Skip to content
Snippets Groups Projects
multifluid.cpp 7.32 KiB
Newer Older
#include "teqp/core.hpp"
#include "teqp/models/multifluid.hpp"
#include <optional>
//
//class Timer {
//private:
//    int N;
//    decltype(std::chrono::steady_clock::now()) tic;
//public:
//    Timer(int N) : N(N), tic(std::chrono::steady_clock::now()){}
//    ~Timer() {
//        auto elap = std::chrono::duration<double>(std::chrono::steady_clock::now()-tic).count();
//        std::cout << elap/N*1e6 << " us/call" << std::endl;
//    }
//};
//
//void trace_critical_loci(const std::string &coolprop_root, const nlohmann::json &BIPcollection) {
//    std::vector<std::vector<std::string>> pairs = { 
//        { "CarbonDioxide", "R1234YF" }, { "CarbonDioxide","R1234ZE(E)" }, { "ETHYLENE","R1243ZF" }, 
//        { "R1234YF","R1234ZE(E)" }, { "R134A","R1234YF" }, { "R23","R1234YF" }, 
//        { "R32","R1123" }, { "R32","R1234YF" }, { "R32","R1234ZE(E)" }
//    };
//    for (auto &pp : pairs) {
//        using ModelType = decltype(build_multifluid_model(pp, coolprop_root, BIPcollection));
//        std::optional<ModelType> optmodel{std::nullopt};
//        try {
//            optmodel.emplace(build_multifluid_model(pp, coolprop_root, BIPcollection));
//        }
//        catch (std::exception &e) {
//            std::cout << e.what() << std::endl;
//            std::cout << pp[0] << "&" << pp[1] << std::endl;
//            continue;
//        }
//        for (int i : {0, 1}){
//            const auto &model = optmodel.value();
//            auto rhoc0 = 1.0 / model.redfunc.vc[i];
//            auto T0 = model.redfunc.Tc[i];
//            Eigen::ArrayXd rhovec(2); rhovec[i] = { rhoc0 }; rhovec[1L - i] = 0.0;
//
//            using ct = CriticalTracing<ModelType>;
//
//            // Non-analytic terms make it impossible to initialize AT the pure components
//            if (pp[0] == "CarbonDioxide" || pp[1] == "CarbonDioxide") {
//                if (i == 0) {
//                    rhovec[i] *= 0.9999;
//                    rhovec[1L - i] = 0.9999;
//                }
//                else {
//                    rhovec[i] *= 1.0001;
//                    rhovec[1L - i] = 1.0001;
//                }
//                double zi = rhovec[i] / rhovec.sum();
//                double T = zi * model.redfunc.Tc[i] + (1 - zi) * model.redfunc.Tc[1L - i];
//                double z0 = (i == 0) ? zi : 1-zi;
//                auto [Tnew, rhonew] = ct::critical_polish_molefrac(model, T, rhovec, z0);
//                T0 = Tnew;
//                rhoc0 = rhovec.sum();
//            }
//            std::string filename = pp[0] + "_" + pp[1] + ".csv";
//            ct::trace_critical_arclength_binary(model, T0, rhovec, filename);
//        }
//    }
//}
//
//template<typename J>
//void time_calls(const std::string &coolprop_root, const J &BIPcollection) {
//    auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection);
//    Eigen::ArrayXd rhovec(2); rhovec << 1.0, 2.0;
//    double T = 300;
//    {
//        const auto molefrac = (Eigen::ArrayXd(2) << rhovec[0] / rhovec.sum(), rhovec[1] / rhovec.sum()).finished();
//
//        using vd = VirialDerivatives<decltype(model)>;
//        auto B12 = vd::get_B12vir(model, T, molefrac);
//
//        using id = IsochoricDerivatives<decltype(model)>;
//        auto mu = id::get_chempot_autodiff(model, T, rhovec);
//
//        const double rho = rhovec.sum();
//        double T = 300.0;
//        constexpr int N = 10000;
//        volatile double alphar;
//        using tdx = TDXDerivatives<decltype(model)>;
//        double rrrr = tdx::get_Ar01(model, T, rho, molefrac);
//        double rrrr2 = tdx::get_Ar02(model, T, rho, molefrac);
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                alphar = model.alphar(T, rho, molefrac);
//            }
//            std::cout << alphar << " function call" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                alphar = tdx::get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac);
//            }
//            std::cout << alphar << "; 1st CSD" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                alphar = tdx::get_Ar01<ADBackends::autodiff>(model, T, rho, molefrac);
//            }
//            std::cout << alphar << "; 1st autodiff::autodiff" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                alphar = tdx::get_Ar01<ADBackends::multicomplex>(model, T, rho, molefrac);
//            }
//            std::cout << alphar << "; 1st MCX" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                alphar = tdx::get_Ar02(model, T, rho, molefrac);
//            }
//            std::cout << alphar << "; 2nd autodiff" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                auto o = vd::template get_Bnvir<3, ADBackends::autodiff>(model, T, molefrac)[3];
//            }
//            std::cout << alphar << "; 3 derivs" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                auto o = vd::template get_Bnvir<4, ADBackends::autodiff>(model, T, molefrac)[4];
//            }
//            std::cout << alphar << "; 4 derivs" << std::endl;
//        }
//        {
//            Timer t(N);
//            for (auto i = 0; i < N; ++i) {
//                auto o = vd::template get_Bnvir<5, ADBackends::autodiff>(model, T, molefrac)[5];
//            }
//            std::cout << alphar << "; 5 derivs" << std::endl;
//        }
//    }
//}
int main(){
   
    std::string coolprop_root = "C:/Users/ihb/Code/CoolProp";
    coolprop_root = "../mycp";
    auto BIPcollection = coolprop_root + "/dev/mixtures/mixture_binary_pairs.json";
    // Critical curves
        Timer t(1);
        trace_critical_loci(coolprop_root, BIPcollection);

    //time_calls(coolprop_root, BIPcollection);
        nlohmann::json flags = { {"estimate", true},{"another","key"} };
        auto model = build_multifluid_model({ "Ethane", "R1234ze(E)" }, coolprop_root, BIPcollection, flags);

        nlohmann::json j = { {"betaT", 1.0},{"gammaT", 1.0},{"betaV", 1.0},{"gammaV", 1.0},{"Fij", 0.0} };
        auto mutant = build_mutant(model, j);
{
    auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection);
    Eigen::ArrayXd rhovec(2); rhovec << 1.0, 2.0;
    double T = 300;
    const auto molefrac = rhovec/rhovec.sum();
    using tdx = TDXDerivatives<decltype(model), double, Eigen::ArrayXd>;
    const auto b = ADBackends::autodiff;
Ian Bell's avatar
Ian Bell committed
    auto alphar = model.alphar(T, rho, rhovec);
    auto Ar01 = tdx::get_Ar01<b>(model, T, rho, molefrac);
    auto Ar10 = tdx::get_Ar10<b>(model, T, rho, molefrac);
    auto Ar02 = tdx::get_Ar02<b>(model, T, rho, molefrac);
    auto Ar11 = tdx::get_Ar11<b>(model, T, rho, molefrac);
    
    //auto Ar11mcx = tdx::get_Ar11<ADBackends::multicomplex>(model, T, rho, molefrac);
    //auto Ar20 = tdx::get_Ar20(model, T, rho, molefrac);
    //using id = IsochoricDerivatives<decltype(model), double, Eigen::ArrayXd>;
    //auto splus = id::get_splus(model, T, rhovec);*/
    return EXIT_SUCCESS;