Skip to content
Snippets Groups Projects
catch_test_multifluid.cxx 20.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <catch2/catch_test_macros.hpp>
    #include <catch2/catch_approx.hpp>
    
    #include <catch2/generators/catch_generators.hpp>
    #include <catch2/generators/catch_generators_adapters.hpp>
    #include <catch2/generators/catch_generators_range.hpp>
    
    
    using Catch::Approx;
    
    
    #include "teqp/models/multifluid.hpp"
    
    #include "teqp/models/multifluid_ancillaries.hpp"
    
    #include "teqp/algorithms/critical_tracing.hpp"
    
    #include "teqp/algorithms/VLE.hpp"
    
    #include "teqp/cpp/teqpcpp.hpp"
    #include "teqp/cpp/deriv_adapter.hpp"
    
    #include "teqp/filesystem.hpp"
    
    #include "teqp/ideal_eosterms.hpp"
    
    using namespace teqp;
    
    using multifluid_t = decltype(build_multifluid_model({""}, ""));
    
    TEST_CASE("Test infinite dilution critical locus derivatives for multifluid", "[crit]")
    {
        std::string root = "../mycp";
    
        const auto model = build_multifluid_model({ "Nitrogen", "Ethane" }, root);
        using ct = CriticalTracing<decltype(model), double, Eigen::ArrayXd>;
    
        for (int i = 0; i < 2; ++i) {
            auto rhoc0 = 1/model.redfunc.vc[i];
            double T0 = model.redfunc.Tc[i];
            Eigen::ArrayXd rhovec0(2); rhovec0.setZero(); rhovec0[i] = rhoc0;
    
            // Values for infinite dilution
            auto infdil = ct::get_drhovec_dT_crit(model, T0, rhovec0);
            auto epinfdil = ct::eigen_problem(model, T0, rhovec0);
    
            // Just slightly not infinite dilution, values should be very similar
            Eigen::ArrayXd rhovec0almost = rhovec0; rhovec0almost[1 - i] = 1e-6;
            auto dil = ct::get_drhovec_dT_crit(model, T0, rhovec0almost);
            auto epdil = ct::eigen_problem(model, T0, rhovec0almost);
            int rr = 0;
    
        }
    }
    
    TEST_CASE("Test infinite dilution critical locus derivatives for multifluid with both orders", "[crit]")
    {
        std::string root = "../mycp";
    
        auto pure_endpoint = [&](const std::vector < std::string> &fluids, int i) {
            const auto model = build_multifluid_model(fluids, root);
            using ct = CriticalTracing<decltype(model), double, Eigen::ArrayXd>;
            auto rhoc0 = 1 / model.redfunc.vc[i];
            double T0 = model.redfunc.Tc[i];
            Eigen::ArrayXd rhovec0(2); rhovec0.setZero(); rhovec0[i] = rhoc0;
            // Values for infinite dilution
            auto infdil = ct::get_drhovec_dT_crit(model, T0, rhovec0);
            auto epinfdil = ct::eigen_problem(model, T0, rhovec0);
            auto der = ct::get_derivs(model, T0, rhovec0);
            using tdx = TDXDerivatives<decltype(model), double, Eigen::ArrayXd>;
            auto z = (rhovec0 / rhovec0.sum()).eval();
            auto alphar = model.alphar(T0, rhoc0, z);
            return std::make_tuple(T0, rhoc0, alphar, infdil, epinfdil, der);
        };
    
        auto [T0, rho0, alphar0, infdil0, eig0, der0] = pure_endpoint({ "Nitrogen", "Ethane" }, 0);
        auto [T1, rho1, alphar1, infdil1, eig1, der1] = pure_endpoint({ "Ethane", "Nitrogen" }, 1);
        CHECK(T0 == T1);
        CHECK(rho0 == rho1);
        CHECK(alphar0 == alphar1);
    
        CHECK(infdil0(1) == Approx(infdil1(0)));
        CHECK(infdil0(0) == Approx(infdil1(1)));
    
    
        auto [Ta, rhoa, alphara, infdila, eiga, dera] = pure_endpoint({ "Ethane", "Nitrogen" }, 0);
        auto [Tb, rhob, alpharb, infdilb, eigb, derb] = pure_endpoint({ "Nitrogen", "Ethane" }, 1);
        CHECK(Ta == Tb);
        CHECK(rhoa == rhob);
        CHECK(alphara == alpharb);
    
        CHECK(infdila(1) == Approx(infdilb(0)));
        CHECK(infdila(0) == Approx(infdilb(1)));
    
    
    TEST_CASE("Confirm failure for missing files","[multifluid]") {
        CHECK_THROWS(build_multifluid_model({ "BADFLUID" }, "IMPOSSIBLE PATH", "IMPOSSIBLE PATH.json"));
        CHECK_THROWS(build_multifluid_model({ "BADFLUID" }, "IMPOSSIBLE PATH", "../mycp/dev/mixtures/mixture_binary_pairs.json"));
    
        CHECK_THROWS(build_multifluid_model({ "Ethane" }, "IMPOSSIBLE PATH"));
    
    }
    
    TEST_CASE("Trace critical locus for nitrogen + ethane", "[crit],[multifluid]")
    {
        std::string root = "../mycp";
    
        const auto model = build_multifluid_model({ "Nitrogen", "Ethane" }, root);
    
        for (auto ifluid = 0; ifluid < 2; ++ifluid) {
            double T0 = model.redfunc.Tc[ifluid];
            Eigen::ArrayXd rhovec0(2); rhovec0 = 0.0; rhovec0[ifluid] = 1.0 / model.redfunc.vc[ifluid];
    
            auto tic0 = std::chrono::steady_clock::now();
    
    Ian Bell's avatar
    Ian Bell committed
            std::string filename = "";
    
            using ct = CriticalTracing<decltype(model), double, Eigen::ArrayXd>;
            TCABOptions opt; opt.init_dt = 100; opt.integration_order = 1;
            auto j = ct::trace_critical_arclength_binary(model, T0, rhovec0, filename, opt);
            CHECK(j.size() > 3);
            auto tic1 = std::chrono::steady_clock::now();
        }
        
    
        for (auto ifluid = 0; ifluid < 2; ++ifluid) {
            double T0 = model.redfunc.Tc[ifluid];
            Eigen::ArrayXd rhovec0(2); rhovec0 = 0.0; rhovec0[ifluid] = 1.0 / model.redfunc.vc[ifluid];
    
            auto tic0 = std::chrono::steady_clock::now();
    
    Ian Bell's avatar
    Ian Bell committed
            std::string filename = "";
    
            using ct = CriticalTracing<decltype(model), double, Eigen::ArrayXd>;
    
            TCABOptions opt; opt.max_dt = 10000; opt.init_dt = 10; opt.abs_err = 1e-8; opt.rel_err = 1e-6; opt.small_T_count = 100;
            auto j = ct::trace_critical_arclength_binary(model, T0, rhovec0, filename, opt);
    
            CHECK(j.size() > 3);
            auto tic1 = std::chrono::steady_clock::now();
        }
    
    TEST_CASE("Check that all pure fluid models can be instantiated", "[multifluid],[all]"){
    
        std::string root = "../mycp";
    
        SECTION("With absolute paths to json file") {
    
            for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
                if (path.filename().stem() == "Methanol") { continue; }
                CAPTURE(path.string());
                auto abspath = std::filesystem::absolute(path).string();
                auto model = build_multifluid_model({ abspath }, root, root + "/dev/mixtures/mixture_binary_pairs.json");
    
                std::valarray<double> z(0.0, 1);
                model.alphar(300, 1.0, z);
                counter += 1;
    
            CHECK(counter > 100);
    
        SECTION("With filename stems") {
            for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
                auto stem = path.filename().stem().string(); // filename without the .json
                if (stem == "Methanol") { continue; }
                auto model = build_multifluid_model({ stem }, root, root + "/dev/mixtures/mixture_binary_pairs.json");
    
                std::valarray<double> z(0.0, 1);
                model.alphar(300, 1.0, z);
    
    TEST_CASE("Check that all ancillaries can be instantiated and work properly", "[multifluid],[all]") {
        std::string root = "../mycp";
        SECTION("With absolute paths to json file") {
            int counter = 0;
            for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
                if (path.filename().stem() == "Methanol") { continue; }
                CAPTURE(path.string());
                auto abspath = std::filesystem::absolute(path).string();
                auto model = build_multifluid_model({ abspath }, root, root + "/dev/mixtures/mixture_binary_pairs.json");
    
                auto pure0 = nlohmann::json::parse(model.get_meta()).at("pures")[0];
                // Skip pseudo-pure fluids, where ancillary checking is irrelevant
                if (pure0.at("EOS")[0].at("pseudo_pure")){
                    counter += 1;
                    continue;
                }
                auto jancillaries = pure0.at("ANCILLARIES");
    
                auto anc = teqp::MultiFluidVLEAncillaries(jancillaries);
    
                double T = 0.8*anc.rhoL.T_r;
    
                auto rhoV = anc.rhoV(T), rhoL = anc.rhoL(T);
                auto rhovec = teqp::pure_VLE_T(model, T, rhoL, rhoV, 10);
    
                CAPTURE(rhoL);
                CAPTURE(rhoV);
                CAPTURE(rhovec);
    
                CHECK_THROWS(anc.rhoV(1.1*anc.rhoL.T_r));
                CHECK_THROWS(anc.rhoL(1.1*anc.rhoL.T_r));
    
                
                auto rhoLerr = std::abs(rhovec[0]/rhoL-1);
                auto rhoVerr = std::abs(rhovec[1]/rhoV-1);
                CHECK(rhoLerr < 0.02);
                CHECK(rhoVerr < 0.02);
                
    
                counter += 1;
            }
            CHECK(counter > 100);
        }
    }
    
    
    TEST_CASE("Check that mixtures can also do absolute paths", "[multifluid],[abspath]") {
        std::string root = "../mycp";
        SECTION("With absolute paths to json file") {
            std::vector<std::filesystem::path> paths = { root + "/dev/fluids/Methane.json", root + "/dev/fluids/Ethane.json" };
            std::vector<std::string> abspaths;
            for (auto p : paths) {
                abspaths.emplace_back(std::filesystem::absolute(p).string());
            }
            auto model = build_multifluid_model(abspaths, root, root + "/dev/mixtures/mixture_binary_pairs.json");
    
            auto model2 = build_multifluid_model(abspaths, root); // default path for BIP
    
    TEST_CASE("Check mixing absolute and relative paths and fluid names", "[multifluid],[abspath]") {
        std::string root = "../mycp";
        SECTION("With correct name of fluid") {
            std::vector<std::string> paths = { std::filesystem::absolute(root + "/dev/fluids/Methane.json").string(), "Ethane" };
            auto model = build_multifluid_model(paths, root, root + "/dev/mixtures/mixture_binary_pairs.json");
        }
        SECTION("Needing a reverse lookup for one fluid") {
            std::vector<std::string> paths = { std::filesystem::absolute(root + "/dev/fluids/Methane.json").string(), "PROPANE" };
            auto model = build_multifluid_model(paths, root, root + "/dev/mixtures/mixture_binary_pairs.json");
        }
    }
    
    
    TEST_CASE("Check specifying some different kinds of sources of BIP", "[multifluidBIP]") {
        std::string root = "../mycp";
        SECTION("Not JSON, should throw") {
            std::vector<std::string> paths = { std::filesystem::absolute(root + "/dev/fluids/Nitrogen.json").string(), "Ethane" };
            CHECK_THROWS(build_multifluid_model(paths, root, "I am not a JSON formatted string"));
        }
        SECTION("The normal approach") {
            std::vector<std::string> paths = { std::filesystem::absolute(root + "/dev/fluids/Nitrogen.json").string(), "Ethane" };
            auto model = build_multifluid_model(paths, root, root + "/dev/mixtures/mixture_binary_pairs.json");
        }
        SECTION("Sending the contents in JSON format") {
            std::vector<std::string> paths = { std::filesystem::absolute(root + "/dev/fluids/Nitrogen.json").string(), "PROPANE" };
            auto BIP = load_a_JSON_file(root + "/dev/mixtures/mixture_binary_pairs.json");
            auto model = build_multifluid_model(paths, root, BIP.dump());
        }
    }
    
    
    TEST_CASE("Check that all binary pairs specified in the binary pair file can be instantiated", "[multifluid],[binaries]") {
        std::string root = "../mycp";
        REQUIRE_NOTHROW(build_alias_map(root));
        auto amap = build_alias_map(root);
        for (auto el : load_a_JSON_file(root + "/dev/mixtures/mixture_binary_pairs.json")) {
            auto is_unsupported = [](const auto& s) {
                return (s == "METHANOL" || s == "R1216" || s == "C14" || s == "IOCTANE" || s == "C4F10" || s == "C5F12" || s == "C1CC6" || s == "C3CC6" || s == "CHLORINE" || s == "RE347MCC");
            };
            if (is_unsupported(el["Name1"]) || is_unsupported(el["Name2"])) {
                continue;
            }
            CAPTURE(el["Name1"]);
            CAPTURE(el["Name2"]);
            CHECK_NOTHROW(build_multifluid_model({ amap[el["Name1"]], amap[el["Name2"]] }, root)); // default path for BIP
        }
    
    }
    
    TEST_CASE("Check that all pure fluid models can be evaluated at zero density", "[multifluid],[all],[virial]") {
        std::string root = "../mycp";
        SECTION("With filename stems") {
            for (auto path : get_files_in_folder(root + "/dev/fluids", ".json")) {
                auto stem = path.filename().stem().string(); // filename without the .json
                if (stem == "Methanol") { continue; }
                auto model = build_multifluid_model({ stem }, root);
                std::valarray<double> z(1.0, 1); 
                using tdx = TDXDerivatives<decltype(model), double, decltype(z) >;
                auto ders = tdx::template get_Ar0n<4>(model, model.redfunc.Tc[0], 0.0, z);
                CAPTURE(stem);
                CHECK(std::isfinite(ders[1]));
    
                using vd = VirialDerivatives<decltype(model),double, decltype(z)>;
                auto Bn = vd::get_Bnvir<4>(model, model.redfunc.Tc[0], z);
    
                CAPTURE(stem);
                CHECK(std::isfinite(Bn[2]));
            }
        }
    
    }
    
    TEST_CASE("Check that virial coefficients can be calculated with multiple derivative methods", "[multifluid],[virial]") {
        std::string root = "../mycp";
        std::string stem = "Argon";
        CAPTURE(stem); 
        
        auto model = build_multifluid_model({ stem }, root);
        std::valarray<double> z(1.0, 1);
    
        using vd = VirialDerivatives<decltype(model), double, decltype(z)>;
    
        auto BnAD = vd::get_Bnvir<4, ADBackends::autodiff>(model, 298.15, z);
        auto Bnmcx = vd::get_Bnvir<4, ADBackends::multicomplex>(model, 298.15, z);
        CHECK(BnAD[2] == Approx(Bnmcx[2]));
        CHECK(BnAD[3] == Approx(Bnmcx[3]));
        CHECK(BnAD[4] == Approx(Bnmcx[4]));
        
        auto derBnAD100 = vd::get_dmBnvirdTm<2, 1, ADBackends::autodiff>(model, 100.0, z);
        auto derBnAD = vd::get_dmBnvirdTm<2, 1, ADBackends::autodiff>(model, 298.15, z);
        auto derBnMCX = vd::get_dmBnvirdTm<2, 1, ADBackends::multicomplex>(model, 298.15, z);
        CHECK(derBnAD == Approx(derBnMCX));
    
    TEST_CASE("dpsat/dTsat", "[dpdTsat]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "Methane", "Ethane" }, root);
        using id = IsochoricDerivatives<decltype(model)>;
        double T = 200;
        auto rhovecL = (Eigen::ArrayXd(2) << 5431.76157173312, 12674.110334043948).finished();
        auto rhovecV = (Eigen::ArrayXd(2) << 1035.298519871195, 162.03291757734976).finished();
        
        // Concentration derivatives w.r.t. T along the isopleth
        auto [drhovecdTL, drhovecdTV] = get_drhovecdT_xsat(model, T, rhovecL, rhovecV);
        
    
        auto dpdT = get_dpsat_dTsat_isopleth(model, T, rhovecL, rhovecV);
    
        CHECK(dpdT == Approx(39348.33949198946).margin(0.01));
    
    Ian Bell's avatar
    Ian Bell committed
    }
    
    TEST_CASE("Trace a VLE isotherm for CO2 + water", "[isothermCO2water]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "CarbonDioxide", "Water" }, root);
        using id = IsochoricDerivatives<decltype(model)>;
        double T = 308.15;
        auto rhovecL = (Eigen::ArrayXd(2) << 0.0, 55174.92375117).finished();
        auto rhovecV = (Eigen::ArrayXd(2) << 0.0, 2.20225704).finished();
    
        auto o = trace_VLE_isotherm_binary(model, T, rhovecL, rhovecV);
    }
    
    TEST_CASE("Trace a VLE isotherm for acetone + water", "[isothermacetonebenzene]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "Acetone", "Benzene" }, root);
        using id = IsochoricDerivatives<decltype(model)>;
        double T = 348.05;
        auto rhovecL = (Eigen::ArrayXd(2) << 12502.86504072, 0.0).finished();
        auto rhovecV = (Eigen::ArrayXd(2) << 69.20719534,  0.0).finished();
    
        auto o = trace_VLE_isotherm_binary(model, T, rhovecL, rhovecV);
    
    Ian Bell's avatar
    Ian Bell committed
    }
    
    
    TEST_CASE("Calculate water at critical point", "[WATERcrit]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "Water" }, root);
        
        using tdx = TDXDerivatives<decltype(model)>;
        auto Tc = model.redfunc.Tc[0];
        auto rhoc = 1/model.redfunc.vc[0];
        auto z = (Eigen::ArrayXd(1) << 1.0).finished();
        auto a1 = tdx::get_Ar0n<1>(model, Tc, rhoc, z);
        CHECK(std::isfinite(a1[1]));
        auto a2 = tdx::get_Ar0n<2>(model, Tc, rhoc, z);
        auto a3 = tdx::get_Ar0n<3>(model, Tc, rhoc, z);
        auto a4 = tdx::get_Ar0n<3>(model, Tc, rhoc, z);
        CHECK(a3[1] == a1[1]);
        auto R = model.R(z);
        auto dpdrho = R*Tc*(1 + 2*a4[1] + a4[2]);
        auto d2pdrho2 = R*Tc/(rhoc)*(2*a4[1] + 4*a4[2] + a4[3]);
        CHECK(dpdrho == Approx(0).margin(1e-9));
        CHECK(d2pdrho2 == Approx(0).margin(1e-9));
    }
    
    
    Ian Bell's avatar
    Ian Bell committed
    TEST_CASE("Calculate partial molar volume for a CO2 containing mixture", "[partial_molar_volume]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "CarbonDioxide", "Heptane" }, root);
        using id = IsochoricDerivatives<decltype(model), double, Eigen::ArrayXd>;
        
        double T = 343.0;
        Eigen::ArrayXd rhovec = (Eigen::ArrayXd(2) << 0.99999, 1.0-0.99999).finished();
        rhovec *= 6690.19673875373;
    
    Ian Bell's avatar
    Ian Bell committed
    
        std::valarray<double> expected = { 0.000149479684800994, -0.000575458122621522 };
    
    Ian Bell's avatar
    Ian Bell committed
        auto der = id::get_partial_molar_volumes(model, T, rhovec);
        for (auto i = 0; i < expected.size(); ++i){
    
    Ian Bell's avatar
    Ian Bell committed
            CHECK(expected[i] == Approx(der[i]));
    
    Ian Bell's avatar
    Ian Bell committed
        }
    
    TEST_CASE("Check that all pure fluid ideal-gas terms can be converted", "[multifluid],[all],[alphaig]") {
    
        std::string root = "../mycp";
        auto paths = get_files_in_folder(root + "/dev/fluids", ".json");
        auto p = GENERATE_REF(from_range(paths));
        CHECK(std::filesystem::is_regular_file(p));
        CAPTURE(p);
        // Check can be loaded from both path and string contents
        auto jig = convert_CoolProp_idealgas(p.string(), 0 /* index of EOS */);
        auto jig2 = convert_CoolProp_idealgas(load_a_JSON_file(p.string()).dump(), 0 /* index of EOS */);
        // Convert to json array
        nlohmann::json jaig = nlohmann::json::array(); jaig.push_back(jig);
        CHECK(jaig.is_array());
        
    //    std::cout << jaig.dump() << std::endl;
        
        // Check that converted structures can be loaded
        auto aig = IdealHelmholtz(jaig);
    }
    
    TEST_CASE("Check that BIP can be set in a string", "[multifluida]") {
        std::string root = "../mycp";
        double T = 300, rhomolar = 300;
        auto z = (Eigen::ArrayXd(2) << 0.4, 0.6).finished();
        auto def = build_multifluid_model({"Nitrogen","Ethane"}, root); // default parameters
        CHECK(TDXDerivatives<decltype(def)>::get_Ar01(def, T, rhomolar, z) == Approx(-0.026028104905899584));
        std::string s = R"([{"BibTeX": "Kunz-JCED-2012", "CAS1": "7727-37-9", "CAS2": "74-84-0", "F": 1.0, "Name1": "Nitrogen", "Name2": "Ethane", "betaT": 1.01774814228, "betaV": 0.978880168, "function": "Nitrogen-Ethane", "gammaT": 1.0877732316831683, "gammaV": 1.042352891}])";
        nlohmann::json model = {
            {"components",{"Nitrogen","Ethane"}},
            {"root", root},
            {"BIP", s},
            {"departure", ""}
        };
        nlohmann::json j = {
            {"kind", "multifluid"},
            {"model", model}
        };
        auto model_ = cppinterface::make_model(j);
        CHECK(model_->get_Ar01(T, rhomolar, z) != Approx(-0.026028104905899584));
    }
    
    TEST_CASE("Check ammonia+argon", "[multifluidArNH3]") {
        std::string root = "../mycp";
        
        // Check that default model (no departure function) prints the right
        auto def = build_multifluid_model({"AMMONIA","ARGON"}, root); // default parameters
        nlohmann::json mixdef = nlohmann::json::parse(def.get_meta())["mix"];
    //    std::cout << mix.dump(1) << std::endl;
        CHECK(!mixdef.empty());
        CAPTURE(mixdef.dump(1));
        
        std::string sBIP = R"([ {"BibTeX": "?", "CAS1": "7440-37-1", "CAS2": "7664-41-7", "F": 1.0, "Name1": "ARGON", "Name2": "AMMONIA", "betaT": 1.146326, "betaV": 0.756526, "function": "BAA", "gammaT": 0.998353, "gammaV": 1.041113}])";
        std::string sdep = R"([{"BibTeX": "??", "Name": "BAA", "Npower": 1, "aliases": [], "beta": [0.0, 0.6, 0.5], "d": [3.0, 1.0, 1.0], "epsilon": [0.0, 0.31, 0.39], "eta": [0.0, 1.3, 1.5], "gamma": [0.0, 0.9, 1.5], "l": [1.0, 0.0, 0.0], "n": [0.02350785, -1.913776, 1.624062], "t": [2.3, 1.65, 0.42], "type": "Gaussian+Exponential"}])";
        nlohmann::json jmodel = {
            {"components", {"AMMONIA", "ARGON"}},
            {"root", root},
            {"BIP", sBIP},
            {"departure", sdep}
        };
        nlohmann::json j = {
            {"kind", "multifluid"},
            {"model", jmodel}
        };
        auto model_ = cppinterface::make_model(j);
        double T = 293.15, rhomolar = 40000;
        auto z = (Eigen::ArrayXd(2) << 0.95, 0.05).finished();
        double p_MPa = (model_->get_pr(T, rhomolar*z) + rhomolar*model_->get_R(z)*T)/1e6;
        
        const auto& mref = teqp::cppinterface::adapter::get_model_cref<multifluid_t>(model_.get());
        nlohmann::json mix = nlohmann::json::parse(mref.get_meta())["mix"];
    //    std::cout << mix.dump(1) << std::endl;
        CHECK(!mix.empty());
        CAPTURE(mix.dump(1));
    
    Ian Bell's avatar
    Ian Bell committed
        CHECK(p_MPa == Approx(129.07019029846455).margin(1e-3));
    
    TEST_CASE("Check pure fluid throws with composition array of wrong length", "[virial]") {
        std::string root = "../mycp";
        const auto model = build_multifluid_model({ "CarbonDioxide" }, root);
        double T = 300;
        auto z = (Eigen::ArrayXd(2) << 0.3, 0.9).finished();
        using vir = VirialDerivatives<decltype(model)>;
        CHECK_THROWS(vir::get_dmBnvirdTm<2,1>(model, T, z));
        CHECK_THROWS(vir::get_Bnvir<2>(model, T, z));
    }