not relevant to phase equilibria
*/
static auto get_chempot_autodiff(const Model& model, const Scalar& T, const VectorType& rho) {
typename VectorType::value_type rhotot = rho.sum();
return (build_Psir_gradient_autodiff(model, T, rho).array() + model.R*T*(1.0 + log(rho / rhotot))).eval();
}
};