multifluid.hpp 23.83 KiB
#pragma once
#include "nlohmann/json.hpp"
#include <Eigen/Dense>
#include <fstream>
#include <string>
#include <cmath>
#include <optional>
#include "teqp/types.hpp"
#include "MultiComplex/MultiComplex.hpp"
// See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
namespace Eigen {
template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
{
enum {
IsComplex = 1,
IsInteger = 0,
IsSigned = 1,
RequireInitialization = 1,
ReadCost = 1,
AddCost = 3,
MulCost = 3
};
};
}
template<typename EOSCollection>
class CorrespondingStatesContribution {
private:
const EOSCollection EOSs;
public:
CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
}
return alphar;
}
};
template<typename FCollection, typename DepartureFunctionCollection>
class DepartureContribution {
private:
const FCollection F;
const DepartureFunctionCollection funcs;
public:
DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
template<typename TauType, typename DeltaType, typename MoleFractions>
auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
resulttype alphar = 0.0;
auto N = molefracs.size();
for (auto i = 0; i < N; ++i) {
for (auto j = i+1; j < N; ++j) {
alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
}
}
return alphar;
}
};
template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
class MultiFluid {
public:
const ReducingFunction redfunc;
const CorrespondingTerm corr;
const DepartureTerm dep;
const double R = 1.380649e-23 * 6.02214076e23; ///< Exact value, given by k_B*N_A
MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
template<typename TType, typename RhoType>
auto alphar(TType T,
const RhoType& rhovec,
const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
{
typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
auto molefrac = rhovec / rhotot_;
return alphar(T, rhotot_, molefrac);
}
template<typename TType, typename RhoType, typename MoleFracType>
auto alphar(const TType &T,
const RhoType &rho,
const MoleFracType& molefrac) const
{
auto Tred = forceeval(redfunc.get_Tr(molefrac));
auto rhored = forceeval(redfunc.get_rhor(molefrac));
auto delta = forceeval(rho / rhored);
auto tau = forceeval(Tred / T);
auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
return forceeval(val);
}
};
class MultiFluidReducingFunction {
private:
Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
template <typename Num>
auto cube(Num x) const {
return x*x*x;
}
template <typename Num>
auto square(Num x) const {
return x*x;
}
public:
Eigen::ArrayXd Tc, vc;
template<typename ArrayLike>
MultiFluidReducingFunction(
const Eigen::MatrixXd& betaT, const Eigen::MatrixXd& gammaT,
const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV,
const ArrayLike& Tc, const ArrayLike& vc)
: betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV), Tc(Tc), vc(vc) {
auto N = Tc.size();
YT.resize(N, N); YT.setZero();
Yv.resize(N, N); Yv.setZero();
for (auto i = 0; i < N; ++i) {
for (auto j = i + 1; j < N; ++j) {
YT(i, j) = betaT(i, j) * gammaT(i, j) * sqrt(Tc[i] * Tc[j]);
YT(j, i) = betaT(j, i) * gammaT(j, i) * sqrt(Tc[i] * Tc[j]);
Yv(i, j) = 1.0 / 8.0 * betaV(i, j) * gammaV(i, j) * cube(cbrt(vc[i]) + cbrt(vc[j]));
Yv(j, i) = 1.0 / 8.0 * betaV(j, i) * gammaV(j, i) * cube(cbrt(vc[i]) + cbrt(vc[j]));
}
}
}
template <typename MoleFractions>
auto Y(const MoleFractions& z, const Eigen::ArrayXd& Yc, const Eigen::MatrixXd& beta, const Eigen::MatrixXd& Yij) const {
auto N = z.size();
typename MoleFractions::value_type sum1 = 0.0;
for (auto i = 0; i < N; ++i) {
sum1 = sum1 + square(z[i]) * Yc[i];
}
typename MoleFractions::value_type sum2 = 0.0;
for (auto i = 0; i < N-1; ++i){
for (auto j = i+1; j < N; ++j) {
sum2 = sum2 + 2.0*z[i]*z[j]*(z[i] + z[j])/(square(beta(i, j))*z[i] + z[j])*Yij(i, j);
}
}
return sum1 + sum2;
}
static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& components) {
// convert string to upper case
auto toupper = [](const std::string s){ auto data = s; std::for_each(data.begin(), data.end(), [](char& c) { c = ::toupper(c); }); return data;};
std::string comp0 = toupper(components[0]);
std::string comp1 = toupper(components[1]);
for (auto& el : collection) {
std::string name1 = toupper(el["Name1"]);
std::string name2 = toupper(el["Name2"]);
if (comp0 == name1 && comp1 == name2) {
return el;
}
if (comp0 == name2 && comp1 == name1) {
return el;
}
}
throw std::invalid_argument("Can't match this binary pair");
}
static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& components) {
auto el = get_BIPdep(collection, components);
double betaT = el["betaT"], gammaT = el["gammaT"], betaV = el["betaV"], gammaV = el["gammaV"];
// Backwards order of components, flip beta values
if (components[0] == el["Name2"] && components[1] == el["Name1"]) {
betaT = 1.0 / betaT;
betaV = 1.0 / betaV;
}
return std::make_tuple(betaT, gammaT, betaV, gammaV);
}
static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components) {
Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
auto N = components.size();
betaT.resize(N, N); betaT.setZero();
gammaT.resize(N, N); gammaT.setZero();
betaV.resize(N, N); betaV.setZero();
gammaV.resize(N, N); gammaV.setZero();
for (auto i = 0; i < N; ++i) {
for (auto j = i + 1; j < N; ++j) {
auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, { components[i], components[j] });
betaT(i, j) = betaT_; betaT(j, i) = 1.0 / betaT(i, j);
gammaT(i, j) = gammaT_; gammaT(j, i) = gammaT(i, j);
betaV(i, j) = betaV_; betaV(j, i) = 1.0 / betaV(i, j);
gammaV(i, j) = gammaV_; gammaV(j, i) = gammaV(i, j);
}
}
return std::make_tuple(betaT, gammaT, betaV, gammaV);
}
static auto get_Tcvc(const std::string& coolprop_root, const std::vector<std::string>& components) {
Eigen::ArrayXd Tc(components.size()), vc(components.size());
using namespace nlohmann;
auto i = 0;
for (auto& c : components) {
auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + c + ".json"));
auto red = j["EOS"][0]["STATES"]["reducing"];
double Tc_ = red["T"];
double rhoc_ = red["rhomolar"];
Tc[i] = Tc_;
vc[i] = 1.0 / rhoc_;
i++;
}
return std::make_tuple(Tc, vc);
}
static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& components) {
Eigen::MatrixXd F(components.size(), components.size());
auto N = components.size();
for (auto i = 0; i < N; ++i) {
F(i, i) = 0.0;
for (auto j = i + 1; j < N; ++j) {
auto el = get_BIPdep(collection, { components[i], components[j] });
if (el.empty()) {
F(i, j) = 0.0;
F(j, i) = 0.0;
}
else{
F(i, j) = el["F"];
F(j, i) = el["F"];
}
}
}
return F;
}
template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, Tc, betaT, YT); }
template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, vc, betaV, Yv); }
};
class MultiFluidDepartureFunction {
public:
enum class types { NOTSETTYPE, GERG2004, GaussianExponential, NoDeparture };
private:
types type = types::NOTSETTYPE;
public:
Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
void set_type(const std::string& kind) {
if (kind == "GERG-2004" || kind == "GERG-2008") {
type = types::GERG2004;
}
else if (kind == "Gaussian+Exponential") {
type = types::GaussianExponential;
}
else if (kind == "none") {
type = types::NoDeparture;
}
else {
throw std::invalid_argument("Bad type:" + kind);
}
}
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
switch (type) {
case (types::GaussianExponential):
return forceeval((n * exp(t*log(tau) + d*log(delta)-c*pow(delta, l)-eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum());
case (types::GERG2004):
return forceeval((n * exp(t*log(tau) + d*log(delta) -eta * (delta - epsilon).square() - beta * (delta - gamma))).sum());
case (types::NoDeparture):
return forceeval(0.0*(tau*delta));
default:
throw - 1;
}
}
};
auto get_departure_function_matrix(const std::string& coolprop_root, const nlohmann::json& BIPcollection, const std::vector<std::string>& components) {
// Allocate the matrix with default models
std::vector<std::vector<MultiFluidDepartureFunction>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
auto depcollection = nlohmann::json::parse(std::ifstream(coolprop_root + "/dev/mixtures/mixture_departure_functions.json"));
auto get_departure_function = [&depcollection](const std::string& Name) {
for (auto& el : depcollection) {
if (el["Name"] == Name) { return el; }
}
throw std::invalid_argument("Bad argument");
};
for (auto i = 0; i < funcs.size(); ++i) {
for (auto j = i + 1; j < funcs.size(); ++j) {
auto BIP = MultiFluidReducingFunction::get_BIPdep(BIPcollection, { components[i], components[j] });
auto function = BIP["function"];
if (!function.empty()) {
auto info = get_departure_function(function);
auto N = info["n"].size();
auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
auto eigorempty = [&info, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
if (!info[name].empty()) {
return toeig(info[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
};
MultiFluidDepartureFunction f;
f.set_type(info["type"]);
f.n = toeig(info["n"]);
f.t = toeig(info["t"]);
f.d = toeig(info["d"]);
f.eta = eigorempty("eta");
f.beta = eigorempty("beta");
f.gamma = eigorempty("gamma");
f.epsilon = eigorempty("epsilon");
Eigen::ArrayXd c(f.n.size()), l(f.n.size()); c.setZero();
if (info["l"].empty()) {
// exponential part not included
l.setZero();
}
else {
l = toeig(info["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
}
f.l = l;
f.c = c;
funcs[i][j] = f;
funcs[j][i] = f;
int rr = 0;
}
else {
MultiFluidDepartureFunction f;
f.set_type("none");
funcs[i][j] = f;
funcs[j][i] = f;
}
}
}
return funcs;
}
/// From Ulrich Deiters
template <typename T> // arbitrary integer power
T powi(const T& x, int n) {
if (n < 0){
using namespace autodiff::detail;
if constexpr (isDual<T> || isExpr<T> || isNumber<T>) {
return eval(powi(eval(1.0/x), -n));
}
else {
return powi(static_cast<T>(1.0) / x, -n);
}
}
else if (n == 0)
return static_cast<T>(1.0); // x^0 = 1 even for x == 0
else {
T y(x), xpwr(x);
n--;
while (n > 0) {
if (n % 2 == 1) {
y = y*xpwr;
n--;
}
xpwr = xpwr*xpwr;
n /= 2;
}
return y;
}
}
template<typename T>
auto powIV(const T& x, const Eigen::ArrayXd& e) {
Eigen::Array<T, Eigen::Dynamic, 1> o(e.size());
for (auto i = 0; i < e.size(); ++i) {
auto ei = e[i];
if constexpr (autodiff::detail::isDual<T>) {
if (ei == static_cast<int>(ei)) {
o[i] = powi(x, ei);
}
else {
o[i] = pow(x, ei);
}
}
else {
if (ei == static_cast<int>(ei)) {
o[i] = powi(x, ei);
}
else {
o[i] = pow(x, ei);
}
}
}
return o;
}
template<typename T>
auto pow(const std::complex<T> &x, const Eigen::ArrayXd& e) {
Eigen::Array<std::complex<T>, Eigen::Dynamic, 1> o(e.size());
for (auto i = 0; i < e.size(); ++i) {
o[i] = pow(x, e[i]);
}
return o;
}
template<typename T>
auto pow(const mcx::MultiComplex<T> &x, const Eigen::ArrayXd& e) {
Eigen::Array<mcx::MultiComplex<T>, Eigen::Dynamic, 1> o(e.size());
for (auto i = 0; i < e.size(); ++i) {
o[i] = pow(x, e[i]);
}
return o;
}
class MultiFluidEOS {
public:
enum class types { NOTSETTYPE, GERG2004, GaussianExponential, GaussianExponentialNonAnalytic };
private:
types type = types::NOTSETTYPE;
public:
Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
Eigen::ArrayXd na_A, na_B, na_C, na_D, na_a, na_b, na_beta, na_n;
void allocate(std::size_t N) {
auto go = [&N](Eigen::ArrayXd &v){ v.resize(N); v.setZero(); };
go(n); go(t); go(d); go(l); go(c); go(eta); go(beta); go(gamma); go(epsilon);
}
void allocate_na(std::size_t N) {
auto go = [&N](Eigen::ArrayXd& v) { v.resize(N); v.setZero(); };
go(na_A); go(na_B); go(na_C); go(na_D); go(na_a); go(na_b); go(na_beta); go(na_n);
}
void set_type(const std::string& kind) {
if (kind == "GaussianExponential") {
type = types::GaussianExponential;
}
else if (kind == "GaussianExponentialNonAnalytic") {
type = types::GaussianExponentialNonAnalytic;
}
else {
throw std::invalid_argument("Bad type to set_type:" + kind);
}
}
template<typename TauType, typename DeltaType>
auto alphar(const TauType& tau, const DeltaType& delta) const {
switch (type) {
case types::GaussianExponential:{
return forceeval((n*exp(t*log(tau) + d*log(delta) - c*powIV(delta, l) - eta*(delta - epsilon).square() - beta * (tau - gamma).square())).sum());
break;}
case types::GaussianExponentialNonAnalytic:
{
// All the "normal" terms
auto o1 = (n * exp(t * log(tau) + d * log(delta) - c * powIV(delta, l) - eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum();
// The non-analytic terms
auto square = [](auto x) { return x * x; };
auto delta_min1_sq = square(delta-1.0);
auto Psi = (exp(-na_C*delta_min1_sq -na_D*square(tau-1.0))).eval();
const Eigen::ArrayXd k = 1.0/(2.0*na_beta);
auto theta = ((1.0-tau) + na_A*pow(delta_min1_sq, k)).eval();
auto Delta = (theta.square() + na_B*pow(delta_min1_sq, na_a)).eval();
auto o2 = (na_n*pow(Delta, na_b)*delta*Psi).eval().sum();
return forceeval(o1 + o2);
break;
}
default:
throw -1;
}
}
};
auto get_EOS(const std::string& coolprop_root, const std::string& name)
{
using namespace nlohmann;
auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + name + ".json"));
auto alphar = j["EOS"][0]["alphar"];
std::size_t ncoeff_conventional = 0;
const std::vector<std::string> conventional_types = {"ResidualHelmholtzPower", "ResidualHelmholtzGaussian"};
const std::vector<std::string> weird_types = { "ResidualHelmholtzNonAnalytic" };
auto isallowed = [&](const auto &conventional_types, const std::string &name){
for (auto &a : conventional_types){ if (name == a){return true;};} return false;
};
for (auto& term : alphar) {
std::string type = term["type"];
if (!isallowed(conventional_types, type) & !isallowed(weird_types, type)){
throw std::invalid_argument("Bad type:" + type);
}
else{
if (isallowed(conventional_types, type)){
ncoeff_conventional += term["n"].size();
}
}
}
MultiFluidEOS eos;
eos.allocate(ncoeff_conventional); // Allocate arrays to the right size for conventional terms, fill with zero
eos.set_type("GaussianExponential"); // The default, generic formulation
auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
/// lambda function for adding non-analytic terms
auto add_na = [&eos, &toeig](auto &term){
auto eigorzero = [&term, &toeig](const std::string& name) -> Eigen::ArrayXd {
return toeig(term[name]);
};
eos.na_n = eigorzero("n");
eos.na_A = eigorzero("A");
eos.na_B = eigorzero("B");
eos.na_C = eigorzero("C");
eos.na_D = eigorzero("D");
eos.na_a = eigorzero("a");
eos.na_b = eigorzero("b");
eos.na_beta = eigorzero("beta");
eos.set_type("GaussianExponentialNonAnalytic");
};
std::size_t offset = 0;
for (auto &term: alphar){
if (term["type"] == "ResidualHelmholtzNonAnalytic") {
add_na(term); continue;
}
std::size_t N = term["n"].size();
auto eigorzero = [&term, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
if (!term[name].empty()) {
return toeig(term[name]);
}
else {
return Eigen::ArrayXd::Zero(N);
}
};
eos.n.segment(offset, N) = eigorzero("n");
eos.t.segment(offset, N) = eigorzero("t");
eos.d.segment(offset, N) = eigorzero("d");
eos.eta.segment(offset, N) = eigorzero("eta");
eos.beta.segment(offset, N) = eigorzero("beta");
eos.gamma.segment(offset, N) = eigorzero("gamma");
eos.epsilon.segment(offset, N) = eigorzero("epsilon");
Eigen::ArrayXd c(N), l(N); c.setZero();
if (term["l"].empty()) {
// exponential part not included
l.setZero();
}
else {
l = toeig(term["l"]);
// l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
for (auto i = 0; i < c.size(); ++i) {
if (l[i] > 0) {
c[i] = 1.0;
}
}
}
eos.c.segment(offset, N) = c;
eos.l.segment(offset, N) = l;
offset += N;
}
return eos;
}
auto get_EOSs(const std::string& coolprop_root, const std::vector<std::string>& names) {
std::vector<MultiFluidEOS> EOSs;
for (auto& name : names) {
EOSs.emplace_back(get_EOS(coolprop_root, name));
}
return EOSs;
}
auto build_multifluid_model(const std::vector<std::string>& components, const std::string& coolprop_root, const std::string& BIPcollectionpath) {
const auto BIPcollection = nlohmann::json::parse(std::ifstream(BIPcollectionpath));
auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(coolprop_root, components);
auto F = MultiFluidReducingFunction::get_F_matrix(BIPcollection, components);
auto funcs = get_departure_function_matrix(coolprop_root, BIPcollection, components);
auto EOSs = get_EOSs(coolprop_root, components);
auto [betaT, gammaT, betaV, gammaV] = MultiFluidReducingFunction::get_BIP_matrices(BIPcollection, components);
auto redfunc = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
return MultiFluid(
std::move(redfunc),
std::move(CorrespondingStatesContribution(std::move(EOSs))),
std::move(DepartureContribution(std::move(F), std::move(funcs)))
);
}
class DummyEOS {
public:
template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
};
class DummyReducingFunction {
public:
template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
};
auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
std::vector<DummyEOS> EOSs(2);
std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
struct Fwrapper {
private:
const std::vector<std::vector<double>> F_;
public:
Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
};
auto ff = Fwrapper(F);
auto redfunc = DummyReducingFunction();
return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
}
void test_dummy() {
auto model = build_dummy_multifluid_model({ "A", "B" });
std::valarray<double> rhovec = { 1.0, 2.0 };
auto alphar = model.alphar(300.0, rhovec);
}