Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "8218498b",
"metadata": {},
"source": [
"\n",
"Two basic approaches are implemented in teqp:\n",
"\n",
"* Iterative calculations given guess values\n",
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"* Tracing along iso-curves (constant temperature, etc.) powered by the isochoric thermodynamics formalism"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "c0b4e863",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'0.9.4.dev0'"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import teqp\n",
"import numpy as np\n",
"import pandas\n",
"import matplotlib.pyplot as plt\n",
"teqp.__version__"
]
},
{
"cell_type": "markdown",
"id": "e57e532b",
"metadata": {},
"source": [
"## Iterative Phase Equilibria"
]
},
{
"cell_type": "markdown",
"id": "1baf38e1",
"metadata": {},
"source": [
"### Pure fluid\n",
"\n",
"For a pure fluid, phase equilibrium between two phases is defined by equating the pressures and Gibbs energies in the two phases. This represents a 2D non-linear rootfinding problem. Newton's method can be used for the rootfinding, and in teqp, automatic differentiation is used to obtain the necessary Jacobian matrix so the implementation is quite efficient.\n",
"\n",
"The method requires guess values, which are the densities of the liquid and vapor densities. In some cases, ancillary or superancillary equations have been developed which provide curves of guess densities as a function of temperature.\n",
"\n",
"For a pure fluid, you can use the ``pure_VLE_T`` method to carry out the iteration."
]
},
{
"cell_type": "raw",
"id": "f0ca0b22",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"The Python method is here: :py:meth:`pure_VLE_T <teqp.teqp.pure_VLE_T>`"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "2674227c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'guess:'"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[12735.311173407898, 752.4082303122791]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"array([12735.31117341, 752.40823031])"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Instantiate the model\n",
"model = teqp.canonical_PR([300], [4e6], [0.1])\n",
"\n",
"T = 250 # [K], Temperature to be used\n",
"\n",
"# Here we use the superancillary to get guess values (actually these are more \n",
"# accurate than the results we will obtain from iteration!)\n",
"rhoL0, rhoV0 = model.superanc_rhoLV(T)\n",
"display('guess:', [rhoL0, rhoV0])\n",
"\n",
"# Carry out the iteration, return the liquid and vapor densities\n",
"# The guess values are perturbed to make sure the iteration is actually\n",
"# changing the values\n",
"teqp.pure_VLE_T(model, T, rhoL0*0.98, rhoV0*1.02, 10)"
]
},
{
"cell_type": "markdown",
"id": "f8805ae1",
"metadata": {},
"source": [
"### Binary Mixture"
]
},
{
"cell_type": "markdown",
"id": "76bccf19",
"metadata": {},
"source": [
"For a binary mixture, the approach is roughly similar to that of a pure fluid. The pressure is equated between phases, and the chemical potentials of each component in each phase are forced to be the same. \n",
"\n",
"Again, the user is required to provide guess values, in this case molar concentrations in each phase, and a Newton method is implemented to solve for the phase equilibrium. The analytical Jacobian is obtained from automatic differentiation.\n",
"\n",
"The ``mix_VLE_Tx`` function is the binary mixture analog to ``pure_VLE_T`` for pure fluids."
]
},
{
"cell_type": "raw",
"id": "eef189fd",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"The Python method is here: :py:meth:`mix_VLE_Tx <teqp.teqp.mix_VLE_Tx>`"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "b12bd318",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<VLE_return_code.xtol_satisfied: 1>,\n",
" array([ 128.66049209, 12737.38871682]),\n",
" array([ 12.91868229, 1133.77242677]))"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zA = np.array([0.01, 0.99])\n",
"model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
"model1 = teqp.canonical_PR([300], [4e6], [0.1])\n",
"T = 273.0 # [K]\n",
"# start off at pure of the first component\n",
"rhoL0, rhoV0 = model1.superanc_rhoLV(T)\n",
"\n",
"# then we shift to the given composition in the first phase\n",
"# to get guess values\n",
"rhovecA0 = rhoL0*zA\n",
"rhovecB0 = rhoV0*zA\n",
"\n",
"# carry out the iteration\n",
"code, rhovecA, rhovecB = teqp.mix_VLE_Tx(model, T, rhovecA0, rhovecB0, zA, \n",
" 1e-10, 1e-10, 1e-10, 1e-10, # stopping conditions\n",
" 10 # maximum number of iterations\n",
" )\n",
"code, rhovecA, rhovecB"
]
},
{
"cell_type": "markdown",
"id": "d72ef08e",
"metadata": {},
"source": [
"You can (and should) check the value of the return code to make sure the iteration succeeded. Do not rely on the numerical value of the enumerated return codes!"
]
},
{
"cell_type": "markdown",
"id": "f4e3f914",
"metadata": {},
"source": [
"# Tracing\n",
"\n",
"When it comes to mixture thermodynamics, as soon as you add another component to a pure component to form a binary mixture, the complexity of the thermodynamics entirely changes. For that reason, mixture iterative calculations for mixtures are orders of magnitude more difficult to carry out. Asymmetric mixtures can do all sorts of interesting things that are entirely unlike those of pure fluids, and the algorithms are therefore much, much more complicated. Formulating phase equilibrium problems for pure fluids is not much more complicated, but the most challenging aspect is to obtain good guess values from which to start an iterative routine\n",
"\n",
"Ulrich Deiters and Ian Bell have developed a number of algorithms for tracing phase equilibrium solutions as the solution of ordinary differential equations rather than carrying out iterative routines for a given state point. The advantage of the tracing calculations is that they can be often initiated at a state point that is entirely known, perhaps the pure fluid endpoint for a subcritical isotherm."
]
},
{
"cell_type": "raw",
"id": "e0097771",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"The Python method is here: :py:meth:`trace_VLE_isotherm_binary <teqp.teqp.trace_VLE_isotherm_binary>`"
]
},
{
"cell_type": "markdown",
"id": "63902dba",
"metadata": {},
"source": [
"The C++ implementation returns a string in JSON format, which can be conveniently operated upon, for instance after converting the returned data structure to a ``pandas.DataFrame``. A simple example of plotting a subcritical isotherm for a ``boring`` mixture is presented here:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "49dcba2b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"[{'T / K': 273.0, 'c': -1.0, 'drho/dt': [-0.618312383229212, 0.7690760182230469, -0.1277526773161415...\""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>T / K</th>\n",
" <th>c</th>\n",
" <th>drho/dt</th>\n",
" <th>dt</th>\n",
" <th>pL / Pa</th>\n",
" <th>pV / Pa</th>\n",
" <th>rhoL / mol/m^3</th>\n",
" <th>rhoV / mol/m^3</th>\n",
" <th>t</th>\n",
" <th>xL_0 / mole frac.</th>\n",
" <th>xV_0 / mole frac.</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>273.0</td>\n",
" <td>-1.0</td>\n",
" <td>[-0.618312383229212, 0.7690760182230469, -0.12...</td>\n",
" <td>0.000010</td>\n",
" <td>2.203397e+06</td>\n",
" <td>2.203397e+06</td>\n",
" <td>[10697.985891540735, 0.0]</td>\n",
" <td>[1504.6120879290752, 0.0]</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>273.0</td>\n",
" <td>-1.0</td>\n",
" <td>[-0.6183123817120353, 0.7690760162922189, -0.1...</td>\n",
" <td>0.000045</td>\n",
" <td>2.203397e+06</td>\n",
" <td>2.203397e+06</td>\n",
" <td>[10697.985885357639, 7.690760309421386e-06]</td>\n",
" <td>[1504.6120866515366, 9.945415375682985e-07]</td>\n",
" <td>0.000010</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>273.0</td>\n",
" <td>-1.0</td>\n",
" <td>[-0.6183123827116788, 0.7690760173388914, -0.1...</td>\n",
" <td>0.000203</td>\n",
" <td>2.203397e+06</td>\n",
" <td>2.203397e+06</td>\n",
" <td>[10697.98585753358, 4.229918121248511e-05]</td>\n",
" <td>[1504.6120809026731, 5.469978386095445e-06]</td>\n",
" <td>0.000055</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" T / K c drho/dt dt \\\n",
"0 273.0 -1.0 [-0.618312383229212, 0.7690760182230469, -0.12... 0.000010 \n",
"1 273.0 -1.0 [-0.6183123817120353, 0.7690760162922189, -0.1... 0.000045 \n",
"2 273.0 -1.0 [-0.6183123827116788, 0.7690760173388914, -0.1... 0.000203 \n",
"\n",
" pL / Pa pV / Pa rhoL / mol/m^3 \\\n",
"0 2.203397e+06 2.203397e+06 [10697.985891540735, 0.0] \n",
"1 2.203397e+06 2.203397e+06 [10697.985885357639, 7.690760309421386e-06] \n",
"2 2.203397e+06 2.203397e+06 [10697.98585753358, 4.229918121248511e-05] \n",
"\n",
" rhoV / mol/m^3 t xL_0 / mole frac. \\\n",
"0 [1504.6120879290752, 0.0] 0.000000 1.0 \n",
"1 [1504.6120866515366, 9.945415375682985e-07] 0.000010 1.0 \n",
"2 [1504.6120809026731, 5.469978386095445e-06] 0.000055 1.0 \n",
"\n",
" xV_0 / mole frac. \n",
"0 1.0 \n",
"1 1.0 \n",
"2 1.0 "
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
"model1 = teqp.canonical_PR([300], [4e6], [0.1])\n",
"T = 273.0 # [K]\n",
"rhoL0, rhoV0 = model1.superanc_rhoLV(T) # start off at pure of the first component\n",
"j = teqp.trace_VLE_isotherm_binary(model, T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))\n",
"display(str(j)[0:100]+'...') # The first few bits of the data\n",
"df = pandas.DataFrame(j) # Now as a data frame\n",
"df.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "9aecca78",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0EElEQVR4nO3dd3xUVf7/8dcnhRY6oUMIvQkIREARBRuICNgVla9lly26yooVRLEhriuKK4isYheQ3ptKVektIaGEHggdkkBISDKf3x93/BGzSQiYyc0kn+fjkQczc86dfK5I3jlzzz1HVBVjjDEmqwC3CzDGGFM4WUAYY4zJlgWEMcaYbFlAGGOMyZYFhDHGmGwFuV1AfgoNDdXw8HC3yzDGGL+xfv3646paNbu2IhUQ4eHhrFu3zu0yjDHGb4jIvpza7CMmY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIY4wx2fJZQIhIXRFZIiIxIrJVRJ7Ops+DIrLF+/WLiLTJ1NZDRLaLSKyIvOirOo0xxp9Fr17Eqq+G+uS9fXmjXDowSFU3iEg5YL2ILFbV6Ex99gDXq+opEbkVGAd0FJFAYDRwMxAHrBWRWVmONcaYYuvEqVNEff08XU5MJj6gGslnnqVM2Qr5+j18NoJQ1XhV3eB9nATEALWz9PlFVU95n64C6ngfdwBiVXW3qp4HJgJ9fFWrMcb4C49HWbRgJmdGXc31J79nU407qTRoTb6HAxTQUhsiEg60BVbn0u1xYL73cW3gQKa2OKBjDu89ABgAEBYW9kdLNcaYQit6/2FiJ7xAr+SZHAuqzsFek2jXtofPvp/PA0JEygJTgYGqmphDn244AXHtby9l0y3bvVFVdRzOR1NERETY/qnGmCLnTGo6U6Z+T9dtw+gdcIRd9e+nwQP/RkqW8+n39WlAiEgwTjh8q6rTcujTGvgUuFVVT3hfjgPqZupWBzjky1qNMaawUVUWbNxDwpyX6Z8xj9OlanDmjuk0bH5DgXx/nwWEiAjwGRCjqiNz6BMGTAMeVtUdmZrWAo1FpD5wELgf6OerWo0xprDZd+IsX0+ayEOH3yE84AjHWvSnat+3oWTZAqvBlyOIzsDDQKSIbPK+NhgIA1DVscArQBVgjJMnpKtqhKqmi8iTwEIgEBivqlt9WKsxxhQKqekZfPbTVsqsHM5gWcDZkFpk3D2bqg2vK/BafBYQqrqS7K8lZO7zJ+BPObTNA+b5oDRjjCmUfo49zuSpkxh4dhThAUdIvvIxyvV8E0qEuFJPkdowyBhj/NHRpBT+NWsDLWM+4IOghZwrXxfumkOZ+l1crcsCwhhjXJLhUb5bvY+fFk7nNR1DWNBR0iP+TOlbXnNt1JCZBYQxxrgg6mACr09bS88jn/B50CLSKtSDO+cSFH7txQ8uIBYQxhhTgJJS0nhv0Q62rZrPyBLjqBN0BO0wgOCbhhWKUUNmFhDGGFMAVJW5kfG8O2s9j6V+xbASi8ioWB/6zkPCO7tdXrYsIIwxxsf2nTjL0JlbOR+7jEml/kv1wKPQ8W8E3ji00I0aMrOAMMYYH0lNz+CTZbsZvySK5wMn0K/EQrRiA6TPPKh3jdvlXZQFhDHG+MAvscd5eWYU1U+s4YeQ8VRJOwyd/o7cMBRKlHG7vDyxgDDGmHx0LCmV4fNiWLhxF2+VncwdJeZDuQbgJ6OGzCwgjDEmH3g8yoS1+3ln/jbapG/m1wrjKZ96GDr+DW58xW9GDZlZQBhjzB8UfSiRITMi2bE/nvcrT+eW5DkQ0hAeXABhndwu77JZQBhjzGU6m5rOBz/sYPzPe7m5VAzfVPqUMsnxcPWT0G2IX44aMrOAMMaYy7Bw62GGzdpKYsIpvqs1i44nZ0KZRvDAQgjLdgNMv2MBYYwxlyDuVDLDZkXzQ8wRHqiyi2FVPqbkyXi45h/OqCG4tNsl5hsLCGOMyYO0DA/jV+7hgx92EkIy8xrMpsWhaVClMdy/COp2cLvEfGcBYYwxF7F+30mGTI9i2+Ekngo/wFNnPyQoPh6ueQq6DS5So4bMLCCMMSYHCclpjFiwjQlr9tOofAYrms+m7p7vIbQJ3LcY6kS4XaJPWUAYY0wWqsqMTQd5c04Mp5LP81arIzxw+F0C9h6Gzk9D18EQXMrtMn3OAsIYYzLZfewMQ2dG8XPsCa6uHczoRrOovH0ihDaF+76BOu3dLrHAWEAYYwzOwnofL93FmKW7KBkUwGedT3HDjreQHYfh2n/C9S8Wi1FDZj4LCBGpC3wF1AA8wDhVHZWlTzPgc6AdMERV/52pbS+QBGQA6apatD/sM8a45pddx3l5ehS7j5/l3ivK8VrJbym9fiJUbQ73fwO1i8+oITNfjiDSgUGqukFEygHrRWSxqkZn6nMSeArom8N7dFPV4z6s0RhTjJ04k8pb82KYtuEgYZXLMLv7WVptGARnjkKXQXD9CxBU0u0yXeOzgFDVeCDe+zhJRGKA2kB0pj5HgaMicpuv6jDGmKw8HmXy+gO8PX8bZ1PTGdSlGn9P/YzAZROgWgt4YALUaut2ma4rkGsQIhIOtAVWX8JhCiwSEQU+UdVxObz3AGAAQFhY2B+s1BhT1O08ksTg6ZGs3XuKDvUr80Hbw9Ra/hCcPQbXPed8FeNRQ2Y+DwgRKQtMBQaqauIlHNpZVQ+JSDVgsYhsU9XlWTt5g2McQEREhOZL0caYIiclLYP//LSTT5btpmypID7oXY8+hz9E5k2Cai2h3ySodaXbZRYqPg0IEQnGCYdvVXXapRyrqoe8fx4VkelAB+B/AsIYYy5m2Y5jDJ0Rxf6Tydzdvg6vNt5LuR/uhOQTznWGLs9CUAm3yyx0fDmLSYDPgBhVHXmJx4YAAd5rFyHALcDrPijTGFOEHU1K4Y05MczefIgGoSF8378JHWLegRmToXoreHAy1GzjdpmFli9HEJ2Bh4FIEdnkfW0wEAagqmNFpAawDigPeERkINACCAWmOxlDEPCdqi7wYa3GmCLE41G+W7OfdxZsIzXNwz9vasLfa0QTPPfPcO4kdH0Jrn3GRg0X4ctZTCsBuUifw0CdbJoSAYt1Y8wl23Y4kZemRbJx/2muaViF4d1rEb5mGKycCjVawcPTnD/NRdmd1MaYIiH5fDqjftzJpyv2UKF0MCPvbcMdJdchEx+ElATo9jJcOxACg90u1W9YQBhj/N6S7UcZOiOKuFPnuC+iLi9dH0rFJS9B9AznGsP/zYLqLd0u0+9YQBhj/NbRxBRemxPN3C3xNKwawqQBneh4bjl83hdSk+CGoc7qqzZquCwWEMYYv+PxKN+u2c+/5m8jNcPDoJubMKB9WUouHAgxs6BWO+g7Bqo1d7tUv2YBYYzxKzHxzkXoTQdO07lRFd7scwX1Dy+AT56D82fgxlednd4C7cfbH2X/BY0xfiHrRej372tD30ZByNy/wLY5UDsC+oyGas3cLrXIsIAwxhR6WS9Cv9ijKZV2zYDRz0PaObj5Dbj6CQgIdLvUIsUCwhhTaB1NTOH1OdHMyXwROvQ8zOoPOxZAnQ7OqKFqE7dLLZIsIIwxhc7v7oRO916Evq4+JaMmwfcvQXoqdB8OHf9qowYfsoAwxhQq2w87y3Gv33eKaxpW4c2+V9CgRAJMuh9iF0PY1dD7Iwht5HapRZ4FhDGmUEhJy+DDH3cybvluypUK4r172nBn21rIpm9g4RDISIMe70CHARAQ4Ha5xYIFhDHGdSt2HmPI9AvLcQ/u2ZzKaUfg27tg109Q71ro8x+o3MDtUosVCwhjjGuOn0nlzTnRzNh0iPqhIXz3545c06AKrP8cFg0FVej5b4h43EYNLrCAMMYUOFVl8ro43poXQ/L5dJ66sTF/79qQUmfi4KvHYM8yqH8d9P4PVAp3u9xiywLCGFOgdh07w+Bpkazec5IO4ZUZfucVNAoNgXWfweJXQQRuGwkRjzmPjWssIIwxBSI1PYOPl+5izJJdlAoOYMSdrbg3oi4Bp/fAl/fDvpXQoBv0/hAqhrldrsECwhhTAFbvPsHg6ZHsOnaW3m1qMbRXC6qGBMOasfDj6xAQ5Hyc1PZhGzUUIhYQxhifOZ18nrfnbWPSugPUqVSaLx69iq5Nq8GJXTD5Cdj/KzS+BXp9ABVqu12uycICwhiT71SVWZsP8cacaE4lp/GX6xrw9E2NKRMk8MtH8NMbEFQS+o6FNvfbqKGQsoAwxuSrAyeTGTIjiuU7jtGmTgW+fKwDLWtVgGPbYeYTELcWmvZ0LkSXr+l2uSYXPptYLCJ1RWSJiMSIyFYReTqbPs1E5FcRSRWRZ7O09RCR7SISKyIv+qpOY0z+SM/wMG75Lm5+fxnr957k1dtbMO3vnWlZPQRWvg9ju8CJWLjzU7j/OwsHP+DLEUQ6MEhVN4hIOWC9iCxW1ehMfU4CTwF9Mx8oIoHAaOBmIA5YKyKzshxrjCkkNh84zUvTIomOT+Sm5tV5vU9LalUsDUeinVHDoQ3Q/HZn1FC2mtvlmjzyWUCoajwQ732cJCIxQG0gOlOfo8BREbkty+EdgFhV3Q0gIhOBPpmPNca472xqOu8t2sEXv+whtGxJxj7Uju4tayCedFj2Lix7B0qVh7s/h5Z32LUGP1Mg1yBEJBxoC6zO4yG1gQOZnscBHXN47wHAAICwMJs7bUxB+SH6CK/MjOJQQgoPdQrj+R7NKF8qGA5Hwoy/w+Et0PJO6PkuhIS6Xa65DD4PCBEpC0wFBqpqYl4Py+Y1za6jqo4DxgFERERk28cYk3+OJqbw2uxo5kbG06R6Wab2u5r29SpD+nlYMhxWvAelK8N93zgfKxm/5dOAEJFgnHD4VlWnXcKhcUDdTM/rAIfyszZjzKXxeJQJa/czYr6zic+ztzRhwHUNKREUAIc2wown4OhWaH0f9BgBZSq7XbL5g3wWECIiwGdAjKqOvMTD1wKNRaQ+cBC4H+iXzyUaY/Io9mgSL02LZO3eU3RqUJnhd7SiQdWykJYCP7wDP4+CkKrwwERoeqvb5Zp84ssRRGfgYSBSRDZ5XxsMhAGo6lgRqQGsA8oDHhEZCLRQ1UQReRJYCAQC41V1qw9rNcZkIzU9gzFLdjFmaSxlSgTxr7tbc0/7OogIxK1zrjUc3w5XPgTd34LSFd0u2eQjX85iWkn21xIy9zmM8/FRdm3zgHk+KM0Ykwdr9pzkpWlb/v/6Sa/c3oLQsiUh7Rz89CasGgPlasKDU6HxTW6Xa3zA7qQ2xvxOwrk0RszfxoQ1+6ldsTSfP3oV3Zp6713Y96tzX8PJXdD+Ebj5DWcaqymSLCCMMYCzftL8qMO8OmsrJ86k8qdr6/PPm5sQUjIIzp91Vl1d/QlUrAv9Z0KDrm6XbHzMAsIYw6HT53hlZhQ/xBylZa3yjP+/q2hVp4LTuGc5zPoHnNoLHQbAja9CybKu1msKhgWEMcVYhkf5+te9vLtwOxmqDO7ZjMc61ycoMABSk2DxK7BuPFSqD4/MhfBr3S7ZFCALCGOKqe2Hk3hx2hY27j9Nl8ahvNW3FWFVyjiNsT/A7IGQEAdXPwndhkCJMq7WawqeBYQxxUxKWgYf/RTL2GW7KFcqiPfva0PfK2s7U1fPnYZFQ2DjNxDaBB5fBHU7uF2ycYkFhDHFyKrdJxg8LZLdx89yZ9vavNyrBZVDSjiN2xfAnIFw5ghc+0+4/kUILuVqvcZdFhDGFAMJyWm8PT+GiWsPULdyab56rAPXNanqNCafhAUvwpZJUK2Fs1dD7XbuFmwKBQsIY4owVWVepDN19eTZVAZc14CBNzWmTAnvP/3oWTB3EJw7Cde/AF2ehaAS7hZtCg0LCGOKqPiEcwydcWHq6hePXsUVtb1TV88cg/nPwdbpUKM1PDwNarRyt2BT6FhAGFPEeDzKt6v38c6C7aR7PL+fuqoKUVNh3nNw/gzc8DJ0HgiBwW6XbQohCwhjipCdR5J4cVok6/ed+t+pq4nxzsdJ2+dC7QjoMxqqNXO3YFOoWUAYUwSkpmfw8dJdjF4SS0jJIN67pw13tvNOXVWFTd/BwpcgPRVueQs6/Q0CAt0u2xRyFhDG+Ln1+07y4tRIdh49Q58razG0l3fVVYDTB2D207DrRwi7Bvp8BFUauluw8RsWEMb4qaSUNN5duJ2vV+2jVoXSfP7IVXRr5l111eOB9Z87S2WoQs9/Q8TjEBDgbtHGr1hAGOOHfog+wsszojiSlMIj14Tz7C1NnVVXAU7uhllPwd4Vzoqrt38Ileq5Wq/xTxYQxviRY0mpDJu9lblb4mlavRwfP9SOtmGVnEZPBqwZ5yzLHRAEvf8DbR8GyXXfLmNylKeAEJFKQGPg/993r6rLfVWUMeb3VJUp6+N4c24M585nMOjmJvzl+oaUCPJ+ZHRsh7ORT9waaNwder0PFWq7W7TxexcNCBH5E/A0ztagm4BOwK/ADT6tzBgDwP4TyQyeHsnK2ON0CK/M8Dtb0aiadz+GjHT45UNYOsJZbfXO/0Kre2zUYPJFXkYQTwNXAatUtZuINANe821Zxpj0DA+f/7yX9xZvJygggDf7XkG/DmEEBHh/+B+OckYN8ZugeW+47T0oW83Vmk3RkpeASFHVFBFBREqq6jYRaXqxg0SkLvAVUAPwAONUdVSWPgKMAnoCycAjqrrB27YXSAIygHRVjbiE8zLGr0UfSuTFaVvYEpfATc2r80bfltSsUNppTD8PK96DFf+G0pXgni+hZV9X6zVFU14CIk5EKgIzgMUicgo4lIfj0oFBqrpBRMoB60VksapGZ+pzK861jcZAR+Bj75+/6aaqx/PwvYwpElLSMvjwx518snw3lcoEM7pfO3q2quHc8AZwcIMzajgaDa3vgx4joExld4s2RVZeAuLPqnoaGCYiS4AKwIKLHaSq8UC893GSiMQAtYHMAdEH+EpVFVglIhVFpKb3WGOKlcx7NdzTvg5DbmtOxTLelVXTzsHSt+GX/0DZ6vDAJGjaw92CTZGXY0CIyO3AeCBNRDzAvaq67HK+iYiEA22B1VmaagMHMj2P874WDyiwSEQU+ERVx13O9zamsEtMSePteduYsGY/YZXL8M3jHbm2ceiFDvtXOaOGE7HQrj/c/AaUruhavab4yG0E8RbQxXvNoSPwL+D6S/0GIlIWmAoMVNXErM3ZHKLePzur6iERqYbz0da27KbWisgAYABAWFjYpZZnjKsWRx/h5RmRHEty9mr4501NKF3Cu0ZS6hnnnoY146BCXXh4OjS0yYOm4OQWEOmqug1AVVd7ryNcEhEJxgmHb1V1WjZd4oC6mZ7XwXt9Q1V/+/OoiEwHOgD/ExDekcU4gIiICM3abkxhlPmGt2Y1yvHf/hG0rlPxQoddS2D2U3B6P3QYADe+CiXLulavKZ5yC4hqIvJMTs9VdWRub+ydofQZEJNL31nAkyIyEefidIKqxotICBDgvXYRAtwCvJ6H8zGmUFNVpm44yBtzojl3PoPnujdlwHUNCA703vB27jQsehk2fg1VGsGjC6De1a7WbIqv3ALiv0C5XJ5fTGfgYSBSRDZ5XxsMhAGo6lhgHs4U11icaa6PevtVB6Z7Z24EAd+p6kUvjBtTmB046dzwtmLncSLqVWLEXa0v3PAGsH0+zPknnDkCnZ+Gri9BcGn3CjbFXo4Boap/6GY4VV1J9tcYMvdR4IlsXt8NtPkj39+YwiLDo3z5y17+vWg7ArzRpyUPdqx34Ya3sydgwQsQORmqtYD7v4Xa7V2t2RjIfRbTh7kdqKpP5X85xhQtO44k8fyULWw6cJpuTavy5h2tqF3ROypQdfaEnvccpCQ4I4Zrn4GgEu4WbYxXbh8x/RWIAr7HuXBsi7sYk0fn0z2MWRrL6CWxlCsVzKj7r6R3m1oXbnhLOuxs/7ltDtRqC31mQfWW7hZtTBa5BURN4B7gPpy7oicBU1X1VEEUZoy/2rj/FC9M3cKOI2fo693hrcpvO7xl3f7z5teh0xMQaCvvm8Int2sQJ4CxwFgRqQ08AGwVkRdU9euCKtAYf5F8Pp33Fu1g/M97qFG+1O93eANnyursgd7tP6+G3h9BaCPX6jXmYvKy3Hc7nHC4GZgPrPd1Ucb4m59jj/PitC0cOHmOhzvV4/keTSlXKthp9Hhg3Wew+FXnuW3/afxEbhepXwN6ATHAROAlVU0vqMKM8QcJ59IYPjeGSesOUD80hEkDOtGxQZULHY7HwqwnYf+vzl3Qt4+CinbHv/EPuY0ghgK/TTdtAwz3XmATnBmqrX1fnjGF18Kthxk6I4oTZ8/zt64NefrGxpQK9i6TkZEOv34ES4ZDcCnoMwau7Gcb+Ri/kltA1C+wKozxI8eSUhk2aytzI+NpUbM84x+5iitqV7jQIfNGPs16ORv5lKvhWr3GXK7cLlLvK8hCjCnsVJVpGw7yek7LZKSnejfyec+7kc8X0KKvjRqM37K5dcbkQdypZIZMj2LZjmO0r1eJd7IukxG33hk1HIuxjXxMkWEBYUwuPB7lm9X7eGf+NhR4rXdLHu6UaZmM88mw5C1YNQbK1YR+30OT7q7WbEx+yW0W0zicaa0/qGpSwZVkTOGw+9gZXpi6hbV7T9GlcShv39mKOpXKXOiwZwXM+gec2gPtH3VueitV3r2CjclnuY0gxgM9gGdE5DywCFigqpsLpDJjXJKe4eHTlXsYuXgHpYICePfu1tzdvs6FZTJSEmDxK7D+C6hUH/5vDtTv4mrNxvhCbhepVwGrcPairoKzJ8MgEWkFbMQJi+8LpkxjCkZMfCLPT9lC5MEEureszht9rqBa+VIXOuxY6NwNfeYwXPMP6DoYSpTJ8f2M8Wd5ugbhXXZjgvcLEWmPM7owpkhITc9g9E+xjFm6i4plghndrx09W9W4MGo4exwWvHhhSe77voE6tiS3Kdou6yK1qq7HltwwRUTmxfXuaFubV3q1oFKId8ltVYiaCvOfh5REW5LbFCs2i8kUW+fOZ/Deou2M/3kP1cuXYvwjEdzQrPqFDomHYM4zsGO+s4FP74+gegv3CjamgFlAmGJp1e4TvDB1C/tOJNOvYxgv3drswuJ6qrDhS1g0FDLS4Ja3oNPfICDQ3aKNKWB5Wc21FPB34FpAgZXAx6qa4uPajMl3SSlpjJi/jW9X7yeschm++3NHrmkYeqHDyd0w+2nYsxzCuziL61Vp6F7BxrgoLyOIr4Ak4D/e5w8AX+NsJmSM31i6/SiDp0USn5jC49fWZ9AtTShTwvtPwJMBqz6Gn96EwGDo9QG0+z9bktsUa3kJiKaq2ibT8yUiYvdCGL+RkJzGG3OjmbI+jkbVyjL1b9fQLqzShQ5Hop0luQ+uhya3Qq+RUL6WewUbU0jkJSA2ikgn730RiEhH4OeLHSQidXFGHzUADzBOVUdl6SPAKKAnkAw8oqobvG09vG2BwKeqOiLPZ2WM16KthxkyI4qTZ8/zRLeG/OOGTEtyp6fCipHO4nqlysNdn8EVd9niesZ45SUgOgL9RWS/93kYECMikeS+L0Q6MEhVN4hIOWC9iCxW1ehMfW4FGnu/OgIfAx1FJBAYjbOLXRywVkRmZTnWmBydOJPKsNnRzN58iOY1y/N51iW549bBzCedxfVa3essrhdSJec3NKYYyktAXNYNcaoaD8R7HyeJSAxQG8j8Q74P8JWqKrBKRCqKSE0gHIhV1d0AIjLR29cCwuRKVZmzJZ5XZ20lKSWNQTc34a9dG15Ykvv8WfjJu7he+Vq2uJ4xubhoQOTHvhAiEg60BVZnaaoNHMj0PM77Wnavd8zhvQcAAwDCwmwrx+LsaGIKQ2ZEsTj6CG3qVOBfd3eiaY1yFzrsWuLMUDq9z9kT+qZhtrieMbnw+X0QIlIWmAoMVNXErM3ZHKK5vP6/L6qOA8YBREREZNvHFG2qypT1cbwxJ5rUdA+Dezbjsc71Cfpt1HDuNCwaAhu/gcoN4ZF5EN7Z1ZqN8Qc+DQgRCcYJh29VdVo2XeKAupme1wEOASVyeN2Y3zl0+hwvTYtk2Y5jXBXubOTToGqmjXxiZsPcZ+HsMeg8ELq+CMGlXavXGH/is4DwzlD6DIhR1ZE5dJsFPOm9xtARSFDVeBE5BjQWkfrAQeB+oJ+vajX+R1WZsOYAw+fF4FFl2O0t6H91+IWNfJKOwPznIHomVG8F/SZCrbbuFm2Mn/HlCKIz8DAQKSKbvK8NxpkFhaqOBebhTHGNxZnm+qi3LV1EngQW4kxzHa+qW31Yq/EjB04m8+K0Lfwce4JrGlbhnbtaU7eyd8ltVdj0LSwcAmnn4MZX4JqnnJvfjDGXxGcBoaoryf5aQuY+CjyRQ9s8nAAxBriw/eeI+dsIEOGtO66gX4ewC0tyn9wDcwbC7qUQdjX0/g+ENnazZGP8mi3WZ/zCvhNneX7KFlbvOUmXxqGMuKs1tSt6ryV4MmD1WGeZDAmAnv92ZinZMhnG/CEWEKZQy/AoX/yyl3cXbiM4MIB/3dWaeyIybf95JNrZF/rgOmh8C9w2EirWzf1NjTF5YgFhCq1dx87w/JQtrN93ihuaVWP4Ha2oUcG7/WfWZTLu/BRa3W3LZBiTjywgTKGT4VE+XbGbkYt3UCo4kPfva0PfK2tfGDUcWOuMGo7FQKt7vMtkhOb+psaYS2YBYQqVnUeSeHbKFjYfOE33ltV5o+8VVCvnHTWknnGuM6wea8tkGFMALCBMoZCe4WHcit18sHgnISUD+fCBttzeuuaFUUPsDzD7n5CwH676szN91ZbJMManLCCM67YfTuK5KZvZEpdAz1Y1eL3PFYSWLek0Jp+EBS/BlokQ2gQeWwhhndwt2JhiwgLCuCYtw8Mny3bx4Y+xlC0VxOh+7bitdU2nURWipsL8FyDlNFz3HHR5FoJLuVqzMcWJBYRxRUx8Is9N2UzUwURua12T13u3pMpvo4aEOJg7CHYsgFrtoPdMqHGFuwUbUwxZQJgClZbh4eOlu/jPTzupUDqYjx9sx62tvKMGjwfWfQY/vAaedLjlLej0NwgIdLdoY4opCwhTYKIPJfLs5M1ExyfSu00thvVuSeWQEk7j8Z3O1NX9v0KDrtDrA6hc381yjSn2LCCMz6VleBi9JJaPfoqlYpkSjH2oPT2uqOE0pp+HX0bBsn9BcBnoMwau7Gc3vBlTCFhAGJ/KPGroc2Utht3ekkq/jRri1jujhqNboeUd0OMdKFfd3YKNMf+fBYTxiayjhk8ebk/3lt5Rw2/7Qq/+GMrWgPsnQLOe7hZsjPkfFhAm3+U6aoj90VmS+/R+777Qr0KpCq7Wa4zJngWEyTe5jhqST8LCwbB5AlRpDI/Oh3rXuFuwMSZXFhAmX+Q4arAb3ozxWxYQ5g/JddSQ+Ya32u2h9yyo3tLdgo0xeWYBYS5bTLwzath6yLmv4bXe3lGDJwPWfgY/vgbqge7DoeNf7YY3Y/yMBYS5ZGkZHsYu3cWH3ruhf3dfw9EYmPUUxK2BhjdCr/ehUj13CzbGXBafBYSIjAd6AUdV9X8W0hGRSsB4oCGQAjymqlHetr1AEpABpKtqhK/qNJdm++Eknp28mciDCdzuHTVUDinh3eHtPWeXt5Ll4I5x0Ppeu+HNGD/myxHEF8BHwFc5tA8GNqnqHSLSDBgN3JipvZuqHvdhfeYSpGd4+GT5bkb9sJNypYJ+v4bS/lXOqOH4dmh9n/ORku3wZozf81lAqOpyEQnPpUsL4G1v320iEi4i1VX1iK9qMpdn5xFn1LA5LoHbWtXk9T7elVdTEp3rDGs/hQp14cGp0Pgmt8s1xuQTN69BbAbuBFaKSAegHlAHOAIosEhEFPhEVcfl9CYiMgAYABAWFubzoouT9AwP/12xh/cX7yCkZCAf9WtLr9a1nMZt85wZSknx0PFvcMPLULKsuwUbY/KVmwExAhglIpuASGAjkO5t66yqh0SkGrBYRLap6vLs3sQbHuMAIiIi1PdlFw+xR8/w7OTNbPLuDf1m31ZULVcSko7A/OchegZUawH3fQ117BKRMUWRawGhqonAowDibDy8x/uFqh7y/nlURKYDHYBsA8LkrwyPMn7lHt5dtJ3SwYGMuv9KerephQCs/xIWD4W0c9DtZej8NASVcLtkY4yPuBYQIlIRSFbV88CfgOWqmigiIUCAqiZ5H98CvO5WncXJnuNneW7yZtbtO8VNzasx/I5WVCtfCo7HwuynYd9KqNcZbh8FoY3dLtcY42O+nOY6AegKhIpIHPAqEAygqmOB5sBXIpIBRAOPew+tDkx3BhUEAd+p6gJf1WnA41G++nUvIxZsIzgwgPfuacOd7WojnnRY/m9nr4agUk4wtO0PAQFul2yMKQC+nMX0wEXafwX+59dQVd0NtPFVXeb3DpxM5rkpm1m1+yTXN6nKiLtaUbNCaYhb50xdPboVWvSBW/8F5Wq4Xa4xpgDZndTFlKry3Zr9DJ8bg4jwzl2tuDeiLnL+DMx/EVaPhXI14f7voNltbpdrjHGBBUQxdOj0OV6YuoUVO4/TuVEV3rmrNXUqlYEdC2HOM5B4ECIeg5uGQanybpdrjHGJBUQxoqpMWR/H67OjSfcob/S9goc6hiFnj8HkJ2DrNKjaDB5bCGEd3S7XGOMyC4hi4mhiCoOnR/JDzFE6hFfm3XtaU69yGdj4DSx6GdKSoetguHYgBJV0u1xjTCFgAVHEqSqzt8Tzyswozp3P4OXbmvNo5/oEntoNXz4Ne1dA2NXODKWqTd0u1xhTiFhAFGEnzqQydGYU8yIP06ZuRd67pw2NqpSEn0c6U1cDSzjLcbd7xKauGmP+hwVEEbVw62GGTI8k4Vwaz3Vvyl+ua0BQ/EYY9xQciYLmt8Ot70L5mm6XaowppCwgipiEc2m8Nmsr0zYepEXN8nzzp440qySw6CVY/YkzdfW+b6F5L7dLNcYUchYQRciyHcd4YcoWjp1J5akbG/Nkt0aU2LUQvhsEiYfgqj/Bja/Y1FVjTJ5YQBQBZ1LTGT4vhu9W76dRtbKM69+e1hVSYNqjzqqrVZvD419A3Q5ul2qM8SMWEH5u9e4TPDtlM3GnzvGX6xrwz5saUWrLN/D1q5Ce4uzTcI2tumqMuXQWEH4qJS2DdxduZ/zPewirXIbJf7maiJBj8M3tsP9XCO8CvT6A0EZul2qM8VMWEH5o84HTPPP9JnYdO8vDnerx0i31KbP6Q1jxHpQIgT6j4coHwVkR1xhjLosFhB85n+7ho592MnrpLqqVK8nXj3egS/AOGN8Vju+AVvdA97ehbFW3SzXGFAEWEH5i++Eknvl+E1sPJXJXuzq8cnMtKqx4AzZ8CRXD4MGp0Pgmt8s0xhQhFhCFXIZH+e+K3YxctIPypYP45KF2dOcX+PRuSD4B1/wDur7kfLRkjDH5yAKiENt7/CzPercA7dGyBm/fUIFKS5+CnYug5pXw0BSoaXsrGWN8wwKiEFJVvlntbOYTFCh8cE9L+qTORr4YDohznaHDAAi0vz5jjO/YT5hCJj7hHM9PcTbz6dI4lJFdoOqS/hC/GRp3h9veg4p13S7TGFMMWEAUEqrKzE2HeGVmFGkZytu9GnD/ma+RCR9DSFW45wto0demrhpjCozPAkJExgO9gKOqekU27ZWA8UBDIAV4TFWjvG09gFFAIPCpqo7wVZ2Fwcmz53l5RiTzIg/TLqwiYzocp8aKeyDhALR/1Nn6s3RFt8s0xhQzvhxBfAF8BHyVQ/tgYJOq3iEizYDRwI0iEuh9fDMQB6wVkVmqGu3DWl3zY8wRXpgaScK58wzrVpn+CWMJmDMj09afndwu0RhTTPksIFR1uYiE59KlBfC2t+82EQkXkepAAyBWVXcDiMhEoA9QpALiTGo6b86JZuLaAzSvHsLsTtupufavtn6SMabQcPMaxGbgTmCliHQA6gF1gNrAgUz94oCOOb2JiAwABgCEhYX5rNj8tHr3CQZN3syh0+cY2gEePfkWASvX2PpJxphCxc2AGAGMEpFNQCSwEUgHsrsKqzm9iaqOA8YBRERE5NivMEhJy2Dk4h38d8VuGlUK5OerVlIzahyULA99P4Y2D9hFaGNMoeFaQKhqIvAogIgIsMf7VQbIPI+zDnCowAvMZ1sPJfDMpM1sP5LEKy2O8MjJDwnYsgfa9INb3oSQKm6XaIwxv+NaQIhIRSBZVc8DfwKWq2qiiKwFGotIfeAgcD/Qz606/6j0DA+fLN/NBz/soH7pc6xqNpMau2dC5QbQfyY06Op2icYYky1fTnOdAHQFQkUkDngVCAZQ1bFAc+ArEcnAuQD9uLctXUSeBBbiTHMdr6pbfVWnL+09fpZnvt/Ehv2neLPeJvolfErA/jNw3fPQZRAEl3K7RGOMyZEvZzE9cJH2X4HGObTNA+b5oq6CoKp8u3o/b82NoXHgIdbV/pbQI+sg7GrnInS1Zm6XaIwxF2V3Uuezo4kpPD91C79uP8iIaj/Q98wk5GwZuH0UtO0PAQFul2iMMXliAZGP5m6JZ8iMSNqkbWFN5a+okLgPWt0L3d+CstXcLs8YYy6JBUQ+SDiXxrBZW1m6MYb3KkzmRs+PUDIc7pwGjW50uzxjjLksFhB/0C+7jvPspE1cm7yYX8pOoFTaWbj2Gbj+eQgu7XZ5xhhz2SwgLlNKWgbvLtzOkp9/ZnSZL2gbFAU1OzoXoau3cLs8Y4z5wywgLkPUwQSen7iGW059x6JSswkMLgO3vg/tHrGL0MaYIsMC4hJkeJSxy3bx64/T+ThoPPWCDkHLu6H7cChX3e3yjDEmX1lA5NH+E8kMm7iU2w6P4ZugFWRUCIfb7SK0MabosoC4CFVl8tr9bJkzhpEB31A+KAXtPIjA65+zi9DGmCLNAiIXJ86k8sHEOfTa/y/uDdhGaq2OBPT90O6ENsYUCxYQOVgatY/Yqa8x1DMDT4kQPLd+SMm2D9tFaGNMsWEBkcXZ1HQmTfySG3a9Q9eAIyQ0vYsKvd+BslXdLs0YYwqUBUQmUdt3cGTyIB5LX87J0nU5f/cMKjTu5nZZxhjjCgsIID09nWUT3uWq2A9pIuc50Pop6t4+xJbjNsYUa8U+IBJOHiN+TC9uTN/GjpB21HpoDHVrNXe7LGOMcV2xD4jyFauws0wdNjZ+hLa9/mp7QhtjjFexDwgJCCDimalul2GMMYWOzdk0xhiTLQsIY4wx2bKAMMYYky2fBYSIjBeRoyISlUN7BRGZLSKbRWSriDyaqW2viESKyCYRWeerGo0xxuTMlyOIL4AeubQ/AUSrahugK/CeiJTI1N5NVa9U1QjflWiMMSYnPgsIVV0OnMytC1BORAQo6+2b7qt6jDHGXBo3r0F8BDQHDgGRwNOq6vG2KbBIRNaLyIDc3kREBojIOhFZd+zYMd9WbIwxxYibAdEd2ATUAq4EPhKR8t62zqraDrgVeEJErsvpTVR1nKpGqGpE1aq2oJ4xxuQXN2+UexQYoaoKxIrIHqAZsEZVDwGo6lERmQ50AJZf7A3Xr19/XET2XWY9ocDxyzzWX9k5F33F7XzBzvlS1cupwc2A2A/cCKwQkepAU2C3iIQAAaqa5H18C/B6Xt5QVS97CCEi64rbBXE756KvuJ0v2DnnJ58FhIhMwJmdFCoiccCrQDCAqo4F3gC+EJFIQIAXVPW4iDQApjvXrgkCvlPVBb6q0xhjTPZ8FhCq+sBF2g/hjA6yvr4baOOruowxxuSN3Ul9wTi3C3CBnXPRV9zOF+yc840414iNMcaY37MRhDHGmGxZQBhjjMlWsQoIEekhIttFJFZEXsymXUTkQ2/7FhFp50ad+SkP5/yg91y3iMgvIuL3EwQuds6Z+l0lIhkicndB1ucLeTlnEenqXQBzq4gsK+ga81se/t/OcUFQf5SHBVDz/+eXqhaLLyAQ2AU0AEoAm4EWWfr0BObjTLvtBKx2u+4COOdrgErex7cWh3PO1O8nYB5wt9t1F8Dfc0UgGgjzPq/mdt0FcM6DgXe8j6virPdWwu3a/8A5Xwe0A6JyaM/3n1/FaQTRAYhV1d2qeh6YCPTJ0qcP8JU6VgEVRaRmQReajy56zqr6i6qe8j5dBdQp4BrzW17+ngH+AUwFjhZkcT6Sl3PuB0xT1f3grFJQwDXmt7ycc5FaEFQvvgBqvv/8Kk4BURs4kOl5nPe1S+3jTy71fB7H+Q3En130nEWkNnAHMLYA6/KlvPw9NwEqichS7yKY/QusOt/IyznntiBoUZTvP7/cXGqjoEk2r2Wd45uXPv4kz+cjIt1wAuJan1bke3k55w9w7tzP8N6x7+/ycs5BQHuc5W1KA7+KyCpV3eHr4nwkL+f824KgNwANgcUiskJVE31cm1vy/edXcQqIOKBupud1cH6zuNQ+/iRP5yMirYFPgVtV9UQB1eYreTnnCGCiNxxCgZ4ikq6qMwqkwvyX1/+3j6vqWeCsiCzHWbHAXwMiL+ec44KgBVNigcv3n1/F6SOmtUBjEanv3bnufmBWlj6zgP7e2QCdgARVjS/oQvPRRc9ZRMKAacDDfvzbZGYXPWdVra+q4aoaDkwB/u7H4QB5+397JtBFRIJEpAzQEYgp4DrzU17O+bcFQcm8IGiBVlmw8v3nV7EZQahquog8CSzEmQExXlW3ishfve1jcWa09ARigWSc30D8Vh7P+RWgCjDG+xt1uvrxSph5POciJS/nrKoxIrIA2AJ4gE9VNdvpkv4gj3/P2S4I6lrRf1AeFkDN959fttSGMcaYbBWnj5iMMcZcAgsIY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIYy6DiHwiIp198L5nLrH/UyISIyLf5nctxtiNcsZcBhHZBLRX1Yx8ft8zqlr2Evpvw1lDa0+m1wTn33ZRXrnUFAAbQRi/JiJLRORm7+M3ReTDSzi2lYj8nOl5OxH5KQ/HNQd2ZA0HEQkXkW0i8qmIRInItyJyk4j8LCI7RaRDpr7PePtEicjAHL7PQyKyxrsL3CciEpilfSzOhjmzROSf3pHEGGAD3kXbRGSGd3nvrSIyINOx/b27jm0Wka/z8t/LFENu75JkX/b1R75wdtlaCjwIzAUCL+HYAODwb8cAS4B2eTjuGeCxbF4Px9mQppX3vdcD43HWAeoDzPD2a4+zP0EIzkY2W4G23rYz3j+bA7OBYO/zMUD/bL7nXpwVacNx1ljqlKW9svfP0kAUzrpbLYHtQGjmPvZlX1m/is1ifaZoUtXl3o9UngG6qrPHQwNgCFBBVXPcb1pVPSKyFWgpIo1xVv88LSKfXeTY7uS8ENoeVY0E8L73j6qq3gXjwr19rgWmq7P0NiIyDegCbMz0PjfiBMla7yKKpbn47nf71NlJLLOnROQO7+O6QGPgKmCKeheuU9XcdikzxZgFhPFrItIKqImz10ESgKruBh4XkSl5eItVQGfg70APVT2Y27HepbIrqmpO6+ynZnrsyfTcw4V/b3nZpUiAL1X1pTz0/c3ZLLV2BW4CrlbVZBFZCpTyvrddfDQXZdcgjN/y7rf7Lc7HN2dFpHsufX8UZ6vRrFYBb+L8Rn8wD9+2G85HUX/EcqCviJQRkRCc7U9XZOnzI3C3iFQDEJHKIlLvEr9PBeCUNxya4Wxk/9t73ysiVX5778s9EVO0WUAYv+T9TX4aMEhVY3DW/h+WQ98AoBHZb/i+Dee3/Hfy+K1vBRZcar2ZqeoG4Aucnc1W4+zNsDFLn2jgZWCRiGwBFuOMlC7FAiDIe/wbOGGIqm4F3gKWichmYCSAiMwTkVqXe16m6LFprqbI8f5m/BZwM85WqrNxLio/k03fj4C1qvpldseq6ttZ+m8AOqpqmm/Pwhj3WUCYYklEGuLMevpZVR93ux5jCiMLCGOMMdmyaxDGGGOyZQFhjDEmWxYQxhhjsmUBYYwxJlsWEMYYY7JlAWGMMSZbFhDGGGOy9f8APZuVEluMz54AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e6)\n",
"plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e6)\n",
"plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='p / MPa')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "a9c9fe55",
"metadata": {},
"source": [
"Isn't that exciting!\n",
"\n",
"You can also provide an optional set of flags to the function to control other behaviors of the function, and switch between simple Euler and adaptive RK45 integration (the default)"
]
},
{
"cell_type": "raw",
"id": "264c5123",
"metadata": {
"raw_mimetype": "text/restructuredtext"
},
"source": [
"The options class is here: :py:meth:`TVLEOptions <teqp.teqp.TVLEOptions>`"
]
},
{
"cell_type": "markdown",
"id": "d4193110",
"metadata": {},
"source": [
"Supercritical isotherms should work approximately in the same manner"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5b925ad",
"metadata": {},
"outputs": [],
"source": [
"Tc_K = [190.564, 154.581]\n",
"pc_Pa = [4599200, 5042800]\n",
"acentric = [0.011, 0.022]\n",
"model = teqp.canonical_PR(Tc_K, pc_Pa, acentric)\n",
"model1 = teqp.canonical_PR([Tc_K[0]], [pc_Pa[0]], [acentric[0]])\n",
"T = 170.0 # [K] # Note: above Tc of the second component\n",
"rhoL0, rhoV0 = model1.superanc_rhoLV(T) # start off at pure of the first component\n",
"j = teqp.trace_VLE_isotherm_binary(model, T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))\n",
"df = pandas.DataFrame(j) # Now as a data frame\n",
"plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e6)\n",
"plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e6)\n",
"plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='p / MPa')\n",
"plt.show()"
]
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}