Newer
Older
*/
#include <vector>
#include <variant>
#include <valarray>
#include "teqp/constants.hpp"
#include "cubicsuperancillary.hpp"
/**
* \brief The standard alpha function used by Peng-Robinson and SRK
*/
template<typename NumType>
class BasicAlphaFunction {
private:
NumType Tci, ///< The critical temperature
mi; ///< The "m" parameter
public:
BasicAlphaFunction(NumType Tci, NumType mi) : Tci(Tci), mi(mi) {};
template<typename TType>
auto operator () (const TType& T) const {
return forceeval(pow2(forceeval(1.0 + mi * (1.0 - sqrt(T / Tci)))));
}
};
// This could be extended with for instance Twu alpha functions, Mathias-Copeman alpha functions, etc.
using AlphaFunctionOptions = std::variant<BasicAlphaFunction<double>>;
template <typename NumType, typename AlphaFunctions>
class GenericCubic {
protected:
std::valarray<NumType> ai, bi;
const NumType Delta1, Delta2, OmegaA, OmegaB;
const AlphaFunctions alphas;
template<typename TType, typename IndexType>
auto get_ai(TType T, IndexType i) const { return ai[i]; }
template<typename TType, typename IndexType>
auto get_bi(TType T, IndexType i) const { return bi[i]; }
template<typename IndexType>
void check_kmat(IndexType N) {
if (kmat.cols() != kmat.rows()) {
throw teqp::InvalidArgument("kmat rows [" + std::to_string(kmat.rows()) + "] and columns [" + std::to_string(kmat.cols()) + "] are not identical");
}
if (kmat.cols() == 0) {
kmat.resize(N, N); kmat.setZero();
}
else if (kmat.cols() != N) {
throw teqp::InvalidArgument("kmat needs to be a square matrix the same size as the number of components [" + std::to_string(N) + "]");
}
};
GenericCubic(NumType Delta1, NumType Delta2, NumType OmegaA, NumType OmegaB, int superanc_index, const std::valarray<NumType>& Tc_K, const std::valarray<NumType>& pc_Pa, const AlphaFunctions& alphas, const Eigen::ArrayXXd& kmat)
: Delta1(Delta1), Delta2(Delta2), OmegaA(OmegaA), OmegaB(OmegaB), superanc_index(superanc_index), alphas(alphas), kmat(kmat)
{
ai.resize(Tc_K.size());
bi.resize(Tc_K.size());
for (auto i = 0; i < Tc_K.size(); ++i) {
bi[i] = OmegaB * Ru * Tc_K[i] / pc_Pa[i];
}
void set_meta(const nlohmann::json& j) { meta = j; }
auto get_meta() const { return meta; }
auto get_kmat() const { return kmat; }
/// Return a tuple of saturated liquid and vapor densities for the EOS given the temperature
/// Uses the superancillary equations from Bell and Deiters:
auto superanc_rhoLV(double T) const {
if (ai.size() != 1) {
throw std::invalid_argument("function only available for pure species");
}
const std::valarray<double> z = { 1.0 };
auto b = get_b(T, z);
auto Ttilde = R(z)*T*b/get_a(T,z);
return std::make_tuple(
CubicSuperAncillary::supercubic(superanc_index, CubicSuperAncillary::RHOL_CODE, Ttilde)/b,
CubicSuperAncillary::supercubic(superanc_index, CubicSuperAncillary::RHOV_CODE, Ttilde)/b
);
}
const NumType Ru = get_R_gas<double>(); /// Universal gas constant, exact number
template<class VecType>
auto R(const VecType& molefrac) const {
return Ru;
}
template<typename TType, typename CompType>
auto get_a(TType T, const CompType& molefracs) const {
std::common_type_t<TType, decltype(molefracs[0])> a_ = 0.0;
auto ai = this->ai;
for (auto i = 0; i < molefracs.size(); ++i) {
auto alphai = forceeval(std::visit([&](auto& t) { return t(T); }, alphas[i]));
auto ai_ = forceeval(ai[i] * alphai);
for (auto j = 0; j < molefracs.size(); ++j) {
auto alphaj = forceeval(std::visit([&](auto& t) { return t(T); }, alphas[j]));
auto aj_ = ai[j] * alphaj;
auto aij = forceeval((1 - kmat(i,j)) * sqrt(ai_ * aj_));
a_ = a_ + molefracs[i] * molefracs[j] * aij;
}
}
return forceeval(a_);
}
template<typename TType, typename CompType>
auto get_b(TType /*T*/, const CompType& molefracs) const {
std::common_type_t<TType, decltype(molefracs[0])> b_ = 0.0;
for (auto i = 0; i < molefracs.size(); ++i) {
b_ = b_ + molefracs[i] * bi[i];
}
return forceeval(b_);
}
template<typename TType, typename RhoType, typename MoleFracType>
auto alphar(const TType& T,
const RhoType& rho,
const MoleFracType& molefrac) const
{
if (molefrac.size() != alphas.size()) {
throw std::invalid_argument("Sizes do not match");
}
auto b = get_b(T, molefrac);
auto Psiminus = -log(1.0 - b * rho);
auto Psiplus = log((Delta1 * b * rho + 1.0) / (Delta2 * b * rho + 1.0)) / (b * (Delta1 - Delta2));
auto val = Psiminus - get_a(T, molefrac) / (Ru * T) * Psiplus;
return forceeval(val);
}
};
template <typename TCType, typename PCType, typename AcentricType>
auto canonical_SRK(TCType Tc_K, PCType pc_K, AcentricType acentric, const Eigen::ArrayXXd& kmat = {}) {
double Delta1 = 1;
double Delta2 = 0;
AcentricType m = 0.48 + 1.574 * acentric - 0.176 * acentric * acentric;
std::vector<AlphaFunctionOptions> alphas;
for (auto i = 0; i < Tc_K.size(); ++i) {
alphas.emplace_back(BasicAlphaFunction(Tc_K[i], m[i]));
}
// See https://doi.org/10.1021/acs.iecr.1c00847
double OmegaA = 1.0 / (9.0 * (cbrt(2) - 1));
double OmegaB = (cbrt(2) - 1) / 3;
nlohmann::json meta = {
{"Delta1", Delta1},
{"Delta2", Delta2},
{"OmegaA", OmegaA},
{"OmegaB", OmegaB},
{"kind", "Soave-Redlich-Kwong"}
};
auto cub = GenericCubic(Delta1, Delta2, OmegaA, OmegaB, CubicSuperAncillary::SRK_CODE, Tc_K, pc_K, std::move(alphas), kmat);
}
template <typename TCType, typename PCType, typename AcentricType>
auto canonical_PR(TCType Tc_K, PCType pc_K, AcentricType acentric, const Eigen::ArrayXXd& kmat = {}) {
double Delta1 = 1+sqrt(2.0);
double Delta2 = 1-sqrt(2.0);
std::vector<AlphaFunctionOptions> alphas;
for (auto i = 0; i < Tc_K.size(); ++i) {
if (acentric[i] < 0.491) {
m[i] = 0.37464 + 1.54226*acentric[i] - 0.26992*pow2(acentric[i]);
m[i] = 0.379642 + 1.48503*acentric[i] -0.164423*pow2(acentric[i]) + 0.016666*pow3(acentric[i]);
}
alphas.emplace_back(BasicAlphaFunction(Tc_K[i], m[i]));
}
// See https://doi.org/10.1021/acs.iecr.1c00847
double OmegaA = 0.45723552892138218938;
double OmegaB = 0.077796073903888455972;
nlohmann::json meta = {
{"Delta1", Delta1},
{"Delta2", Delta2},
{"OmegaA", OmegaA},
{"OmegaB", OmegaB},
{"kind", "Peng-Robinson"}
};
auto cub = GenericCubic(Delta1, Delta2, OmegaA, OmegaB, CubicSuperAncillary::PR_CODE, Tc_K, pc_K, std::move(alphas), kmat);