Skip to content
Snippets Groups Projects
time_teqp.py 1.18 KiB
Newer Older
  • Learn to ignore specific revisions
  • import timeit
    import sys
    sys.path.append('bld/Release')
    import teqp
    
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas
    import scipy.optimize
    
    def build_models():
        return [
            teqp.PCSAFTEOS(['Methane']),
            teqp.vdWEOS([150.687], [4863000.0])
        ]
    
    def time(*, model, n, Nrep):
        molefrac = [1.0]
        rho = 3.0
        T = 300
    
        f = getattr(teqp, f"get_Ar0{n}n") if n > 2 else getattr(teqp, f"get_Ar0{n}")
        tic = timeit.default_timer()
        for i in range(Nrep):
            f(model, T, rho, molefrac)
        toc = timeit.default_timer()
        elap = (toc-tic)/Nrep
        return elap
    
    def timeall(*, models, Nrep):
        o = []
        for model in models:
            for n in [1,2,3,4,5,6]:
                t = time(model=model, n=n, Nrep=Nrep)
                o.append({'model': str(model), 'n': n, 't / s': t})
        df = pandas.DataFrame(o)
        for model,gp in df.groupby('model'):
            plt.plot(gp['n'], gp['t / s']*1e6, label=model)
        plt.gca().set(xlabel='n', ylabel=r't / $\mu$s')
        plt.legend(loc='best')
        # plt.xscale('log')
        plt.yscale('log')
        plt.title(r'Timing of $A^{\rm r}_{0n}$')
        plt.show()
    
    if __name__ == '__main__':
        timeall(models=build_models(), Nrep= 10000)