Skip to content
Snippets Groups Projects
Commit c28844e3 authored by Ian Bell's avatar Ian Bell
Browse files

Fix R_gas passing for CPA, and complex arguments

parent 575495cc
No related branches found
No related tags found
No related merge requests found
......@@ -22,7 +22,7 @@ enum class radial_dist { CS, KG, OT };
/// Function that calculates the association binding strength between site A of molecule i and site B on molecule j
template<typename BType, typename TType, typename RhoType, typename VecType>
auto get_DeltaAB_pure(radial_dist dist, double epsABi, double betaABi, BType b_cubic, TType T, RhoType rhomolar, const VecType& molefrac) {
auto get_DeltaAB_pure(radial_dist dist, double epsABi, double betaABi, BType b_cubic, TType RT, RhoType rhomolar, const VecType& molefrac) {
using eta_type = std::common_type_t<decltype(rhomolar), decltype(b_cubic)>;
eta_type eta;
......@@ -50,31 +50,31 @@ auto get_DeltaAB_pure(radial_dist dist, double epsABi, double betaABi, BType b_c
throw std::invalid_argument("Bad radial_dist");
}
}
double R_gas = 8.3144598;
// Calculate the association strength between site Ai and Bi for a pure compent
auto DeltaAiBj = forceeval(g_vm_ref*(exp(epsABi /(T*R_gas)) - 1.0)*b_cubic* betaABi);
auto DeltaAiBj = forceeval(g_vm_ref*(exp(epsABi/RT) - 1.0)*b_cubic* betaABi);
return DeltaAiBj;
};
/// Routine that calculates the fractions of sites Ai not bound to other active sites for pure fluids
/// Some association schemes are explicitly solvable for self - associating compounds, see Huang and Radosz, Ind.Eng.Chem.Res., 29 (11), 1990
/// Some association schemes are explicitly solvable for self-associating compounds, see Huang and Radosz, Ind. Eng. Chem. Res., 29 (11), 1990
/// So far implemented association schemes : 1A, 2B, 3B, 4C (see Kontogeorgis et al., Ind. Eng. Chem. Res. 2006, 45, 4855 - 4868)
///
template<typename BType, typename TType, typename RhoType, typename VecType>
auto XA_calc_pure(int N_sites, association_classes scheme, double epsABi, double betaABi, const BType b_cubic, const TType T, const RhoType rhomolar, const VecType& molefrac) {
auto XA_calc_pure(int N_sites, association_classes scheme, double epsABi, double betaABi, const BType b_cubic, const TType RT, const RhoType rhomolar, const VecType& molefrac) {
// Matrix XA(A, j) that contains all of the fractions of sites A not bonded to other active sites for each molecule i
// Start values for the iteration(set all sites to non - bonded, = 1)
Eigen::Array<RhoType, Eigen::Dynamic, Eigen::Dynamic> XA; // A maximum of 4 association sites(A, B, C, D)
using result_type = std::common_type_t<decltype(RT), decltype(rhomolar), decltype(molefrac[0])>;
Eigen::Array<result_type, Eigen::Dynamic, Eigen::Dynamic> XA; // A maximum of 4 association sites(A, B, C, D)
XA.resize(N_sites, 1);
XA.setOnes();
// Get the association strength between the associating sites
auto dist = radial_dist::KG; // TODO: pass this in
auto DeltaAiBj = get_DeltaAB_pure(dist, epsABi, betaABi, b_cubic, T, rhomolar, molefrac);
auto DeltaAiBj = get_DeltaAB_pure(dist, epsABi, betaABi, b_cubic, RT, rhomolar, molefrac);
if (scheme == association_classes::a1A) { // Acids
// Only one association site "A" (OH - group with C = O - group)
......@@ -88,8 +88,8 @@ auto XA_calc_pure(int N_sites, association_classes scheme, double epsABi, double
else if (scheme == association_classes::a3B) { // Glycols
// Three association sites "A", "B", "C"
XA(0, 0) = forceeval((-(1.0 - rhomolar * DeltaAiBj) + sqrt(POW2(1.0 + rhomolar * DeltaAiBj) + 4.0 * rhomolar * DeltaAiBj)) / (4.0 * rhomolar * DeltaAiBj));
XA(1, 0) = XA(0, 0); // XB = XA
XA(2, 0) = 2 * XA(0, 0) - 1; // XC = 2XA - 1
XA(1, 0) = XA(0, 0); // XB = XA
XA(2, 0) = 2.0*XA(0, 0) - 1.0; // XC = 2XA - 1
}
else if (scheme == association_classes::a4C) { // Water
// Four association sites "A", "B", "C", "D"
......@@ -141,7 +141,7 @@ public:
template<typename TType>
auto get_ai(TType T, int i) const {
return a0[i] * POW2(1 + c1[i]*(1 - sqrt(T / Tc[i])));
return a0[i] * POW2(1.0 + c1[i]*(1.0 - sqrt(T / Tc[i])));
}
template<typename TType, typename VecType>
......@@ -160,11 +160,10 @@ public:
return std::make_tuple(asummer, bsummer);
}
template<typename TType, typename RhoType, typename VecType>
auto alphar(const TType T, const RhoType rhomolar, const VecType& molefrac) const {
template<typename TType, typename RhoType, typename VecType, typename RType>
auto alphar(const TType T, const RhoType rhomolar, const VecType& molefrac, const RType& R_gas) const {
auto [a_cubic, b_cubic] = get_ab(T, molefrac);
auto R_gas = 8.3144598;
return forceeval(-log(1 - b_cubic * rhomolar) - a_cubic / R_gas / T * log((delta_1 * b_cubic * rhomolar + 1) / (delta_2 * b_cubic * rhomolar + 1)) / b_cubic / (delta_1 - delta_2));
return forceeval(-log(1.0 - b_cubic * rhomolar) - a_cubic / R_gas / T * log((delta_1*b_cubic*rhomolar + 1.0) / (delta_2*b_cubic*rhomolar + 1.0)) / b_cubic / (delta_1 - delta_2));
}
};
......@@ -197,13 +196,14 @@ public:
CPAAssociation(const Cubic &&cubic, const std::vector<association_classes>& classes, const std::valarray<double> &epsABi, const std::valarray<double> &betaABi)
: cubic(cubic), classes(classes), epsABi(epsABi), betaABi(betaABi), N_sites(get_N_sites(classes)) {};
template<typename TType, typename RhoType, typename VecType>
auto alphar(const TType& T, const RhoType& rhomolar, const VecType& molefrac) const {
template<typename TType, typename RhoType, typename VecType, typename RType>
auto alphar(const TType& T, const RhoType& rhomolar, const VecType& molefrac, const RType &R_gas) const {
// Calculate a and b of the mixture
auto [a_cubic, b_cubic] = cubic.get_ab(T, molefrac);
// Calculate the fraction of sites not bonded with other active sites
auto XA = XA_calc_pure(N_sites[0], classes[0], epsABi[0], betaABi[0], b_cubic, T, rhomolar, molefrac);
auto RT = forceeval(R_gas * T); // R times T
auto XA = XA_calc_pure(N_sites[0], classes[0], epsABi[0], betaABi[0], b_cubic, RT, rhomolar, molefrac);
using return_type = std::common_type_t<decltype(T), decltype(rhomolar), decltype(molefrac[0])>;
return_type alpha_r_asso = 0.0;
......@@ -219,12 +219,14 @@ public:
};
template <typename Cubic, typename Assoc>
class CPA {
class CPAEOS {
public:
const Cubic cubic;
const Assoc assoc;
CPA(Cubic &&cubic, Assoc &&assoc) : cubic(cubic), assoc(assoc) {
const double R = 1.380649e-23 * 6.02214076e23; ///< Exact value, given by k_B*N_A
CPAEOS(Cubic &&cubic, Assoc &&assoc) : cubic(cubic), assoc(assoc) {
}
/// Residual dimensionless Helmholtz energy from the SRK or PR core and contribution due to association
......@@ -233,10 +235,10 @@ public:
auto alphar(const TType& T, const RhoType& rhomolar, const VecType& molefrac) const {
// Calculate the contribution to alphar from the conventional cubic EOS
auto alpha_r_cubic = cubic.alphar(T, rhomolar, molefrac);
auto alpha_r_cubic = cubic.alphar(T, rhomolar, molefrac, R);
// Calculate the contribution to alphar from association
auto alpha_r_assoc = assoc.alphar(T, rhomolar, molefrac);
auto alpha_r_assoc = assoc.alphar(T, rhomolar, molefrac, R);
return forceeval(alpha_r_cubic + alpha_r_assoc);
}
......@@ -271,7 +273,7 @@ auto CPAfactory(const nlohmann::json &j){
}
return CPAAssociation(std::move(cubic), classes, epsABi, betaABi);
};
return CPA(build_cubic(j), build_assoc(build_cubic(j), j));
return CPAEOS(build_cubic(j), build_assoc(build_cubic(j), j));
}
}; /* namespace CPA */
\ No newline at end of file
#define USE_AUTODIFF
#include "nlohmann/json.hpp"
#include "pybind11_json/pybind11_json.hpp"
#include <pybind11/pybind11.h>
......@@ -12,6 +13,7 @@
#include "teqp/algorithms/critical_tracing.hpp"
#include "teqp/models/pcsaft.hpp"
#include "teqp/models/CPA.hpp"
#include "teqp/models/multifluid.hpp"
#include "teqp/algorithms/VLE.hpp"
......@@ -96,13 +98,18 @@ void init_teqp(py::module& m) {
// Multifluid model
m.def("build_multifluid_model", &build_multifluid_model);
using MultiFluid = decltype(build_multifluid_model(std::vector<std::string>{"",""},"",""));
using idMF = IsochoricDerivatives<MultiFluid, double, Eigen::Array<double, Eigen::Dynamic, 1> >;
auto wMF = py::class_<MultiFluid>(m, "MultiFluid")
.def("get_Tcvec", [](const MultiFluid& c) { return c.redfunc.Tc; })
.def("get_vcvec", [](const MultiFluid& c) { return c.redfunc.vc; })
;
add_derivatives<MultiFluid>(m, wMF);
// CPA model
using CPAEOS_ = decltype(CPA::CPAfactory(nlohmann::json()));
m.def("CPAfactory", &CPA::CPAfactory);
auto wCPA = py::class_<CPAEOS_>(m, "CPAEOS");
add_derivatives<CPAEOS_>(m, wCPA);
// Some functions for timing overhead of interface
m.def("___mysummer", [](const double &c, const Eigen::ArrayXd &x) { return c*x.sum(); });
using RAX = Eigen::Ref<Eigen::ArrayXd>;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment