Skip to content
Snippets Groups Projects
VLE.ipynb 32.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • {
     "cells": [
      {
       "cell_type": "markdown",
       "id": "8218498b",
       "metadata": {},
       "source": [
    
        "# Phase equilibria\n",
    
        "\n",
        "Two basic approaches are implemented in teqp:\n",
        "\n",
        "* Iterative calculations given guess values\n",
    
    13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        "* Tracing along iso-curves (constant temperature, etc.) powered by the isochoric thermodynamics formalism"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 42,
       "id": "c0b4e863",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
           "'0.9.4.dev0'"
          ]
         },
         "execution_count": 42,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "import teqp\n",
        "import numpy as np\n",
        "import pandas\n",
        "import matplotlib.pyplot as plt\n",
        "teqp.__version__"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "e57e532b",
       "metadata": {},
       "source": [
        "## Iterative Phase Equilibria"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "1baf38e1",
       "metadata": {},
       "source": [
        "### Pure fluid\n",
        "\n",
        "For a pure fluid, phase equilibrium between two phases is defined by equating the pressures and Gibbs energies in the two phases. This represents a 2D non-linear rootfinding problem. Newton's method can be used for the rootfinding, and in teqp, automatic differentiation is used to obtain the necessary Jacobian matrix so the implementation is quite efficient.\n",
        "\n",
        "The method requires guess values, which are the densities of the liquid and vapor densities.  In some cases, ancillary or superancillary equations have been developed which provide curves of guess densities as a function of temperature.\n",
        "\n",
        "For a pure fluid, you can use the ``pure_VLE_T`` method to carry out the iteration."
       ]
      },
      {
       "cell_type": "raw",
       "id": "f0ca0b22",
       "metadata": {
        "raw_mimetype": "text/restructuredtext"
       },
       "source": [
        "The Python method is here: :py:meth:`pure_VLE_T <teqp.teqp.pure_VLE_T>`"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 43,
       "id": "2674227c",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
           "'guess:'"
          ]
         },
         "metadata": {},
         "output_type": "display_data"
        },
        {
         "data": {
          "text/plain": [
           "[12735.311173407898, 752.4082303122791]"
          ]
         },
         "metadata": {},
         "output_type": "display_data"
        },
        {
         "data": {
          "text/plain": [
           "array([12735.31117341,   752.40823031])"
          ]
         },
         "execution_count": 43,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "# Instantiate the model\n",
        "model = teqp.canonical_PR([300], [4e6], [0.1])\n",
        "\n",
        "T = 250 # [K], Temperature to be used\n",
        "\n",
        "# Here we use the superancillary to get guess values (actually these are more \n",
        "# accurate than the results we will obtain from iteration!)\n",
        "rhoL0, rhoV0 = model.superanc_rhoLV(T)\n",
        "display('guess:', [rhoL0, rhoV0])\n",
        "\n",
        "# Carry out the iteration, return the liquid and vapor densities\n",
        "# The guess values are perturbed to make sure the iteration is actually\n",
        "# changing the values\n",
        "teqp.pure_VLE_T(model, T, rhoL0*0.98, rhoV0*1.02, 10)"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "f8805ae1",
       "metadata": {},
       "source": [
        "### Binary Mixture"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "76bccf19",
       "metadata": {},
       "source": [
        "For a binary mixture, the approach is roughly similar to that of a pure fluid. The pressure is equated between phases, and the chemical potentials of each component in each phase are forced to be the same. \n",
        "\n",
        "Again, the user is required to provide guess values, in this case molar concentrations in each phase, and a Newton method is implemented to solve for the phase equilibrium. The analytical Jacobian is obtained from automatic differentiation.\n",
        "\n",
        "The ``mix_VLE_Tx`` function is the binary mixture analog to ``pure_VLE_T`` for pure fluids."
       ]
      },
      {
       "cell_type": "raw",
       "id": "eef189fd",
       "metadata": {
        "raw_mimetype": "text/restructuredtext"
       },
       "source": [
        "The Python method is here: :py:meth:`mix_VLE_Tx <teqp.teqp.mix_VLE_Tx>`"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 44,
       "id": "b12bd318",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
           "(<VLE_return_code.xtol_satisfied: 1>,\n",
           " array([  128.66049209, 12737.38871682]),\n",
           " array([  12.91868229, 1133.77242677]))"
          ]
         },
         "execution_count": 44,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "zA = np.array([0.01, 0.99])\n",
        "model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
        "model1 = teqp.canonical_PR([300], [4e6], [0.1])\n",
        "T = 273.0 # [K]\n",
        "# start off at pure of the first component\n",
        "rhoL0, rhoV0 = model1.superanc_rhoLV(T)\n",
        "\n",
        "# then we shift to the given composition in the first phase\n",
        "# to get guess values\n",
        "rhovecA0 = rhoL0*zA\n",
        "rhovecB0 = rhoV0*zA\n",
        "\n",
        "# carry out the iteration\n",
        "code, rhovecA, rhovecB = teqp.mix_VLE_Tx(model, T, rhovecA0, rhovecB0, zA, \n",
        "     1e-10, 1e-10, 1e-10, 1e-10,  # stopping conditions\n",
        "     10 # maximum number of iterations\n",
        "    )\n",
        "code, rhovecA, rhovecB"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "d72ef08e",
       "metadata": {},
       "source": [
        "You can (and should) check the value of the return code to make sure the iteration succeeded. Do not rely on the numerical value of the enumerated return codes!"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "f4e3f914",
       "metadata": {},
       "source": [
        "# Tracing\n",
        "\n",
        "When it comes to mixture thermodynamics, as soon as you add another component to a pure component to form a binary mixture, the complexity of the thermodynamics entirely changes. For that reason, mixture iterative calculations for mixtures are orders of magnitude more difficult to carry out.  Asymmetric mixtures can do all sorts of interesting things that are entirely unlike those of pure fluids, and the algorithms are therefore much, much more complicated.  Formulating phase equilibrium problems for pure fluids is not much more complicated, but the most challenging aspect is to obtain good guess values from which to start an iterative routine\n",
        "\n",
        "Ulrich Deiters and Ian Bell have developed a number of algorithms for tracing phase equilibrium solutions as the solution of ordinary differential equations rather than carrying out iterative routines for a given state point.  The advantage of the tracing calculations is that they can be often initiated at a state point that is entirely known, perhaps the pure fluid endpoint for a subcritical isotherm."
       ]
      },
      {
       "cell_type": "raw",
       "id": "e0097771",
       "metadata": {
        "raw_mimetype": "text/restructuredtext"
       },
       "source": [
        "The Python method is here: :py:meth:`trace_VLE_isotherm_binary <teqp.teqp.trace_VLE_isotherm_binary>`"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "63902dba",
       "metadata": {},
       "source": [
        "The C++ implementation returns a string in JSON format, which can be conveniently operated upon, for instance after converting the returned data structure to a ``pandas.DataFrame``.  A simple example of plotting a subcritical isotherm for a ``boring`` mixture is presented here:"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 47,
       "id": "49dcba2b",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
           "\"[{'T / K': 273.0, 'c': -1.0, 'drho/dt': [-0.618312383229212, 0.7690760182230469, -0.1277526773161415...\""
          ]
         },
         "metadata": {},
         "output_type": "display_data"
        },
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>T / K</th>\n",
           "      <th>c</th>\n",
           "      <th>drho/dt</th>\n",
           "      <th>dt</th>\n",
           "      <th>pL / Pa</th>\n",
           "      <th>pV / Pa</th>\n",
           "      <th>rhoL / mol/m^3</th>\n",
           "      <th>rhoV / mol/m^3</th>\n",
           "      <th>t</th>\n",
           "      <th>xL_0 / mole frac.</th>\n",
           "      <th>xV_0 / mole frac.</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>273.0</td>\n",
           "      <td>-1.0</td>\n",
           "      <td>[-0.618312383229212, 0.7690760182230469, -0.12...</td>\n",
           "      <td>0.000010</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>[10697.985891540735, 0.0]</td>\n",
           "      <td>[1504.6120879290752, 0.0]</td>\n",
           "      <td>0.000000</td>\n",
           "      <td>1.0</td>\n",
           "      <td>1.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>273.0</td>\n",
           "      <td>-1.0</td>\n",
           "      <td>[-0.6183123817120353, 0.7690760162922189, -0.1...</td>\n",
           "      <td>0.000045</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>[10697.985885357639, 7.690760309421386e-06]</td>\n",
           "      <td>[1504.6120866515366, 9.945415375682985e-07]</td>\n",
           "      <td>0.000010</td>\n",
           "      <td>1.0</td>\n",
           "      <td>1.0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>273.0</td>\n",
           "      <td>-1.0</td>\n",
           "      <td>[-0.6183123827116788, 0.7690760173388914, -0.1...</td>\n",
           "      <td>0.000203</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>2.203397e+06</td>\n",
           "      <td>[10697.98585753358, 4.229918121248511e-05]</td>\n",
           "      <td>[1504.6120809026731, 5.469978386095445e-06]</td>\n",
           "      <td>0.000055</td>\n",
           "      <td>1.0</td>\n",
           "      <td>1.0</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "   T / K    c                                            drho/dt        dt  \\\n",
           "0  273.0 -1.0  [-0.618312383229212, 0.7690760182230469, -0.12...  0.000010   \n",
           "1  273.0 -1.0  [-0.6183123817120353, 0.7690760162922189, -0.1...  0.000045   \n",
           "2  273.0 -1.0  [-0.6183123827116788, 0.7690760173388914, -0.1...  0.000203   \n",
           "\n",
           "        pL / Pa       pV / Pa                               rhoL / mol/m^3  \\\n",
           "0  2.203397e+06  2.203397e+06                    [10697.985891540735, 0.0]   \n",
           "1  2.203397e+06  2.203397e+06  [10697.985885357639, 7.690760309421386e-06]   \n",
           "2  2.203397e+06  2.203397e+06   [10697.98585753358, 4.229918121248511e-05]   \n",
           "\n",
           "                                rhoV / mol/m^3         t  xL_0 / mole frac.  \\\n",
           "0                    [1504.6120879290752, 0.0]  0.000000                1.0   \n",
           "1  [1504.6120866515366, 9.945415375682985e-07]  0.000010                1.0   \n",
           "2  [1504.6120809026731, 5.469978386095445e-06]  0.000055                1.0   \n",
           "\n",
           "   xV_0 / mole frac.  \n",
           "0                1.0  \n",
           "1                1.0  \n",
           "2                1.0  "
          ]
         },
         "execution_count": 47,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "model = teqp.canonical_PR([300,310], [4e6,4.5e6], [0.1, 0.2])\n",
        "model1 = teqp.canonical_PR([300], [4e6], [0.1])\n",
        "T = 273.0 # [K]\n",
        "rhoL0, rhoV0 = model1.superanc_rhoLV(T) # start off at pure of the first component\n",
        "j = teqp.trace_VLE_isotherm_binary(model, T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))\n",
        "display(str(j)[0:100]+'...') # The first few bits of the data\n",
        "df = pandas.DataFrame(j) # Now as a data frame\n",
        "df.head(3)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 49,
       "id": "9aecca78",
       "metadata": {},
       "outputs": [
        {
         "data": {
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0EElEQVR4nO3dd3xUVf7/8dcnhRY6oUMIvQkIREARBRuICNgVla9lly26yooVRLEhriuKK4isYheQ3ptKVektIaGEHggdkkBISDKf3x93/BGzSQiYyc0kn+fjkQczc86dfK5I3jlzzz1HVBVjjDEmqwC3CzDGGFM4WUAYY4zJlgWEMcaYbFlAGGOMyZYFhDHGmGwFuV1AfgoNDdXw8HC3yzDGGL+xfv3646paNbu2IhUQ4eHhrFu3zu0yjDHGb4jIvpza7CMmY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIY4wx2fJZQIhIXRFZIiIxIrJVRJ7Ops+DIrLF+/WLiLTJ1NZDRLaLSKyIvOirOo0xxp9Fr17Eqq+G+uS9fXmjXDowSFU3iEg5YL2ILFbV6Ex99gDXq+opEbkVGAd0FJFAYDRwMxAHrBWRWVmONcaYYuvEqVNEff08XU5MJj6gGslnnqVM2Qr5+j18NoJQ1XhV3eB9nATEALWz9PlFVU95n64C6ngfdwBiVXW3qp4HJgJ9fFWrMcb4C49HWbRgJmdGXc31J79nU407qTRoTb6HAxTQUhsiEg60BVbn0u1xYL73cW3gQKa2OKBjDu89ABgAEBYW9kdLNcaYQit6/2FiJ7xAr+SZHAuqzsFek2jXtofPvp/PA0JEygJTgYGqmphDn244AXHtby9l0y3bvVFVdRzOR1NERETY/qnGmCLnTGo6U6Z+T9dtw+gdcIRd9e+nwQP/RkqW8+n39WlAiEgwTjh8q6rTcujTGvgUuFVVT3hfjgPqZupWBzjky1qNMaawUVUWbNxDwpyX6Z8xj9OlanDmjuk0bH5DgXx/nwWEiAjwGRCjqiNz6BMGTAMeVtUdmZrWAo1FpD5wELgf6OerWo0xprDZd+IsX0+ayEOH3yE84AjHWvSnat+3oWTZAqvBlyOIzsDDQKSIbPK+NhgIA1DVscArQBVgjJMnpKtqhKqmi8iTwEIgEBivqlt9WKsxxhQKqekZfPbTVsqsHM5gWcDZkFpk3D2bqg2vK/BafBYQqrqS7K8lZO7zJ+BPObTNA+b5oDRjjCmUfo49zuSpkxh4dhThAUdIvvIxyvV8E0qEuFJPkdowyBhj/NHRpBT+NWsDLWM+4IOghZwrXxfumkOZ+l1crcsCwhhjXJLhUb5bvY+fFk7nNR1DWNBR0iP+TOlbXnNt1JCZBYQxxrgg6mACr09bS88jn/B50CLSKtSDO+cSFH7txQ8uIBYQxhhTgJJS0nhv0Q62rZrPyBLjqBN0BO0wgOCbhhWKUUNmFhDGGFMAVJW5kfG8O2s9j6V+xbASi8ioWB/6zkPCO7tdXrYsIIwxxsf2nTjL0JlbOR+7jEml/kv1wKPQ8W8E3ji00I0aMrOAMMYYH0lNz+CTZbsZvySK5wMn0K/EQrRiA6TPPKh3jdvlXZQFhDHG+MAvscd5eWYU1U+s4YeQ8VRJOwyd/o7cMBRKlHG7vDyxgDDGmHx0LCmV4fNiWLhxF2+VncwdJeZDuQbgJ6OGzCwgjDEmH3g8yoS1+3ln/jbapG/m1wrjKZ96GDr+DW58xW9GDZlZQBhjzB8UfSiRITMi2bE/nvcrT+eW5DkQ0hAeXABhndwu77JZQBhjzGU6m5rOBz/sYPzPe7m5VAzfVPqUMsnxcPWT0G2IX44aMrOAMMaYy7Bw62GGzdpKYsIpvqs1i44nZ0KZRvDAQgjLdgNMv2MBYYwxlyDuVDLDZkXzQ8wRHqiyi2FVPqbkyXi45h/OqCG4tNsl5hsLCGOMyYO0DA/jV+7hgx92EkIy8xrMpsWhaVClMdy/COp2cLvEfGcBYYwxF7F+30mGTI9i2+Ekngo/wFNnPyQoPh6ueQq6DS5So4bMLCCMMSYHCclpjFiwjQlr9tOofAYrms+m7p7vIbQJ3LcY6kS4XaJPWUAYY0wWqsqMTQd5c04Mp5LP81arIzxw+F0C9h6Gzk9D18EQXMrtMn3OAsIYYzLZfewMQ2dG8XPsCa6uHczoRrOovH0ihDaF+76BOu3dLrHAWEAYYwzOwnofL93FmKW7KBkUwGedT3HDjreQHYfh2n/C9S8Wi1FDZj4LCBGpC3wF1AA8wDhVHZWlTzPgc6AdMERV/52pbS+QBGQA6apatD/sM8a45pddx3l5ehS7j5/l3ivK8VrJbym9fiJUbQ73fwO1i8+oITNfjiDSgUGqukFEygHrRWSxqkZn6nMSeArom8N7dFPV4z6s0RhTjJ04k8pb82KYtuEgYZXLMLv7WVptGARnjkKXQXD9CxBU0u0yXeOzgFDVeCDe+zhJRGKA2kB0pj5HgaMicpuv6jDGmKw8HmXy+gO8PX8bZ1PTGdSlGn9P/YzAZROgWgt4YALUaut2ma4rkGsQIhIOtAVWX8JhCiwSEQU+UdVxObz3AGAAQFhY2B+s1BhT1O08ksTg6ZGs3XuKDvUr80Hbw9Ra/hCcPQbXPed8FeNRQ2Y+DwgRKQtMBQaqauIlHNpZVQ+JSDVgsYhsU9XlWTt5g2McQEREhOZL0caYIiclLYP//LSTT5btpmypID7oXY8+hz9E5k2Cai2h3ySodaXbZRYqPg0IEQnGCYdvVXXapRyrqoe8fx4VkelAB+B/AsIYYy5m2Y5jDJ0Rxf6Tydzdvg6vNt5LuR/uhOQTznWGLs9CUAm3yyx0fDmLSYDPgBhVHXmJx4YAAd5rFyHALcDrPijTGFOEHU1K4Y05MczefIgGoSF8378JHWLegRmToXoreHAy1GzjdpmFli9HEJ2Bh4FIEdnkfW0wEAagqmNFpAawDigPeERkINACCAWmOxlDEPCdqi7wYa3GmCLE41G+W7OfdxZsIzXNwz9vasLfa0QTPPfPcO4kdH0Jrn3GRg0X4ctZTCsBuUifw0CdbJoSAYt1Y8wl23Y4kZemRbJx/2muaViF4d1rEb5mGKycCjVawcPTnD/NRdmd1MaYIiH5fDqjftzJpyv2UKF0MCPvbcMdJdchEx+ElATo9jJcOxACg90u1W9YQBhj/N6S7UcZOiOKuFPnuC+iLi9dH0rFJS9B9AznGsP/zYLqLd0u0+9YQBhj/NbRxBRemxPN3C3xNKwawqQBneh4bjl83hdSk+CGoc7qqzZquCwWEMYYv+PxKN+u2c+/5m8jNcPDoJubMKB9WUouHAgxs6BWO+g7Bqo1d7tUv2YBYYzxKzHxzkXoTQdO07lRFd7scwX1Dy+AT56D82fgxlednd4C7cfbH2X/BY0xfiHrRej372tD30ZByNy/wLY5UDsC+oyGas3cLrXIsIAwxhR6WS9Cv9ijKZV2zYDRz0PaObj5Dbj6CQgIdLvUIsUCwhhTaB1NTOH1OdHMyXwROvQ8zOoPOxZAnQ7OqKFqE7dLLZIsIIwxhc7v7oRO916Evq4+JaMmwfcvQXoqdB8OHf9qowYfsoAwxhQq2w87y3Gv33eKaxpW4c2+V9CgRAJMuh9iF0PY1dD7Iwht5HapRZ4FhDGmUEhJy+DDH3cybvluypUK4r172nBn21rIpm9g4RDISIMe70CHARAQ4Ha5xYIFhDHGdSt2HmPI9AvLcQ/u2ZzKaUfg27tg109Q71ro8x+o3MDtUosVCwhjjGuOn0nlzTnRzNh0iPqhIXz3545c06AKrP8cFg0FVej5b4h43EYNLrCAMMYUOFVl8ro43poXQ/L5dJ66sTF/79qQUmfi4KvHYM8yqH8d9P4PVAp3u9xiywLCGFOgdh07w+Bpkazec5IO4ZUZfucVNAoNgXWfweJXQQRuGwkRjzmPjWssIIwxBSI1PYOPl+5izJJdlAoOYMSdrbg3oi4Bp/fAl/fDvpXQoBv0/hAqhrldrsECwhhTAFbvPsHg6ZHsOnaW3m1qMbRXC6qGBMOasfDj6xAQ5Hyc1PZhGzUUIhYQxhifOZ18nrfnbWPSugPUqVSaLx69iq5Nq8GJXTD5Cdj/KzS+BXp9ABVqu12uycICwhiT71SVWZsP8cacaE4lp/GX6xrw9E2NKRMk8MtH8NMbEFQS+o6FNvfbqKGQsoAwxuSrAyeTGTIjiuU7jtGmTgW+fKwDLWtVgGPbYeYTELcWmvZ0LkSXr+l2uSYXPptYLCJ1RWSJiMSIyFYReTqbPs1E5FcRSRWRZ7O09RCR7SISKyIv+qpOY0z+SM/wMG75Lm5+fxnr957k1dtbMO3vnWlZPQRWvg9ju8CJWLjzU7j/OwsHP+DLEUQ6MEhVN4hIOWC9iCxW1ehMfU4CTwF9Mx8oIoHAaOBmIA5YKyKzshxrjCkkNh84zUvTIomOT+Sm5tV5vU9LalUsDUeinVHDoQ3Q/HZn1FC2mtvlmjzyWUCoajwQ732cJCIxQG0gOlOfo8BREbkty+EdgFhV3Q0gIhOBPpmPNca472xqOu8t2sEXv+whtGxJxj7Uju4tayCedFj2Lix7B0qVh7s/h5Z32LUGP1Mg1yBEJBxoC6zO4yG1gQOZnscBHXN47wHAAICwMJs7bUxB+SH6CK/MjOJQQgoPdQrj+R7NKF8qGA5Hwoy/w+Et0PJO6PkuhIS6Xa65DD4PCBEpC0wFBqpqYl4Py+Y1za6jqo4DxgFERERk28cYk3+OJqbw2uxo5kbG06R6Wab2u5r29SpD+nlYMhxWvAelK8N93zgfKxm/5dOAEJFgnHD4VlWnXcKhcUDdTM/rAIfyszZjzKXxeJQJa/czYr6zic+ztzRhwHUNKREUAIc2wown4OhWaH0f9BgBZSq7XbL5g3wWECIiwGdAjKqOvMTD1wKNRaQ+cBC4H+iXzyUaY/Io9mgSL02LZO3eU3RqUJnhd7SiQdWykJYCP7wDP4+CkKrwwERoeqvb5Zp84ssRRGfgYSBSRDZ5XxsMhAGo6lgRqQGsA8oDHhEZCLRQ1UQReRJYCAQC41V1qw9rNcZkIzU9gzFLdjFmaSxlSgTxr7tbc0/7OogIxK1zrjUc3w5XPgTd34LSFd0u2eQjX85iWkn21xIy9zmM8/FRdm3zgHk+KM0Ykwdr9pzkpWlb/v/6Sa/c3oLQsiUh7Rz89CasGgPlasKDU6HxTW6Xa3zA7qQ2xvxOwrk0RszfxoQ1+6ldsTSfP3oV3Zp6713Y96tzX8PJXdD+Ebj5DWcaqymSLCCMMYCzftL8qMO8OmsrJ86k8qdr6/PPm5sQUjIIzp91Vl1d/QlUrAv9Z0KDrm6XbHzMAsIYw6HT53hlZhQ/xBylZa3yjP+/q2hVp4LTuGc5zPoHnNoLHQbAja9CybKu1msKhgWEMcVYhkf5+te9vLtwOxmqDO7ZjMc61ycoMABSk2DxK7BuPFSqD4/MhfBr3S7ZFCALCGOKqe2Hk3hx2hY27j9Nl8ahvNW3FWFVyjiNsT/A7IGQEAdXPwndhkCJMq7WawqeBYQxxUxKWgYf/RTL2GW7KFcqiPfva0PfK2s7U1fPnYZFQ2DjNxDaBB5fBHU7uF2ycYkFhDHFyKrdJxg8LZLdx89yZ9vavNyrBZVDSjiN2xfAnIFw5ghc+0+4/kUILuVqvcZdFhDGFAMJyWm8PT+GiWsPULdyab56rAPXNanqNCafhAUvwpZJUK2Fs1dD7XbuFmwKBQsIY4owVWVepDN19eTZVAZc14CBNzWmTAnvP/3oWTB3EJw7Cde/AF2ehaAS7hZtCg0LCGOKqPiEcwydcWHq6hePXsUVtb1TV88cg/nPwdbpUKM1PDwNarRyt2BT6FhAGFPEeDzKt6v38c6C7aR7PL+fuqoKUVNh3nNw/gzc8DJ0HgiBwW6XbQohCwhjipCdR5J4cVok6/ed+t+pq4nxzsdJ2+dC7QjoMxqqNXO3YFOoWUAYUwSkpmfw8dJdjF4SS0jJIN67pw13tvNOXVWFTd/BwpcgPRVueQs6/Q0CAt0u2xRyFhDG+Ln1+07y4tRIdh49Q58razG0l3fVVYDTB2D207DrRwi7Bvp8BFUauluw8RsWEMb4qaSUNN5duJ2vV+2jVoXSfP7IVXRr5l111eOB9Z87S2WoQs9/Q8TjEBDgbtHGr1hAGOOHfog+wsszojiSlMIj14Tz7C1NnVVXAU7uhllPwd4Vzoqrt38Ileq5Wq/xTxYQxviRY0mpDJu9lblb4mlavRwfP9SOtmGVnEZPBqwZ5yzLHRAEvf8DbR8GyXXfLmNylKeAEJFKQGPg/993r6rLfVWUMeb3VJUp6+N4c24M585nMOjmJvzl+oaUCPJ+ZHRsh7ORT9waaNwder0PFWq7W7TxexcNCBH5E/A0ztagm4BOwK/ADT6tzBgDwP4TyQyeHsnK2ON0CK/M8Dtb0aiadz+GjHT45UNYOsJZbfXO/0Kre2zUYPJFXkYQTwNXAatUtZuINANe821Zxpj0DA+f/7yX9xZvJygggDf7XkG/DmEEBHh/+B+OckYN8ZugeW+47T0oW83Vmk3RkpeASFHVFBFBREqq6jYRaXqxg0SkLvAVUAPwAONUdVSWPgKMAnoCycAjqrrB27YXSAIygHRVjbiE8zLGr0UfSuTFaVvYEpfATc2r80bfltSsUNppTD8PK96DFf+G0pXgni+hZV9X6zVFU14CIk5EKgIzgMUicgo4lIfj0oFBqrpBRMoB60VksapGZ+pzK861jcZAR+Bj75+/6aaqx/PwvYwpElLSMvjwx518snw3lcoEM7pfO3q2quHc8AZwcIMzajgaDa3vgx4joExld4s2RVZeAuLPqnoaGCYiS4AKwIKLHaSq8UC893GSiMQAtYHMAdEH+EpVFVglIhVFpKb3WGOKlcx7NdzTvg5DbmtOxTLelVXTzsHSt+GX/0DZ6vDAJGjaw92CTZGXY0CIyO3AeCBNRDzAvaq67HK+iYiEA22B1VmaagMHMj2P874WDyiwSEQU+ERVx13O9zamsEtMSePteduYsGY/YZXL8M3jHbm2ceiFDvtXOaOGE7HQrj/c/AaUruhavab4yG0E8RbQxXvNoSPwL+D6S/0GIlIWmAoMVNXErM3ZHKLePzur6iERqYbz0da27KbWisgAYABAWFjYpZZnjKsWRx/h5RmRHEty9mr4501NKF3Cu0ZS6hnnnoY146BCXXh4OjS0yYOm4OQWEOmqug1AVVd7ryNcEhEJxgmHb1V1WjZd4oC6mZ7XwXt9Q1V/+/OoiEwHOgD/ExDekcU4gIiICM3abkxhlPmGt2Y1yvHf/hG0rlPxQoddS2D2U3B6P3QYADe+CiXLulavKZ5yC4hqIvJMTs9VdWRub+ydofQZEJNL31nAkyIyEefidIKqxotICBDgvXYRAtwCvJ6H8zGmUFNVpm44yBtzojl3PoPnujdlwHUNCA703vB27jQsehk2fg1VGsGjC6De1a7WbIqv3ALiv0C5XJ5fTGfgYSBSRDZ5XxsMhAGo6lhgHs4U11icaa6PevtVB6Z7Z24EAd+p6kUvjBtTmB046dzwtmLncSLqVWLEXa0v3PAGsH0+zPknnDkCnZ+Gri9BcGn3CjbFXo4Boap/6GY4VV1J9tcYMvdR4IlsXt8NtPkj39+YwiLDo3z5y17+vWg7ArzRpyUPdqx34Ya3sydgwQsQORmqtYD7v4Xa7V2t2RjIfRbTh7kdqKpP5X85xhQtO44k8fyULWw6cJpuTavy5h2tqF3ROypQdfaEnvccpCQ4I4Zrn4GgEu4WbYxXbh8x/RWIAr7HuXBsi7sYk0fn0z2MWRrL6CWxlCsVzKj7r6R3m1oXbnhLOuxs/7ltDtRqC31mQfWW7hZtTBa5BURN4B7gPpy7oicBU1X1VEEUZoy/2rj/FC9M3cKOI2fo693hrcpvO7xl3f7z5teh0xMQaCvvm8Int2sQJ4CxwFgRqQ08AGwVkRdU9euCKtAYf5F8Pp33Fu1g/M97qFG+1O93eANnyursgd7tP6+G3h9BaCPX6jXmYvKy3Hc7nHC4GZgPrPd1Ucb4m59jj/PitC0cOHmOhzvV4/keTSlXKthp9Hhg3Wew+FXnuW3/afxEbhepXwN6ATHAROAlVU0vqMKM8QcJ59IYPjeGSesOUD80hEkDOtGxQZULHY7HwqwnYf+vzl3Qt4+CinbHv/EPuY0ghgK/TTdtAwz3XmATnBmqrX1fnjGF18Kthxk6I4oTZ8/zt64NefrGxpQK9i6TkZEOv34ES4ZDcCnoMwau7Gcb+Ri/kltA1C+wKozxI8eSUhk2aytzI+NpUbM84x+5iitqV7jQIfNGPs16ORv5lKvhWr3GXK7cLlLvK8hCjCnsVJVpGw7yek7LZKSnejfyec+7kc8X0KKvjRqM37K5dcbkQdypZIZMj2LZjmO0r1eJd7IukxG33hk1HIuxjXxMkWEBYUwuPB7lm9X7eGf+NhR4rXdLHu6UaZmM88mw5C1YNQbK1YR+30OT7q7WbEx+yW0W0zicaa0/qGpSwZVkTOGw+9gZXpi6hbV7T9GlcShv39mKOpXKXOiwZwXM+gec2gPtH3VueitV3r2CjclnuY0gxgM9gGdE5DywCFigqpsLpDJjXJKe4eHTlXsYuXgHpYICePfu1tzdvs6FZTJSEmDxK7D+C6hUH/5vDtTv4mrNxvhCbhepVwGrcPairoKzJ8MgEWkFbMQJi+8LpkxjCkZMfCLPT9lC5MEEureszht9rqBa+VIXOuxY6NwNfeYwXPMP6DoYSpTJ8f2M8Wd5ugbhXXZjgvcLEWmPM7owpkhITc9g9E+xjFm6i4plghndrx09W9W4MGo4exwWvHhhSe77voE6tiS3Kdou6yK1qq7HltwwRUTmxfXuaFubV3q1oFKId8ltVYiaCvOfh5REW5LbFCs2i8kUW+fOZ/Deou2M/3kP1cuXYvwjEdzQrPqFDomHYM4zsGO+s4FP74+gegv3CjamgFlAmGJp1e4TvDB1C/tOJNOvYxgv3drswuJ6qrDhS1g0FDLS4Ja3oNPfICDQ3aKNKWB5Wc21FPB34FpAgZXAx6qa4uPajMl3SSlpjJi/jW9X7yeschm++3NHrmkYeqHDyd0w+2nYsxzCuziL61Vp6F7BxrgoLyOIr4Ak4D/e5w8AX+NsJmSM31i6/SiDp0USn5jC49fWZ9AtTShTwvtPwJMBqz6Gn96EwGDo9QG0+z9bktsUa3kJiKaq2ibT8yUiYvdCGL+RkJzGG3OjmbI+jkbVyjL1b9fQLqzShQ5Hop0luQ+uhya3Qq+RUL6WewUbU0jkJSA2ikgn730RiEhH4OeLHSQidXFGHzUADzBOVUdl6SPAKKAnkAw8oqobvG09vG2BwKeqOiLPZ2WM16KthxkyI4qTZ8/zRLeG/OOGTEtyp6fCipHO4nqlysNdn8EVd9niesZ45SUgOgL9RWS/93kYECMikeS+L0Q6MEhVN4hIOWC9iCxW1ehMfW4FGnu/OgIfAx1FJBAYjbOLXRywVkRmZTnWmBydOJPKsNnRzN58iOY1y/N51iW549bBzCedxfVa3essrhdSJec3NKYYyktAXNYNcaoaD8R7HyeJSAxQG8j8Q74P8JWqKrBKRCqKSE0gHIhV1d0AIjLR29cCwuRKVZmzJZ5XZ20lKSWNQTc34a9dG15Ykvv8WfjJu7he+Vq2uJ4xubhoQOTHvhAiEg60BVZnaaoNHMj0PM77Wnavd8zhvQcAAwDCwmwrx+LsaGIKQ2ZEsTj6CG3qVOBfd3eiaY1yFzrsWuLMUDq9z9kT+qZhtrieMbnw+X0QIlIWmAoMVNXErM3ZHKK5vP6/L6qOA8YBREREZNvHFG2qypT1cbwxJ5rUdA+Dezbjsc71Cfpt1HDuNCwaAhu/gcoN4ZF5EN7Z1ZqN8Qc+DQgRCcYJh29VdVo2XeKAupme1wEOASVyeN2Y3zl0+hwvTYtk2Y5jXBXubOTToGqmjXxiZsPcZ+HsMeg8ELq+CMGlXavXGH/is4DwzlD6DIhR1ZE5dJsFPOm9xtARSFDVeBE5BjQWkfrAQeB+oJ+vajX+R1WZsOYAw+fF4FFl2O0t6H91+IWNfJKOwPznIHomVG8F/SZCrbbuFm2Mn/HlCKIz8DAQKSKbvK8NxpkFhaqOBebhTHGNxZnm+qi3LV1EngQW4kxzHa+qW31Yq/EjB04m8+K0Lfwce4JrGlbhnbtaU7eyd8ltVdj0LSwcAmnn4MZX4JqnnJvfjDGXxGcBoaoryf5aQuY+CjyRQ9s8nAAxBriw/eeI+dsIEOGtO66gX4ewC0tyn9wDcwbC7qUQdjX0/g+ENnazZGP8mi3WZ/zCvhNneX7KFlbvOUmXxqGMuKs1tSt6ryV4MmD1WGeZDAmAnv92ZinZMhnG/CEWEKZQy/AoX/yyl3cXbiM4MIB/3dWaeyIybf95JNrZF/rgOmh8C9w2EirWzf1NjTF5YgFhCq1dx87w/JQtrN93ihuaVWP4Ha2oUcG7/WfWZTLu/BRa3W3LZBiTjywgTKGT4VE+XbGbkYt3UCo4kPfva0PfK2tfGDUcWOuMGo7FQKt7vMtkhOb+psaYS2YBYQqVnUeSeHbKFjYfOE33ltV5o+8VVCvnHTWknnGuM6wea8tkGFMALCBMoZCe4WHcit18sHgnISUD+fCBttzeuuaFUUPsDzD7n5CwH676szN91ZbJMManLCCM67YfTuK5KZvZEpdAz1Y1eL3PFYSWLek0Jp+EBS/BlokQ2gQeWwhhndwt2JhiwgLCuCYtw8Mny3bx4Y+xlC0VxOh+7bitdU2nURWipsL8FyDlNFz3HHR5FoJLuVqzMcWJBYRxRUx8Is9N2UzUwURua12T13u3pMpvo4aEOJg7CHYsgFrtoPdMqHGFuwUbUwxZQJgClZbh4eOlu/jPTzupUDqYjx9sx62tvKMGjwfWfQY/vAaedLjlLej0NwgIdLdoY4opCwhTYKIPJfLs5M1ExyfSu00thvVuSeWQEk7j8Z3O1NX9v0KDrtDrA6hc381yjSn2LCCMz6VleBi9JJaPfoqlYpkSjH2oPT2uqOE0pp+HX0bBsn9BcBnoMwau7Gc3vBlTCFhAGJ/KPGroc2Utht3ekkq/jRri1jujhqNboeUd0OMdKFfd3YKNMf+fBYTxiayjhk8ebk/3lt5Rw2/7Qq/+GMrWgPsnQLOe7hZsjPkfFhAm3+U6aoj90VmS+/R+777Qr0KpCq7Wa4zJngWEyTe5jhqST8LCwbB5AlRpDI/Oh3rXuFuwMSZXFhAmX+Q4arAb3ozxWxYQ5g/JddSQ+Ya32u2h9yyo3tLdgo0xeWYBYS5bTLwzath6yLmv4bXe3lGDJwPWfgY/vgbqge7DoeNf7YY3Y/yMBYS5ZGkZHsYu3cWH3ruhf3dfw9EYmPUUxK2BhjdCr/ehUj13CzbGXBafBYSIjAd6AUdV9X8W0hGRSsB4oCGQAjymqlHetr1AEpABpKtqhK/qNJdm++Eknp28mciDCdzuHTVUDinh3eHtPWeXt5Ll4I5x0Ppeu+HNGD/myxHEF8BHwFc5tA8GNqnqHSLSDBgN3JipvZuqHvdhfeYSpGd4+GT5bkb9sJNypYJ+v4bS/lXOqOH4dmh9n/ORku3wZozf81lAqOpyEQnPpUsL4G1v320iEi4i1VX1iK9qMpdn5xFn1LA5LoHbWtXk9T7elVdTEp3rDGs/hQp14cGp0Pgmt8s1xuQTN69BbAbuBFaKSAegHlAHOAIosEhEFPhEVcfl9CYiMgAYABAWFubzoouT9AwP/12xh/cX7yCkZCAf9WtLr9a1nMZt85wZSknx0PFvcMPLULKsuwUbY/KVmwExAhglIpuASGAjkO5t66yqh0SkGrBYRLap6vLs3sQbHuMAIiIi1PdlFw+xR8/w7OTNbPLuDf1m31ZULVcSko7A/OchegZUawH3fQ117BKRMUWRawGhqonAowDibDy8x/uFqh7y/nlURKYDHYBsA8LkrwyPMn7lHt5dtJ3SwYGMuv9KerephQCs/xIWD4W0c9DtZej8NASVcLtkY4yPuBYQIlIRSFbV88CfgOWqmigiIUCAqiZ5H98CvO5WncXJnuNneW7yZtbtO8VNzasx/I5WVCtfCo7HwuynYd9KqNcZbh8FoY3dLtcY42O+nOY6AegKhIpIHPAqEAygqmOB5sBXIpIBRAOPew+tDkx3BhUEAd+p6gJf1WnA41G++nUvIxZsIzgwgPfuacOd7WojnnRY/m9nr4agUk4wtO0PAQFul2yMKQC+nMX0wEXafwX+59dQVd0NtPFVXeb3DpxM5rkpm1m1+yTXN6nKiLtaUbNCaYhb50xdPboVWvSBW/8F5Wq4Xa4xpgDZndTFlKry3Zr9DJ8bg4jwzl2tuDeiLnL+DMx/EVaPhXI14f7voNltbpdrjHGBBUQxdOj0OV6YuoUVO4/TuVEV3rmrNXUqlYEdC2HOM5B4ECIeg5uGQanybpdrjHGJBUQxoqpMWR/H67OjSfcob/S9goc6hiFnj8HkJ2DrNKjaDB5bCGEd3S7XGOMyC4hi4mhiCoOnR/JDzFE6hFfm3XtaU69yGdj4DSx6GdKSoetguHYgBJV0u1xjTCFgAVHEqSqzt8Tzyswozp3P4OXbmvNo5/oEntoNXz4Ne1dA2NXODKWqTd0u1xhTiFhAFGEnzqQydGYU8yIP06ZuRd67pw2NqpSEn0c6U1cDSzjLcbd7xKauGmP+hwVEEbVw62GGTI8k4Vwaz3Vvyl+ua0BQ/EYY9xQciYLmt8Ot70L5mm6XaowppCwgipiEc2m8Nmsr0zYepEXN8nzzp440qySw6CVY/YkzdfW+b6F5L7dLNcYUchYQRciyHcd4YcoWjp1J5akbG/Nkt0aU2LUQvhsEiYfgqj/Bja/Y1FVjTJ5YQBQBZ1LTGT4vhu9W76dRtbKM69+e1hVSYNqjzqqrVZvD419A3Q5ul2qM8SMWEH5u9e4TPDtlM3GnzvGX6xrwz5saUWrLN/D1q5Ce4uzTcI2tumqMuXQWEH4qJS2DdxduZ/zPewirXIbJf7maiJBj8M3tsP9XCO8CvT6A0EZul2qM8VMWEH5o84HTPPP9JnYdO8vDnerx0i31KbP6Q1jxHpQIgT6j4coHwVkR1xhjLosFhB85n+7ho592MnrpLqqVK8nXj3egS/AOGN8Vju+AVvdA97ehbFW3SzXGFAEWEH5i++Eknvl+E1sPJXJXuzq8cnMtKqx4AzZ8CRXD4MGp0Pgmt8s0xhQhFhCFXIZH+e+K3YxctIPypYP45KF2dOcX+PRuSD4B1/wDur7kfLRkjDH5yAKiENt7/CzPercA7dGyBm/fUIFKS5+CnYug5pXw0BSoaXsrGWN8wwKiEFJVvlntbOYTFCh8cE9L+qTORr4YDohznaHDAAi0vz5jjO/YT5hCJj7hHM9PcTbz6dI4lJFdoOqS/hC/GRp3h9veg4p13S7TGFMMWEAUEqrKzE2HeGVmFGkZytu9GnD/ma+RCR9DSFW45wto0demrhpjCozPAkJExgO9gKOqekU27ZWA8UBDIAV4TFWjvG09gFFAIPCpqo7wVZ2Fwcmz53l5RiTzIg/TLqwiYzocp8aKeyDhALR/1Nn6s3RFt8s0xhQzvhxBfAF8BHyVQ/tgYJOq3iEizYDRwI0iEuh9fDMQB6wVkVmqGu3DWl3zY8wRXpgaScK58wzrVpn+CWMJmDMj09afndwu0RhTTPksIFR1uYiE59KlBfC2t+82EQkXkepAAyBWVXcDiMhEoA9QpALiTGo6b86JZuLaAzSvHsLsTtupufavtn6SMabQcPMaxGbgTmCliHQA6gF1gNrAgUz94oCOOb2JiAwABgCEhYX5rNj8tHr3CQZN3syh0+cY2gEePfkWASvX2PpJxphCxc2AGAGMEpFNQCSwEUgHsrsKqzm9iaqOA8YBRERE5NivMEhJy2Dk4h38d8VuGlUK5OerVlIzahyULA99P4Y2D9hFaGNMoeFaQKhqIvAogIgIsMf7VQbIPI+zDnCowAvMZ1sPJfDMpM1sP5LEKy2O8MjJDwnYsgfa9INb3oSQKm6XaIwxv+NaQIhIRSBZVc8DfwKWq2qiiKwFGotIfeAgcD/Qz606/6j0DA+fLN/NBz/soH7pc6xqNpMau2dC5QbQfyY06Op2icYYky1fTnOdAHQFQkUkDngVCAZQ1bFAc+ArEcnAuQD9uLctXUSeBBbiTHMdr6pbfVWnL+09fpZnvt/Ehv2neLPeJvolfErA/jNw3fPQZRAEl3K7RGOMyZEvZzE9cJH2X4HGObTNA+b5oq6CoKp8u3o/b82NoXHgIdbV/pbQI+sg7GrnInS1Zm6XaIwxF2V3Uuezo4kpPD91C79uP8iIaj/Q98wk5GwZuH0UtO0PAQFul2iMMXliAZGP5m6JZ8iMSNqkbWFN5a+okLgPWt0L3d+CstXcLs8YYy6JBUQ+SDiXxrBZW1m6MYb3KkzmRs+PUDIc7pwGjW50uzxjjLksFhB/0C+7jvPspE1cm7yYX8pOoFTaWbj2Gbj+eQgu7XZ5xhhz2SwgLlNKWgbvLtzOkp9/ZnSZL2gbFAU1OzoXoau3cLs8Y4z5wywgLkPUwQSen7iGW059x6JSswkMLgO3vg/tHrGL0MaYIsMC4hJkeJSxy3bx64/T+ThoPPWCDkHLu6H7cChX3e3yjDEmX1lA5NH+E8kMm7iU2w6P4ZugFWRUCIfb7SK0MabosoC4CFVl8tr9bJkzhpEB31A+KAXtPIjA65+zi9DGmCLNAiIXJ86k8sHEOfTa/y/uDdhGaq2OBPT90O6ENsYUCxYQOVgatY/Yqa8x1DMDT4kQPLd+SMm2D9tFaGNMsWEBkcXZ1HQmTfySG3a9Q9eAIyQ0vYsKvd+BslXdLs0YYwqUBUQmUdt3cGTyIB5LX87J0nU5f/cMKjTu5nZZxhjjCgsIID09nWUT3uWq2A9pIuc50Pop6t4+xJbjNsYUa8U+IBJOHiN+TC9uTN/GjpB21HpoDHVrNXe7LGOMcV2xD4jyFauws0wdNjZ+hLa9/mp7QhtjjFexDwgJCCDimalul2GMMYWOzdk0xhiTLQsIY4wx2bKAMMYYky2fBYSIjBeRoyISlUN7BRGZLSKbRWSriDyaqW2viESKyCYRWeerGo0xxuTMlyOIL4AeubQ/AUSrahugK/CeiJTI1N5NVa9U1QjflWiMMSYnPgsIVV0OnMytC1BORAQo6+2b7qt6jDHGXBo3r0F8BDQHDgGRwNOq6vG2KbBIRNaLyIDc3kREBojIOhFZd+zYMd9WbIwxxYibAdEd2ATUAq4EPhKR8t62zqraDrgVeEJErsvpTVR1nKpGqGpE1aq2oJ4xxuQXN2+UexQYoaoKxIrIHqAZsEZVDwGo6lERmQ50AJZf7A3Xr19/XET2XWY9ocDxyzzWX9k5F33F7XzBzvlS1cupwc2A2A/cCKwQkepAU2C3iIQAAaqa5H18C/B6Xt5QVS97CCEi64rbBXE756KvuJ0v2DnnJ58FhIhMwJmdFCoiccCrQDCAqo4F3gC+EJFIQIAXVPW4iDQApjvXrgkCvlPVBb6q0xhjTPZ8FhCq+sBF2g/hjA6yvr4baOOruowxxuSN3Ul9wTi3C3CBnXPRV9zOF+yc840414iNMcaY37MRhDHGmGxZQBhjjMlWsQoIEekhIttFJFZEXsymXUTkQ2/7FhFp50ad+SkP5/yg91y3iMgvIuL3EwQuds6Z+l0lIhkicndB1ucLeTlnEenqXQBzq4gsK+ga81se/t/OcUFQf5SHBVDz/+eXqhaLLyAQ2AU0AEoAm4EWWfr0BObjTLvtBKx2u+4COOdrgErex7cWh3PO1O8nYB5wt9t1F8Dfc0UgGgjzPq/mdt0FcM6DgXe8j6virPdWwu3a/8A5Xwe0A6JyaM/3n1/FaQTRAYhV1d2qeh6YCPTJ0qcP8JU6VgEVRaRmQReajy56zqr6i6qe8j5dBdQp4BrzW17+ngH+AUwFjhZkcT6Sl3PuB0xT1f3grFJQwDXmt7ycc5FaEFQvvgBqvv/8Kk4BURs4kOl5nPe1S+3jTy71fB7H+Q3En130nEWkNnAHMLYA6/KlvPw9NwEqichS7yKY/QusOt/IyznntiBoUZTvP7/cXGqjoEk2r2Wd45uXPv4kz+cjIt1wAuJan1bke3k55w9w7tzP8N6x7+/ycs5BQHuc5W1KA7+KyCpV3eHr4nwkL+f824KgNwANgcUiskJVE31cm1vy/edXcQqIOKBupud1cH6zuNQ+/iRP5yMirYFPgVtV9UQB1eYreTnnCGCiNxxCgZ4ikq6qMwqkwvyX1/+3j6vqWeCsiCzHWbHAXwMiL+ec44KgBVNigcv3n1/F6SOmtUBjEanv3bnufmBWlj6zgP7e2QCdgARVjS/oQvPRRc9ZRMKAacDDfvzbZGYXPWdVra+q4aoaDkwB/u7H4QB5+397JtBFRIJEpAzQEYgp4DrzU17O+bcFQcm8IGiBVlmw8v3nV7EZQahquog8CSzEmQExXlW3ishfve1jcWa09ARigWSc30D8Vh7P+RWgCjDG+xt1uvrxSph5POciJS/nrKoxIrIA2AJ4gE9VNdvpkv4gj3/P2S4I6lrRf1AeFkDN959fttSGMcaYbBWnj5iMMcZcAgsIY4wx2bKAMMYYky0LCGOMMdmygDDGGJMtCwhjjDHZsoAwxhiTLQsIYy6DiHwiIp198L5nLrH/UyISIyLf5nctxtiNcsZcBhHZBLRX1Yx8ft8zqlr2Evpvw1lDa0+m1wTn33ZRXrnUFAAbQRi/JiJLRORm7+M3ReTDSzi2lYj8nOl5OxH5KQ/HNQd2ZA0HEQkXkW0i8qmIRInItyJyk4j8LCI7RaRDpr7PePtEicjAHL7PQyKyxrsL3CciEpilfSzOhjmzROSf3pHEGGAD3kXbRGSGd3nvrSIyINOx/b27jm0Wka/z8t/LFENu75JkX/b1R75wdtlaCjwIzAUCL+HYAODwb8cAS4B2eTjuGeCxbF4Px9mQppX3vdcD43HWAeoDzPD2a4+zP0EIzkY2W4G23rYz3j+bA7OBYO/zMUD/bL7nXpwVacNx1ljqlKW9svfP0kAUzrpbLYHtQGjmPvZlX1m/is1ifaZoUtXl3o9UngG6qrPHQwNgCFBBVXPcb1pVPSKyFWgpIo1xVv88LSKfXeTY7uS8ENoeVY0E8L73j6qq3gXjwr19rgWmq7P0NiIyDegCbMz0PjfiBMla7yKKpbn47nf71NlJLLOnROQO7+O6QGPgKmCKeheuU9XcdikzxZgFhPFrItIKqImz10ESgKruBh4XkSl5eItVQGfg70APVT2Y27HepbIrqmpO6+ynZnrsyfTcw4V/b3nZpUiAL1X1pTz0/c3ZLLV2BW4CrlbVZBFZCpTyvrddfDQXZdcgjN/y7rf7Lc7HN2dFpHsufX8UZ6vRrFYBb+L8Rn8wD9+2G85HUX/EcqCviJQRkRCc7U9XZOnzI3C3iFQDEJHKIlLvEr9PBeCUNxya4Wxk/9t73ysiVX5778s9EVO0WUAYv+T9TX4aMEhVY3DW/h+WQ98AoBHZb/i+Dee3/Hfy+K1vBRZcar2ZqeoG4Aucnc1W4+zNsDFLn2jgZWCRiGwBFuOMlC7FAiDIe/wbOGGIqm4F3gKWichmYCSAiMwTkVqXe16m6LFprqbI8f5m/BZwM85WqrNxLio/k03fj4C1qvpldseq6ttZ+m8AOqpqmm/Pwhj3WUCYYklEGuLMevpZVR93ux5jCiMLCGOMMdmyaxDGGGOyZQFhjDEmWxYQxhhjsmUBYYwxJlsWEMYYY7JlAWGMMSZbFhDGGGOy9f8APZuVEluMz54AAAAASUVORK5CYII=\n",
          "text/plain": [
           "<Figure size 432x288 with 1 Axes>"
          ]
         },
         "metadata": {
          "needs_background": "light"
         },
         "output_type": "display_data"
        }
       ],
       "source": [
        "plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e6)\n",
        "plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e6)\n",
        "plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='p / MPa')\n",
        "plt.show()"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "a9c9fe55",
       "metadata": {},
       "source": [
        "Isn't that exciting!\n",
        "\n",
        "You can also provide an optional set of flags to the function to control other behaviors of the function, and switch between simple Euler and adaptive RK45 integration (the default)"
       ]
      },
      {
       "cell_type": "raw",
       "id": "264c5123",
       "metadata": {
        "raw_mimetype": "text/restructuredtext"
       },
       "source": [
        "The options class is here: :py:meth:`TVLEOptions <teqp.teqp.TVLEOptions>`"
       ]
      },
      {
       "cell_type": "markdown",
       "id": "d4193110",
       "metadata": {},
       "source": [
        "Supercritical isotherms should work approximately in the same manner"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "id": "c5b925ad",
       "metadata": {},
       "outputs": [],
       "source": [
        "Tc_K = [190.564, 154.581]\n",
        "pc_Pa = [4599200, 5042800]\n",
        "acentric = [0.011, 0.022]\n",
        "model = teqp.canonical_PR(Tc_K, pc_Pa, acentric)\n",
        "model1 = teqp.canonical_PR([Tc_K[0]], [pc_Pa[0]], [acentric[0]])\n",
        "T = 170.0 # [K] # Note: above Tc of the second component\n",
        "rhoL0, rhoV0 = model1.superanc_rhoLV(T) # start off at pure of the first component\n",
        "j = teqp.trace_VLE_isotherm_binary(model, T, np.array([rhoL0, 0]), np.array([rhoV0, 0]))\n",
        "df = pandas.DataFrame(j) # Now as a data frame\n",
        "plt.plot(df['xL_0 / mole frac.'], df['pL / Pa']/1e6)\n",
        "plt.plot(df['xV_0 / mole frac.'], df['pL / Pa']/1e6)\n",
        "plt.gca().set(xlabel='$x_1,y_1$ / mole frac.', ylabel='p / MPa')\n",
        "plt.show()"
    
      "celltoolbar": "Raw Cell Format",
    
      "kernelspec": {
       "display_name": "Python 3 (ipykernel)",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.10.4"
      }
     },
     "nbformat": 4,
     "nbformat_minor": 5
    }