Skip to content
Snippets Groups Projects
IntroductionPotentialFitting.ipynb 247 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f2adfe85-18c8-4430-b370-1b4d6f1b05b3",
   "metadata": {},
   "source": [
    "# Interatomic potentials\n",
    "\n",
    "In general interatomic potentials can be written as a sum of functional terms depending on the positions of the atoms in a structure. Then the energy $U$ of the system is\n",
    "\n",
    "$U = \\sum_{i=1}^N U_1(\\vec{r_i}) + \\sum_{i,j=1}^N U_2(\\vec{r_i}, \\vec{r_j}) + \\sum_{i,j,k=1}^N U_2(\\vec{r_i}, \\vec{r_j}, \\vec{r_k}) +...$\n",
    "\n",
    "The one body term only matter when the system is within an external field. Most classic interatomic potentials don't use 4th and higher order body terms, pair potentials only use the 2 body term. As a general rule potentials that include higher order body terms can be more accurate but are slower.\n",
    "\n",
    "There are many different forms for $U_i$, which cover a wide range of different run time and accuracy necessities.\n",
    "\n",
    "Simple pair potentials (f.e Lennard-Jones, Morse, Buckingham) only contain very few parameters, typically less than 10. In many body potentials (f.e. EAM, MEAM, Tersoff) the typical number of parameters is 10-50 and for machine learning potentials the number of parameters can reach several thousands.\n",
    "\n",
    "# Fitting\n",
    "\n",
    "In the fit process the parameters of the chosen functions for $U_i$ are optimized. For this purpose an objective or cost function is defined and minimized. In general the objective function is defined as\n",
    "\n",
    "$\\chi^2 = \\sum_i w_i r_i$\n",
    "\n",
    "where $w_i$ is a weight and $r_i$ is a residual that describes the difference to target values. This residual can be defined in different ways, so it is not possible to simply compare the residual for different fitting processes or codes. A more in depth explanation and some examples can be found on https://atomicrex.org/overview.html#objective-function.\n",
    "\n",
    "The minimization can be done with local or global optimization algorithms.\n",
    "Generally local optimization algorithms should all be able to find the local minimum coming from some initial parameter set, so the \"best\" local algorithm is the one finding the minimum in the shortest time. Typically used local algorithms are f.e. (L)BFGS or Nelder-Mead.\n",
    "Examples for global algorithms are evolutionary algorithms or simulated annealing. For most problems it is impossible to tell a priori which global algorithm will give the best results, so using global algorithms typically involves testing many of them.\n",
    "\n",
    "# EAM potentials\n",
    "\n",
    "EAM potentials are pair functionals. \n",
    "In a generalised form they are equal to Finnis-Sinclair, effective medium theory or glue potentials. Their total energy can be written as\n",
    "\n",
    "$E = \\frac{1}{2}\\sum_{ij}V(r_{ij}) + \\sum_i F(\\rho_i)$\n",
    "\n",
    "with\n",
    "\n",
    "$\\rho_i = \\sum_j \\rho(r_{ij})$\n",
    "\n",
    "The original functions for V, $\\rho$ and F were derived from different theories, but they can be chosen freely.\n",
    "\n",
    "# Fitting code\n",
    "\n",
    "Fitting is done using the pyiron interface to the atomicrex code https://atomicrex.org. It can be used to fit different types of classic interatomic potentials:\n",
    "- pair potentials\n",
    "- EAM\n",
    "- MEAM\n",
    "- Tersoff\n",
    "- ABOP\n",
    "- ADP (in development)\n",
    "\n",
    "It allows to fit different properties (energies, forces, lattice constants, elastic properties, etc.) and implements the LBFGS minimizer. Additionally it offers an interface to the nlopt library which implements several global and local optimization algorithms and the ability to apply arbitrary constraints to parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f4075857-362a-400f-b043-2fc5ad54a407",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pyiron import Project, ase_to_pyiron\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d70cf5ae-8e25-444c-b24f-2d676ef8d2f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "pr = Project(\".\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d83afb5-b99d-4081-9883-ce67c3557f5d",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Get the training data\n",
    "Load a job that contains structures with energies and forces from DFT"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "71b278fc-7886-4863-87f2-50c31e9d3787",
   "metadata": {},
   "outputs": [],
   "source": [
    "tc = pr['../../introduction/training/Al_basic_atomicrex']"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "57cc1f71-1255-4d15-9c31-e598098fe1e4",
   "metadata": {},
   "source": [
    "### Have a look at the training data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "25b99c5a-e8a2-42de-aaf0-2794d675385b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>V</th>\n",
       "      <th>E</th>\n",
       "      <th>space_group</th>\n",
       "      <th>crystal_system</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>16.484415</td>\n",
       "      <td>-3.753374</td>\n",
       "      <td>225</td>\n",
       "      <td>cubic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>14.835973</td>\n",
       "      <td>-3.704532</td>\n",
       "      <td>225</td>\n",
       "      <td>cubic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>15.165661</td>\n",
       "      <td>-3.723358</td>\n",
       "      <td>225</td>\n",
       "      <td>cubic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>15.495350</td>\n",
       "      <td>-3.737149</td>\n",
       "      <td>225</td>\n",
       "      <td>cubic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>15.825038</td>\n",
       "      <td>-3.746438</td>\n",
       "      <td>225</td>\n",
       "      <td>cubic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>303</th>\n",
       "      <td>28.793489</td>\n",
       "      <td>-3.016706</td>\n",
       "      <td>1</td>\n",
       "      <td>triclinic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>304</th>\n",
       "      <td>29.358067</td>\n",
       "      <td>-2.979471</td>\n",
       "      <td>1</td>\n",
       "      <td>triclinic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>305</th>\n",
       "      <td>29.922645</td>\n",
       "      <td>-2.942740</td>\n",
       "      <td>1</td>\n",
       "      <td>triclinic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>306</th>\n",
       "      <td>30.487223</td>\n",
       "      <td>-2.906539</td>\n",
       "      <td>1</td>\n",
       "      <td>triclinic</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>307</th>\n",
       "      <td>31.051801</td>\n",
       "      <td>-2.870883</td>\n",
       "      <td>1</td>\n",
       "      <td>triclinic</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>308 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "             V         E  space_group crystal_system\n",
       "0    16.484415 -3.753374          225          cubic\n",
       "1    14.835973 -3.704532          225          cubic\n",
       "2    15.165661 -3.723358          225          cubic\n",
       "3    15.495350 -3.737149          225          cubic\n",
       "4    15.825038 -3.746438          225          cubic\n",
       "..         ...       ...          ...            ...\n",
       "303  28.793489 -3.016706            1      triclinic\n",
       "304  29.358067 -2.979471            1      triclinic\n",
       "305  29.922645 -2.942740            1      triclinic\n",
       "306  30.487223 -2.906539            1      triclinic\n",
       "307  31.051801 -2.870883            1      triclinic\n",
       "\n",
       "[308 rows x 4 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEMCAYAAADal/HVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3iElEQVR4nO3deXxU5dXA8d9JCGFfNCCyR18BycYuCIgIBUQUsOCuIK8gLnVrsSBVqVVLhVqxFpWioL60FBUQFQuCQcCNfUcUJAoBIQQDRBLIct4/ZiYmYWYySWYyk8n5fj7zycydZ+49T5Q5uc9z73lEVTHGGGM8iQh2AMYYY0KbJQpjjDFeWaIwxhjjlSUKY4wxXlmiMMYY45UlCmOMMV5VC3YAgRATE6OtW7cOdhjGGFNpbNy48ZiqNnL3XlgmitatW7Nhw4Zgh2GMMZWGiHzv6T0bejLGGOOVJQpjjDFeWaIwxhjjVVjOUbiTk5PDwYMHyc7ODnYoVU6NGjVo3rw5UVFRwQ7FGFMGVSZRHDx4kLp169K6dWtEJNjhVBmqSnp6OgcPHiQ2NjbY4RgTnrYtgJVPwYmDUL859HsCEm/w2+6rTKLIzs62JBEEIsL5559PWlpasEMxJqws3pzKtGV76HLyY6ZWf42anHG8ceIAvP+A47mfkkWVmqOwJBEc9ns3xr8Wb05l0sLtpGZkMaHagl+ShEtOluMMw0+qVKKoLFatWsWQIUPcvjd48GAyMjIqNiBjTEiZtmwPWTl5ADSVY+4bnTjot+NZoqhkli5dSoMGDYIdhjEmiA5lZP3yXGPcN6rf3G/Hs0ThweLNqfSc+gmxEz+k59RPWLw5tdz7fPPNN0lMTCQpKYnbb7+d0aNH88477xS8X6dOnYLnJ0+eZPjw4bRv357x48eTn58POO46P3bsmNv9GWOqhqYNahY8fy73Bk5r9aINomo6JrT9pMpMZpeGa/zPdWqXmpHFpIXbARjWsVmZ9rlz506eeeYZPvvsM2JiYjh+/DiPPPKIx/br1q1j165dtGrVikGDBrFw4UJGjBjhdX/GmKphwsC2Bd9RS/J7QQ78PmoBTSUdCcBVT3ZG4Ubh8T+XrJw8pi3bU+Z9fvLJJ4wYMYKYGMdp4nnnnee1fbdu3bjooouIjIzk5ptvZu3ateXanzEmfAzr2Iw/X59AswY1EWBjvV+xfthqZEoGPLzDr0kC7IzCrcLjf75s94WqnnP1T7Vq1QqGlFSVs2fPFrxXvG3x1+72Z4ypOoZ1bFbmEY7SsjMKNwqP//my3Rf9+vVjwYIFpKenA3D8+HFat27Nxo0bAXjvvffIyckpaL9u3Tr2799Pfn4+//nPf+jVq1eJ+zPGmECwROHGhIFtqRkVWWRbzahIJgxsW+Z9xsXFMXnyZPr06UNSUhKPPPIIY8eO5dNPP6Vbt2589dVX1K5du6B9jx49mDhxIvHx8cTGxjJ8+PAS92eMMYEgqhrsGPyuS5cuWnw9it27d3PppZf6vA/XXY+HMrJo2qAmEwa2rbDTvHBU2t+/MaZiichGVe3i7j2bo/CgIsf/jDEmlAVl6ElERorIThHJFxG3GczZbpCI7BGRvSIysSJjNMYY4xCsOYodwPXAak8NRCQS+AdwNdAeuFlE2ldMeMYYY1yCMvSkqruhxGJx3YC9qvqds+18YCiwK+ABGmMqHZtXDJxQvuqpGXCg0OuDzm1uicg4EdkgIhuspLUxVUvhaqrKL9UU/FF6xwQwUYjIChHZ4eYx1NdduNnm8RItVZ2lql1UtUujRo3KFrQxplIKRDUF84uAJQpV7a+q8W4e7/m4i4NAi0KvmwOH/B9pxUhJSSE+Pj7YYZTLlVdeSfHLjo0JBYGopmB+EcpDT+uBS0QkVkSqAzcBS4IckzEmBAWimoL5RbAujx0uIgeBHsCHIrLMub2piCwFUNVc4H5gGbAbWKCqOyssyG0L4G/xMKWB4+e2BeXeZV5eHmPHjiUuLo4BAwaQlZXFvn37GDRoEJ07d6Z37958/fXX5Obm0rVrV1atWgXApEmTmDx5MgBPPfUUXbt2JT4+nnHjxuG6YXL9+vUkJibSo0cPJkyYUHD2kp2dzZ133klCQgIdO3YkOTkZgLlz53L99dczaNAgLrnkEh599NGCOO+55x66dOlCXFwcTz75ZLn7bYxbfvw3FohqCqYQVQ27R+fOnbW4Xbt2nbPNo63/UX36AtUn6/3yePoCx/Yy2r9/v0ZGRurmzZtVVXXkyJH61ltv6VVXXaXffPONqqp++eWX2rdvX1VV3bFjh7Zr106XL1+uHTp00DNnzqiqanp6esE+b7vtNl2yZImqqsbFxelnn32mqqq///3vNS4uTlVVp0+frqNHj1ZV1d27d2uLFi00KytL58yZo7GxsZqRkaFZWVnasmVL/eGHH4ocIzc3V/v06aNbt25VVdU+ffro+vXry9T/Uv3+TVhbtOmgPvmnJ/TnJ2L8+m9s0aaDevmfV2rr33+gl/95pS7adNCPUYc/YIN6+E61O7PdWfmUY83Zwlxr0JajfG9sbCwdOnQAoHPnzqSkpPD5558zcuTIgjZnzjjWvo2Li+P222/n2muv5YsvvqB6dcfCJMnJyTz33HOcPn2a48ePExcXR+/evTl16hSXX345ALfccgsffPABAGvXruU3v/kNAO3ataNVq1Z88803gKOwYP369QFo374933//PS1atGDBggXMmjWL3NxcDh8+zK5du0hMTCxzv41xcV2d9LH8H7UizhZ9s5z/xqyaQuBYonDH01qz5VyDNjo6uuB5ZGQkR44coUGDBmzZssVt++3bt9OgQQOOHDkCOIaR7r33XjZs2ECLFi2YMmUK2dnZBcNP7nh7r3g8ubm57N+/n+nTp7N+/XoaNmzI6NGjyc7OLmVPjXHPdXVS0+jAr/Ns/CeUJ7ODx9Nas35cgxagXr16xMbG8vbbbwOOL/WtW7cCsHDhQtLT01m9ejUPPPAAGRkZBV/YMTExZGZmFiyj2rBhQ+rWrcuXX34JwPz58wuOccUVVzBv3jwAvvnmG3744QfatvU8bnvy5Elq165N/fr1OXLkCB999JFf+2yqNtdVSBWxzrPxH0sU7vR7wrHmbGF+XoPWZd68ebz22mskJSURFxfHe++9x7Fjx5g4cSKvvfYabdq04f777+fBBx+kQYMGjB07loSEBIYNG0bXrl0L9vPaa68xbtw4evTogaoWDCnde++95OXlkZCQwI033sjcuXOLnEkUl5SURMeOHYmLi2PMmDH07NnT7302VZfrKqSKWOfZ+I+VGfdk2wLHeOmJg46/cvy8Bq2/ZWZmUqdOHQCmTp3K4cOHmTFjRpCj+oWVGTdQdD366yLW8mg1xzrP2bWaUOvq8s0BmvKxMuNlkXhDpfqf9sMPP+TPf/4zubm5tGrVirlz5wY7JGPO4ZpsnrZsD+9n9GJjrV9ZTaZKwBJFmLjxxhu58cYbgx2GMSWyq5MqH5ujMMYY45UlCmOMMV5ZojDGGOOVJQpjjDFeWaKoQqZMmcL06dMBeOKJJ1ixYoXX9kuWLGHq1KkVEZoxJoTZVU9V1FNPPVVim+uuu47rrruuAqIxxoQyO6Pw4MPvPmTAOwNIfCORAe8M4MPvPizX/lJSUmjXrh133XUX8fHx3HrrraxYsYKePXtyySWXsG7dOo4fP86wYcNITEyke/fubNu2DXCcCYwZM4Yrr7ySiy66iBdffLFgv88//zzx8fHEx8fzwgsvFGx/8803SUxMJCkpidtvv/2ceEaPHl1QAqR169Y8+eSTdOrUiYSEBL7++mvAUYr8/vvvB+DIkSMMHz6cpKQkkpKS+Pzzz8v1+zDGVB52RuHGh999yJTPp5Cd56itdPjnw0z5fAoA11x0TZn3u3fvXt5++21mzZpF165d+de//sXatWtZsmQJzz77LC1atKBjx44sXryYTz75hDvuuKOgYODXX39NcnIyp06dom3bttxzzz1s27aNOXPm8NVXX6GqXHbZZfTp04fq1avzzDPP8NlnnxETE8Px48dLjC0mJoZNmzYxc+ZMpk+fzuzZs4u8/8ADD9CnTx8WLVpEXl4emZmZZf49GGMqF0sUbszYNKMgSbhk52UzY9OMciWK2NhYEhISAEcZ8X79+iEiJCQkkJKSwvfff8+7774LwFVXXUV6ejonTpwA4JprriE6Opro6GgaN27MkSNHWLt2LcOHD6d27doAXH/99axZswYRYcSIEcTEOAqvnXfeeSXGdv311wOO8ucLFy485/1PPvmEN998E3BUmnXVkjLGhD8benLjx59/LNV2XxUuxhcREVHwOiIigtzcXLclwUXknM+6SoJ7qtOlqgWfK21srn0bY4yLJQo3mtRuUqrt/lK4JPiqVauIiYmhXr16XtsvXryY06dP8/PPP7No0SJ69+5Nv379WLBgAenp6QA+DT2VpF+/frz88suAY0nXkydPlnufxpjKwRKFGw92epAakTWKbKsRWYMHOz0Y0ONOmTKFDRs2kJiYyMSJE3njjTe8tu/UqROjR4+mW7duXHbZZdx1110FJcInT55Mnz59SEpK4pFHHil3bDNmzCA5OZmEhAQ6d+7Mzp0Vt3y5MSa4rMy4Bx9+9yEzNs3gx59/pEntJjzY6cFyzU9UdVZmvOwWb05l2rI9HMrIommDmlZt1QSElRkvg2suusYSgwm6wus3AKRmZDFp4XYASxamwtjQkzEhzLXGdGFZOXlMW7YnSBGZqsgShTEhzLXGtK/bjQkESxTGhDDXGtO+bjcmEIKSKERkpIjsFJF8EXE7eeJslyIi20Vki4hs8NTOmHA1YWBbakZFFtlWMyqSCQPbBikiUxUFazJ7B3A98KoPbfuq6rEAx2NMSCq8xrRd9WSCJShnFKq6W1VtNs6NZ599tuB5SkoK8fHxQYtl1apVDBkyxO17gwcPJiMjo2IDqqKGdWzGZxOvYv/Ua/hs4lWWJEyFC/U5CgWWi8hGERkX7GACSVXJz88vkijKK5ClOJYuXUqDBg0Ctv9wsnhzKlOefpKDT1xM/pQGnP5LO9i2INhhGeOzgCUKEVkhIjvcPIaWYjc9VbUTcDVwn4hc4eV440Rkg4hsSEtLK3f8J95/n2+v6sfuS9vz7VX9OPH+++XeZ/GS4CkpKVx66aXce++9dOrUif/93/8lKyuLDh06cOuttwKOchljx44lLi6OAQMGkJXluNply5YtdO/encTERIYPH85PP/0EwJVXXsljjz1Gnz59mDFjBitXrqRjx44kJCQwZswYzpw5AzhKiz/22GP06NGDLl26sGnTJgYOHMjFF1/MK6+8UhDzyZMnGT58OO3bt2f8+PHk5+cXfP7YMceIYEklzauyxZtTWbtoJo/mzKR5xDEiUGplHSb3vd9YsjCVh6oG7QGsArr42HYK8Dtf2nbu3FmL27Vr1znbPMlYskR3J3XQXW3bFTx2J3XQjCVLfN5HcRs2bND4+HjNzMzUU6dOafv27XXTpk0qIvrFF18UtKtdu3bB8/3792tkZKRu3rxZVVVHjhypb731lqqqJiQk6KpVq1RV9fHHH9cHH3xQVVX79Omj99xzj6qqZmVlafPmzXXPnj2qqnr77bfr3/72N1VVbdWqlc6cOVNVVR966CFNSEjQkydP6tGjR7VRo0aqqpqcnKzR0dG6b98+zc3N1f79++vbb79d8Pm0tDTdsWOHtmnTRtPS0lRVNT093W3/S/P7DyeX/3mlHnj8ItUn6537eD4u2OEZUwDYoB6+U0N26ElEaotIXddzYACOSfCAO/q3F9DsomXGNTubo397ocz7LFwSvE6dOgUlwVu1akX37t09fi42NpYOHToAjhLgKSkpnDhxgoyMDPr06QPAqFGjWL16dcFnbrzxRgD27NlDbGwsbdq0cdvOtXpdQkICl112GXXr1qVRo0bUqFGjYP6hW7duXHTRRURGRnLzzTezdu3aIvF98sknpS5pXpUcysiiqXi4FuPEwYoNxpgyCtblscNF5CDQA/hQRJY5tzcVkaXOZhcAa0VkK7AO+FBV/1sR8eUePlyq7b5QDzW1XGtJeOKuvHhJXPv0dMzi+y5c8tz12nWc4uXKi7/WMpQ0r0qaNqjJIY1x/2b95hUbjDFlFKyrnhapanNVjVbVC1R1oHP7IVUd7Hz+naomOR9xqvpMRcVX7cILS7XdF55KghcXFRVFTk6O133Vr1+fhg0bsmbNGgDeeuutgrOLwtq1a0dKSgp79+712s6bdevWsX//fvLz8/nPf/5Dr169irwfiJLm4WTCwLa8wE2c1upFtudG1oB+TwQpKmNKJ2SHnoKp8cMPITWKlhmXGjVo/PBDZd6nu5LgDRs2PKfduHHjSExMLJjM9uSNN95gwoQJJCYmsmXLFp544twvnRo1ajBnzhxGjhxJQkICERERjB8/vlRx9+jRg4kTJxIfH09sbCzDhw8v8n4gSpqHk2Edm9Fr+L08F3UvB/NjyEc4XfNCqg39OyTeEOzwjPGJxzLjIlLSyjQCHFbVNn6Pqpz8UWb8xPvvc/RvL5B7+DDVLryQxg8/RP1rr/V3qFWGlRk3JrSVtcz4PlXtWMKON5crshBW/9prLTEYYwzeh55+7cPnfWljjDGmEvOWKB4RkZ7ePqyq3/k5HmOMMSHGW6L4FpjurOD6FxHpUEExGWOMCSEeE4WqzlDVHkAf4DgwR0R2i8gTIhJyE9jGGGMCo8TLY1X1e1X9i3Ni+xZgOLA74JEZY4wJCSUmChGJEpFrRWQe8BHwDTaJXWoZGRnMnDmz3G2CqU6dOsEOwRgTBB4ThYj8SkReBw4C44ClwMWqeqOqLq6g+MJGeRNFXl5eIMIyxpgSebuP4jHgXzgqtla5ugzffPUjX7y3j8zjZ6hzXjQ9hl5Mm8ualHl/EydOZN++fXTo0IFf/epXNG7cmAULFnDmzBmGDx/OH//4x3PaXHPNNfzxj3/kwgsvZMuWLezatYthw4Zx4MABsrOzefDBBxk3zrFMx2uvvcZf/vIXmjZtyiWXXEJ0dDQvvfQS33//PWPGjCEtLY1GjRoxZ84cWrZsyejRo6lXrx4bNmzgxx9/5LnnnmPEiBFkZmYydOhQfvrpJ3Jycnj66acZOrQ0leGNMWHHU1lZLVriuxdwp/N5IyDWl88F61HeMuN7vjysr/wmWV+6e2XB45XfJOueLw/7vI/i9u/fr3FxjrLSy5Yt07Fjx2p+fr7m5eXpNddco59++mmRNqqOMt+1atXS7777rmCbq4z36dOnNS4uTo8dO6apqanaqlUrTU9P17Nnz2qvXr30vvvuU1XVIUOG6Ny5c1VV9bXXXtOhQ4eqquqoUaN0xIgRmpeXpzt37tSLL75YVVVzcnL0xIkTqqqalpamF198sebn56tq0RLopVVVy4wbU1ngpcx4iWtmi8iTQBegLTAHiAL+D/B6j0Vl9sV7+8g9m19kW+7ZfL54b1+5zipcli9fzvLly+nY0XHje2ZmJt9++y0tW7Y8p223bt2IjY0teP3iiy+yaNEiAA4cOMC3337Ljz/+SJ8+fQpKfI8cOZJvvvnG0ZcvvmDhwoUA3H777Tz66KMF+xo2bBgRERG0b9+eI0eOAI4/HB577DFWr15NREQEqampHDlyhCZNyt9vY0zlVGKiwHGVU0dgEzgqvLrWiQhXmcfPlGp7aakqkyZN4u677y6yPSUl5Zy2hcuQr1q1ihUrVvDFF19Qq1YtrrzySrKzs0ssJ15Y4ZLghUuLu/Yxb9480tLS2LhxI1FRUbRu3ZrsYmtzGGOqFl+qx551npYoFCwiFNbqnBddqu2+qFu3LqdOnQJg4MCBvP7662RmZgKQmprK0aNHi7Rx58SJEzRs2JBatWrx9ddf8+WXXwKOs45PP/2Un376idzcXN59992Cz1x++eXMnz8fcCSB4mXC3R2jcePGREVFkZyczPfff1/mPhtjwoMviWKBiLwKNBCRscAK4J+BDSu4egy9mGrVi/5qqlWPoMfQi8u8z/PPP5+ePXsSHx/Pxx9/zC233EKPHj1ISEhgxIgRnDp1qkibCRMmnLOPQYMGkZubS2JiIo8//njBynjNmjXjscce47LLLqN///60b9+e+vXrA46hqjlz5pCYmMhbb73FjBkzvMZ56623smHDBrp06cK8efNo165dmftsjAkPHsuMF2kk8iscS5EKsExVPw50YOXhjzLj/r7qKdAyMzOpU6cOubm5DB8+nDFjxpyzdkQwWZlxY0JbWcuMF3AmhpBODv7W5rImIZ0YipsyZQorVqwgOzubAQMGMGzYsGCHZIwJEx4ThYh8oKpDvH3YlzamYkyfPj3YIRhjwpS3M4peIrLEy/sCtPdzPMYYY0KMt0Thy+24Z/0ViDHGmNDkMVGo6qcVGYgxxpjQ5MvlscYYY6owSxQVpKTqsZdffrnXz48ePZp33nkHgLvuuotdu3Z5bf/KK6/w5ptvlj5QY4wpxpdaT0OApaqaX1Jb45krUdx7771Ftufl5REZGcnnn3/u875mz55dYpvx48eXOsbKZPHmVKYt28OhjCyaNqjJhIFtGdaxWbDDMiYs+XJGcRPwrYg8JyJ+uWNKRKaJyNcisk1EFolIAw/tBonIHhHZKyIT/XFsX+1ek8ys++7krzddy6z77mT3muRy7a9wCfGuXbvSt29fbrnlFhISEoCiiwI999xzJCQkkJSUxMSJ53b7yiuvxHVDYZ06dZg8eTJJSUl07969oLjflClTCi6Z3bt3L/379ycpKYlOnTqxb9++cvUl2BZvTmXSwu2kZmShQGpGFpMWbmfx5tRgh2ZMWPJlKdTbcBQF3Idj3ewvRGRcOQsDfgzEq2oijhXzJhVvICKRwD+Aq3FchnuziFTI5bi71ySzfNZLnDqWBqqcOpbG8lkvlStZTJ06lYsvvpgtW7Ywbdo01q1bxzPPPHPOENJHH33E4sWL+eqrr9i6dWuRaq/u/Pzzz3Tv3p2tW7dyxRVX8M9/nltd5dZbb+W+++5j69atfP7551x44YVl7kcomLZsD1k5RRdyysrJY9qyPUGKyJjw5tMchaqeBN4F5gMX4qgou0lEflOWg6rqclXNdb78Emjuplk3YK+qfqeqZ53HrpAVdNbMf5Pcs0UrxeaePcOa+f4b8y9ePtxlxYoV3HnnndSqVQugoHS4J9WrV2fIEMc9j507dz6nAu2pU6dITU0tKOdRo0aNgn1XVocyskq13RhTPr6smX2tiCwCPsGxFkU3Vb0aSAJ+54cYxuBYi7u4ZsCBQq8POrd5inOciGwQkQ1paWnlCuhU+rFSbS+LwuXDC1PVIqXASxIVFVXQPjIyktzc3CLvl6YEeWXRtEHNUm03xpSPL2cUI4G/qWqiqk5T1aMAqnoax5e8WyKyQkR2uHkMLdRmMpALzHO3CzfbPH7rqeosVe2iql0aNWrkQ7c8q3t+TKm2+7TPEkqIuwwYMIDXX3+d06dPA3D8ePlWoa1Xrx7Nmzdn8eLFAJw5c6Zg35XVhIFtqRkVWWRbzahIJgxsG6SIjAlvJV71pKp3eHlvpZf3+nvbr4iMAoYA/dT9n70HgRaFXjcHDnmP1j9633QHy2e9VGT4qVr1aHrf5PFXUaLCJcRr1qzJBRdc4LbdoEGD2LJlC126dKF69eoMHjyYZ599tszHBXjrrbe4++67eeKJJ4iKiuLtt9/moosuKtc+g8l1dZNd9WRMxSixzLiInOLcv+RPABuA36rqd6U+qMgg4Hmgj6q6HScSkWo4Jrr7AanAeuAWVd1Z0v79UWZ895pk1sx/k1Ppx6h7fgy9b7qDS3v39fnzpigrM25MaCtvmfHncfwl/y8cw0E3AU2APcDrwJVliOklIBr42Dm+/qWqjheRpsBsVR2sqrkicj+wDIgEXvclSfjLpb37WmIwxhh8SxSDVPWyQq9niciXqvqUiDxWloOq6v942H4IGFzo9VJgaVmOYSqpbQtg5VNw4iDUbw79noDEG4IdlTFVmi+T2fkicoOIRDgfhf/Vht8lNSZo1i95layF98OJA4A6fr7/gCN5GGOCxpdEcStwO3AUOOJ8fpuI1ATuD2BspgpZvDmVphufoyZF718hJ8txhmGMCRqvQ0/Ou6PvUdVrPTRZ6/+QTFU0bdke1uDhPpUTBys2GGNMEV7PKFQ1D+hcQbGYKuxQRhaH1MN9KvXd3bhvjKkovgw9bRaRJSJyu4hc73oEPLIwU94y4/60atWqgrIfoaJpg5o8l3sDp7V6ke1ZRDsmtI0xQeNLojgPSAeuAq51PkLrW6YS8JQo8vIcxe1KU2Y8HE0Y2JaPI/swMecuDubHkK9Cqsawo9Of7KonY4LMlzuz76yIQELNz5uPcnJZCnkZZ4hsEE29ga2p3bFxmfdXuMx4VFQUderU4cILL2TLli3s2rWLOnXqkJmZSX5+Pvfffz+ffvopsbGx5OfnM2bMGEaMGMHKlSv53e9+R25uLl27duXll18mOjqa1q1bM2rUKN5//31ycnJ4++23adeuHevWreOhhx4iKyuLmjVrMmfOHNq2Dc0yF7/cbV2d3hm97G5rY0KILwsXtQFeBi5Q1XgRSQSuU9WnAx5dkPy8+SgZC79FcxxrNeVlnCFj4bcAZU4WU6dOZceOHWzZsoVVq1ZxzTXXsGPHjnMqyC5cuJCUlBS2b9/O0aNHufTSSxkzZgzZ2dmMHj2alStX0qZNG+644w5efvllHnroIQBiYmLYtGkTM2fOZPr06cyePZt27dqxevVqqlWrxooVK3jsscd49913y/6LCbBhHZtZYjAmBPky9PRPHOtF5ACo6jYcd2eHrZPLUgqShIvm5HNyWYrfjuGpzPjatWsZOXIkERERNGnShL59HXeH79mzh9jYWNq0aQPAqFGjWL16dcHnrr/eMW1UuNT4iRMnGDlyJPHx8Tz88MPs3FlhN7YbY8KIL4milqquK7Yt123LMJGXcaZU28vCW5nx0mx3iY6OBoqWGn/88cfp27cvO3bs4P333yc7O7scERtjqipfEsUxEbkY513YIjICOBzQqIIsskF0qbb7wtcy47169eLdd98lPz+fI0eOsGrVKgDatWtHSkoKe/fuBRwVYfv06eN1XydOnKBZM8dQzty5c8scuzGmavMlUdwHvAq0E5FU4CHgnkAGFWz1BrZGoor+aiQqgnoDW5d5n4XLjE+YMMFju1//+tc0b96c+Ph47r77bi677DLq169PjRo1mDNnDiNHjiQhIYGIiAjGjx/v9ZiPPvookyZNomfPngVXVxljTGmVWGa8oKFIbSBCVUv+szjI/FFm3N9XPZVGZmYmderUIT09nW7duvHZZ5/RpEmTCjl2oFiZcWNCW7nKjItINPBroDVQzbXspqqGdQGe2h0bV1hiKG7IkCFkZGRw9uxZHn/88UqfJIwxlZsvZcbfw7FQ0UYoXrHNBIJrXsIYY0KBL4miuaoOCngkxhhjQpIvk9mfi0hCwCOpAL7Oxxj/st+7MZWbL4miF7BRRPaIyDYR2S4i2wIdmL/VqFGD9PR0+9KqYKpKeno6NWrUCHYoxpgy8mXo6eqAR1EBmjdvzsGDB0lLSwt2KFVOjRo1aN7cSoUbU1l5TBQicpWqfqKq34tIrKruL/Te9cD3FRKhn0RFRbktmWGMMcY7b0NP0ws9L15J7g8BiMUYY0wI8pYoxMNzd6+NMcaEKW+JQj08d/faGGNMmPI2mX2RiCzBcfbgeo7ztQ32G2NMFeEtUQwt9Hx6sfeKvy4VEZmGY0nVs8A+4E5VzXDTLgU4BeQBuZ7qkBhjjAkcj4lCVT8N4HE/Biapaq6I/AXHwki/99C2r6oeC2AsxhhjvPDlhju/U9Xlqupa/OhLwC6yN8aYEBWURFHMGOAjD+8psFxENorIuAqMyRhjjJMvd2aXiYisANzVx56squ8520zGsazqPA+76amqh0SkMfCxiHytqqvdNXQmknEALVu2LHf8xhhjHHxZj+JjYKRrsllEGgLzVXWgt8+pav8S9jsKGAL0Uw8FmFT1kPPnURFZBHQD3CYKVZ0FzALHwkXejm2MMcZ3vgw9xRS+IklVfwLKtaKPiAzCMXl9naqe9tCmtojUdT0HBgA7ynNcY4wxpedLosgXkYKxHBFpRflvuHsJqItjOGmLiLzi3HdTEVnqbHMBsFZEtgLrgA9V9b/lPK4xxphS8mWOYjKOL2zX5bJX4JwLKCtV/R8P2w8Bg53PvwOSynMcY4wx5VdiolDV/4pIJ6A7jruyH7b7GowxpurwOPQkIu2cPzsBLYFDQCrQ0rnNGGNMFeDtjOIRHENMf3XzngJXBSQiY4wxIcVbCY9xzp99Ky4cY4wxocaX+ygigWuA1oXbq+rzgQvLGGNMqPDlqqf3gWxgO5Af2HCMMcaEGl8SRXNVTQx4JMYYY0KSLzfcfSQiAwIeiTHGmJDkyxnFl8AiEYkAcnDcS6GqWi+gkZkKsXhzKv/+92LaHVxD3bxMouqdx4A77uTS3nYNgzHGwZdE8VegB7DdU/E+Uzkt3pzKP+e+Q+8jyUQ5lwfJPXmcj175O4AlC2MM4NvQ07fADksS4eff/17MlT+uKEgSLpp7ljXz3wxSVMaYUOPLGcVhYJWIfASccW20y2Mrt91rkun0/X+J8FDf8VS6VWkxxjj4kij2Ox/VnQ8TBlbOnUU1L0WA654fU4HRGGNCmS9FAf8I4FwbQlU1M+BRmYDavSaZM5mnPL4v1arT+6Y7KjAiY0woK3GOQkTiRWQzjkWDdjrXr44LfGgmEHavSeajl1/w2ubq8b+xiWxjTAFfJrNnAY+oaitVbQX8FvhnYMMygbB7TTJLX/ormpfnsU2NunUtSRhjivBljqK2qia7XqjqKufSpGFl/ZJXabFpGo01jaPSiAOdJtD1uruDHZbf+HImAXDVqHKtSWWMCUO+JIrvRORx4C3n69twTG6HjfVLXiV+4x+oKWdBoAlp1N/4B9ZD2CSLlXNneT2TAIiuY2cTxphz+TL0NAZoBCx0PmKA0QGMqcK12DTNkSQKqSlnabFpWpAi8q/d/5rKmcyTXttEVKtGv9F2NmGMOZcvZxT9VfWBwhtEZCTwdmBCqniNNc1RmOSc7WFwL8G2Bfz3vdV4/ZtAhEHjH7SzCWOMW76cUUzycVuldVQaedhe+e8lmDl1NvnusqBTRLVqDL7vEUsSxhiPPJ5RiMjVwGCgmYi8WOitekCu+09VTgc6TaC+a47CKUurc6DzBJoEMa7yeuHeseTlReH2dMnJziSMMSXxNvR0CNgAXAdsLLT9FPBQAGOqcF2vu5v14Lzq6RhHJYYDnSv3VU+71ySTm34Y8ZIkwAr/GWNK5m3N7K3AVhH5l6rmuLaLSC/gGeC+CoivwnS97m5wJoYmzkdl9t9XZpSQIiDpV4MrJBZjTOXmSwmPHBHpANwC3IDj0tiFAY7LlMOK2TPJz/U8OqjA+c1b0P+ueysuKGNMpeVxMltE2ojIEyKyG3gJOACIqvZV1b+X56Ai8icR2SYiW0RkuYg09dBukIjsEZG9IjKxPMesSrZ+vNTjewpE1K7PnX99ueICMsZUat6uevoa6Adcq6q9nMnB+x1bvpumqomq2gH4AHiieAMRiQT+AVwNtAduFpH2fjp+2Foxe6bX9wV45PV5FROMMSYseEsUvwZ+BJJF5J8i0g9vl8+UgqoWvvurNritd90N2Kuq36nqWWA+MNQfxw9Xu9ckez2bAMfd18YYUxoeE4WqLlLVG4F2wCrgYeACEXlZRAaU98Ai8oyIHABuxc0ZBdAMx3CXy0HnNk/7GyciG0RkQ1paWnnDq5SW/qPktaTs7mtjTGmVeMOdqv6sqvNUdQjQHNgClDhfICIrRGSHm8dQ534nq2oLYB5wv7tduAvHS5yzVLWLqnZp1Mj9DXThbM5v7wEfVqu1y2GNMaXlSwmPAqp6HHjV+SipbX8fd/sv4EPgyWLbDwItCr1ujuPeDlPM7jXJHD94oMR2dWOqXgI1xpSfLyU8/E5ELin08jocE+fFrQcuEZFYEakO3AQsqYj4Kptlr75YciOwVeuMMWVSqjMKP5oqIm2BfOB7YDyA8zLZ2ao6WFVzReR+YBkQCbyuqjsrIrjFm1OZtmwPhzKyaNqgJhMGtmVYR4/TI0G1YvZM8nJySm6IDTsZY8omKIlCVX/tYfshHPWlXK+XAt4v4/GzxZtTmbRwO1k5jiuBUzOymLRwO0BIJouSrnJysWEnY0xZBWXoKZRNW7anIEm4ZOXkMW3ZniBF5Nmc397jU7tq1aNt2MkYU2bBGnoKWYcyskq1PVhWzJ7p8wR275vusGEnY0yZWaIopmmDmqS6SQpNG9QMQjSe+TLkNPj+31qCMMaUmw09FTNhYFtqRkUW2VYzKpIJA9sGKaJzlVSmAxyVYS1JGGP8wc4oinFNWIfyVU8lnU1IZKRVhjXG+I0lCjeGdWwWUomhsAV/mlxim6vveSjwgRhjqgwbeqpEVsyeyYEdW722sSEnY4y/WaKoREoacoqMirIhJ2OM31miqCR8mcAeePcDFRCJMaaqsURRCfiyzoQNORljAsUSRSXw8ex/eH3frnIyxgSSJYoQt2L2THKys722saucjDGBZIkihNmQkzEmFFiiCGFr5r/p9f3I6GgbcjLGBJwlihB2Kv2Y1/cHjnW3gqwxxviX3ZkdQnavSWbN/Dc5lX6MuufHUKNOHbJPnXLb1oacjDEVxRJFEOxek8zKubM4k+lIAjXq1qVt997s/HQluWfPAHDqWJrHzyf9arANORljKowligq2YvbMcyaos0+d8qlsuK0tYYwJBksUFciXq5g8qRvTiHH/mOPniIwxpmQ2mV1Bdq9J5qOZfyvz50ua2DbGmECxRFEBdq9JZvmsl9D8/DLvo+75MX6MyBhjfGeJogKsmf9mwSR1WfW+6Q4/RWOMMaVjiaIClHvYSMQmsI0xQWOJogJERUeX6/NJ/a/2UyTGGFN6ligCbPea5BKL+nlzXvMWds+EMSaognJ5rIj8CRgK5ANHgdGqeshNuxTgFJAH5Kpql4qM06X4HdOluZehpHpN3lSLjubOv75c5s8bY4w/BOuMYpqqJqpqB+AD4AkvbfuqaodgJonls15y3CmtyqljaSyf9RK71yT79PnyzE8MsFpOxpgQEJREoaonC72sDWgw4vCFuyuWcs+e8flMoayXtUZGR9sEtjEmJATtzmwReQa4AzgBePpGVGC5iCjwqqrO8rK/ccA4gJYtW/otTk9nBN5qMbnsXpPM2TLOT1hlWGNMqAjYGYWIrBCRHW4eQwFUdbKqtgDmAZ6+FXuqaifgauA+EbnC0/FUdZaqdlHVLo0aNfJbP7ydEXgbfloxeyZLX/prQeG/0rDKsMaYUBKwRKGq/VU13s3jvWJN/wX82sM+Djl/HgUWAd0CFa8n3m508zT8VJ6aTlYZ1hgTaoIyRyEilxR6eR3wtZs2tUWkrus5MADYUTER/sLbX/aehp8+nv2PMh1LIiIsSRhjQk6wrnqa6hyG2oYjATwIICJNRcT1p/gFwFoR2QqsAz5U1f8GI9i6MZ6HstwNP5X1vgnVkJ3TN8ZUYUGZzFZVb0NNg53PvwOSKjIuT3rfdAdLX/qr2/fmv/wqKz5TJgxsy7COzcp1HCv8Z4wJRXZntg+8DT/VzcskNSOLh/+zhT8s3s6K2TPLfBwr/GeMCUW2cJGPJCLCY5nwUT+8xecNL+Orj7+hwbGVSBn2b1c6GWNClSUKH3lKEgLUy8vk2cjzaFIzFup0Lnjv25Ob2Hx8RYn7jq5T1yaxjTEhy4aefORtQvuKC0bSpGYsIlLkcUm9TnQ8r3+J++43epw/QzXGGL+yROEjb/MHriRRnIjwP/U6et1vi/gkG3IyxoQ0SxQ+urR3X2rUrVvqz4mXGQuJjOSGx58pT1jGGBNwlihK4apR4yht/UL10F6Bq+95qNwxGWNMoFmiKIVLe/flfxr8RPFk8WPWfrc3y6kqe09uPnc7sO/8RBtyMsZUCpYoSmnl+X1IrH+IwsmiRmRtwJEYCj/cXfWkwK568Qwce18FRm2MMWVniaKUluT34lDjiwqSxYCmo2lQvfE5VzwpSvqZ1CKfdZ1JXHfvb8p9F7cxxlQUSxSl1LBWFE/mjilIFq4kUVyERJDYsI/zlZIPrG91NS/PfNaShDGmUrFEUUpPXhvn+Jk7hvdjBnltW6taPUBJi2zIzNh7uPnmYYEP0Bhj/MwSRSkN69iM27o7VtBbkt/La9vTuSf5b0x/5re8mVu7t7QzCWNMpWQlPMrg6WEJAPzflz9wPE85L5Jzhp/yVZkWFcWh2pfywvAESxLGmErLEkUZPT0sgS6tzuOmhduYn1WL8yJ/eS8f+JNkMeTGeGZbgjDGVHKWKMphWMdmHs8UZldwLMYYEyg2R2GMMcYrSxTGGGO8skRhjDHGK0sUxhhjvLJEYYwxxitxV/W0shORNOD7YMfhRQxwLNhBBFi49zHc+wfh38dw7x+Uro+tVNXtUp5hmShCnYhsUNUuwY4jkMK9j+HePwj/PoZ7/8B/fbShJ2OMMV5ZojDGGOOVJYrgmBXsACpAuPcx3PsH4d/HcO8f+KmPNkdhjDHGKzujMMYY45UlCmOMMV5ZogggEWkhIskisltEdorIg87t54nIxyLyrfNnw2DHWl4iEikim0XkA+frsOqjiDQQkXdE5Gvnf88e4dRHEXnY+f/oDhH5t4jUqOz9E5HXReSoiOwotM1jn0RkkojsFZE9IjIwOFGXjoc+TnP+f7pNRBaJSINC75Wpj5YoAisX+K2qXgp0B+4TkfbARGClql4CrHS+ruweBHYXeh1ufZwB/FdV2wFJOPoaFn0UkWbAA0AXVY0HIoGbqPz9mwsUX6/YbZ+c/y5vAuKcn5kpIpGEvrmc28ePgXhVTQS+ASZB+fpoiSKAVPWwqm5yPj+F48ulGTAUeMPZ7A1gWFAC9BMRaQ5cQ9FlOMKmjyJSD7gCeA1AVc+qagZh1Ecca9PUFJFqQC3gEJW8f6q6GjhebLOnPg0F5qvqGVXdD+wFulVEnOXhro+qulxVc50vvwSaO5+XuY+WKCqIiLQGOgJfAReo6mFwJBOgcRBD84cXgEdxLO7nEk59vAhIA+Y4h9dmi0htwqSPqpoKTAd+AA4DJ1R1OWHSv2I89akZcKBQu4PObZXdGOAj5/My99ESRQUQkTrAu8BDqnoy2PH4k4gMAY6q6sZgxxJA1YBOwMuq2hH4mco3DOORc5x+KBALNAVqi8htwY2qwombbZX63gERmYxj+Huea5ObZj710RJFgIlIFI4kMU9VFzo3HxGRC53vXwgcDVZ8ftATuE5EUoD5wFUi8n+EVx8PAgdV9Svn63dwJI5w6WN/YL+qpqlqDrAQuJzw6V9hnvp0EGhRqF1zHMNvlZKIjAKGALfqLzfLlbmPligCSEQEx7j2blV9vtBbS4BRzuejgPcqOjZ/UdVJqtpcVVvjmCj7RFVvI7z6+CNwQETaOjf1A3YRPn38AeguIrWc/8/2wzGfFi79K8xTn5YAN4lItIjEApcA64IQX7mJyCDg98B1qnq60Ftl76Oq2iNAD6AXjlO7bcAW52MwcD6OKy6+df48L9ix+qm/VwIfOJ+HVR+BDsAG53/LxUDDcOoj8Efga2AH8BYQXdn7B/wbx5xLDo6/pv/XW5+AycA+YA9wdbDjL0cf9+KYi3B957xS3j5aCQ9jjDFe2dCTMcYYryxRGGOM8coShTHGGK8sURhjjPHKEoUxxhivLFEYY4zxyhKFMVWciPxdRDaJSNdC2y4VkVecpdXvCWZ8JvgsURhThTmLGzYG7sZR8gEAVd2tquOBG4AuQQrPhAhLFKbSEZHhIqIi0s75uoGI3OvnY3xeirarii8CIyIPicjMEj6XWdb4SktEWotIlohsKbxdVX8GLgRWAS8W+8x1wFpgpYjUFJEtInJWRGIqKGwTIixRmMroZhxfYDc5XzcA/JooVPXyUjT/d6FYXG5ybg8l+1S1Q+ENInI+jvUnTgF5hd9T1SXO38Otqprl/GylLZRnys4ShalUnCXbe+KoaeP6cp4KXOz8i3eas90jzmU9d4jIQ85trZ1LRM52bp8nIv1F5DPn0pjdCh0ns9DzO5zLSm4VkbfchPUOMEREol3HwVGue627OIr1p3WxZSx/JyJTShOviNwmIuuc/X+1lCuz/QHHWhQ7gfaF4rhSRF4UkVeBpaXYnwlHwS5qZQ97lOYB3Aa85nz+OY5y362BHYXadAa2A7WBOji+BDs62+UCCTj+SNoIvI6jTv9QYHGhfWQ6f8bhKKAW43zttjAe8CEw1Pl8IjDNUxyFj+Em9t8BU5zPS4wXuBR4H4hyfmYmcIeb+Iocp9C2r5z7ewkY68PvP8X1u7BH1XnYGYWpbG7Gse4Fzp83u2nTC1ikqj+raiaO9RV6O9/br6rbVTUfxxf3SlVVHF/ord3s6yrgHVU9BqCqxZfWdCk8/OQadvIWh69KircfjoS03jn/0A/Hiny+eBp4yrm/3TiSojHnqBbsAIzxlXM8/SogXkQUiMRRxr34pLG7lbxczhR6nl/odT7u/z0Ivq0Cthh4XkQ6ATVVdZOIXOHD53IpOgRco5TxCvCGqk7y4VgFRKQDcD3QS0T+4Tzu9tLsw1QddkZhKpMRwJuq2kpVW6tqC2A/0BKoW6jdamCYcyGe2sBwYE0Zj7kSuMGZpBCR89w1cp4xrMIxNOSaxPYljiNAYxE53znHMYTSWQmMEJHGrvhEpJUPn/sLcK3z99gaSMLOKIwHlihMZXIzsKjYtndxDPV85pzwnaaqm4C5OFbv+gqYraqby3JAVd0JPAN8KiJbgee9NP83ji/c+c7PlhiHOpYefcr5/gc4Fg8qTXy7cExILxeRbcDHOC539UhErgJqq+rKQvs5gmOtbLeJ0FRttnCRMVWA80qsD1Q1vpz7SQG6uOZsTNVgZxTGVA15QP3iN9z5ynXDHRCFY37EVCF2RmGMMcYrO6MwxhjjlSUKY4wxXlmiMMYY45UlCmOMMV5ZojDGGOOVJQpjjDFeWaIwxhjjlSUKY4wxXv0/xEaCskssIIAAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "tc.plot.energy_volume(crystal_systems=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f039bd7e-e62e-43d6-9c22-6a4bb1c68c73",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>alpha</th>\n",
       "      <th>beta</th>\n",
       "      <th>gamma</th>\n",
       "      <th>V</th>\n",
       "      <th>N</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>4.039967</td>\n",
       "      <td>4.039967</td>\n",
       "      <td>4.039967</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>65.937658</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3.900545</td>\n",
       "      <td>3.900545</td>\n",
       "      <td>3.900545</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>59.343892</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>3.929227</td>\n",
       "      <td>3.929227</td>\n",
       "      <td>3.929227</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>60.662645</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3.957496</td>\n",
       "      <td>3.957496</td>\n",
       "      <td>3.957496</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>61.981399</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3.985366</td>\n",
       "      <td>3.985366</td>\n",
       "      <td>3.985366</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>90.000000</td>\n",
       "      <td>63.300152</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>303</th>\n",
       "      <td>7.008729</td>\n",
       "      <td>7.232998</td>\n",
       "      <td>10.690023</td>\n",
       "      <td>121.764941</td>\n",
       "      <td>89.204727</td>\n",
       "      <td>90.106498</td>\n",
       "      <td>460.695818</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>304</th>\n",
       "      <td>7.054241</td>\n",
       "      <td>7.279967</td>\n",
       "      <td>10.759441</td>\n",
       "      <td>121.764941</td>\n",
       "      <td>89.204727</td>\n",
       "      <td>90.106498</td>\n",
       "      <td>469.729069</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>305</th>\n",
       "      <td>7.099174</td>\n",
       "      <td>7.326338</td>\n",
       "      <td>10.827974</td>\n",
       "      <td>121.764941</td>\n",
       "      <td>89.204727</td>\n",
       "      <td>90.106498</td>\n",
       "      <td>478.762321</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>306</th>\n",
       "      <td>7.143545</td>\n",
       "      <td>7.372128</td>\n",
       "      <td>10.895651</td>\n",
       "      <td>121.764941</td>\n",
       "      <td>89.204727</td>\n",
       "      <td>90.106498</td>\n",
       "      <td>487.795572</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>307</th>\n",
       "      <td>7.187372</td>\n",
       "      <td>7.417357</td>\n",
       "      <td>10.962497</td>\n",
       "      <td>121.764941</td>\n",
       "      <td>89.204727</td>\n",
       "      <td>90.106498</td>\n",
       "      <td>496.828823</td>\n",
       "      <td>16</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>308 rows × 8 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "            a         b          c       alpha       beta      gamma  \\\n",
       "0    4.039967  4.039967   4.039967   90.000000  90.000000  90.000000   \n",
       "1    3.900545  3.900545   3.900545   90.000000  90.000000  90.000000   \n",
       "2    3.929227  3.929227   3.929227   90.000000  90.000000  90.000000   \n",
       "3    3.957496  3.957496   3.957496   90.000000  90.000000  90.000000   \n",
       "4    3.985366  3.985366   3.985366   90.000000  90.000000  90.000000   \n",
       "..        ...       ...        ...         ...        ...        ...   \n",
       "303  7.008729  7.232998  10.690023  121.764941  89.204727  90.106498   \n",
       "304  7.054241  7.279967  10.759441  121.764941  89.204727  90.106498   \n",
       "305  7.099174  7.326338  10.827974  121.764941  89.204727  90.106498   \n",
       "306  7.143545  7.372128  10.895651  121.764941  89.204727  90.106498   \n",
       "307  7.187372  7.417357  10.962497  121.764941  89.204727  90.106498   \n",
       "\n",
       "              V   N  \n",
       "0     65.937658   4  \n",
       "1     59.343892   4  \n",
       "2     60.662645   4  \n",
       "3     61.981399   4  \n",
       "4     63.300152   4  \n",
       "..          ...  ..  \n",
       "303  460.695818  16  \n",
       "304  469.729069  16  \n",
       "305  478.762321  16  \n",
       "306  487.795572  16  \n",
       "307  496.828823  16  \n",
       "\n",
       "[308 rows x 8 columns]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAG/CAYAAAApVwz/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3E0lEQVR4nO3dfbxlZ1kf/N9lQgigHgUC1bw4oROjkdSAY0RrLVXUYBxCRSVBIVqaMW1B7aPV8GgfU6s1PI9WG8XiWCFRMUjRQoaE4ksLSIWa8OYkxEDAgQxBEkCOCFSIXs8few0cTs6ZnJnzsvY56/v9fPZnzr73Wmtfa79cs9a17/te1d0BAAAAYDo+a+wAAAAAANhaCkIAAAAAE6MgBAAAADAxCkIAAAAAE6MgBAAAADAxCkIAAAAAE6MgxDGrqjOq6q+r6oQtfM5XV9U/36rnA6apqv5RVd0+dhzAsfP9HV9VPb6qDo8dB8wTuWnzVNWVVfWbY8exnSkIbXNDoeQvq+qBy9oPVdUTNuM5u/s93f3Z3f23a12nqr66qj5aVZ+zwmNvrqpnbWyUwHY35LGPV9VHqurDVfXHVXV5VW3a/13d/UfdffayGDYll8IUHe93aqUfhqqqq2r3kfvLv7/rVVUnD7nn61d47Oer6qXr2PaG55blr8dWGOM5YTPITZ9af1OOe2rmXVX1to3eNuujILSNVdWuJP8oSSd50rjRHF13vz7J4SRPWdpeVY9Ock6S68aIC5h7e7v7c5J8UZKrkvxokl8bNyRgCrr7/yT57STPWNo+9JC+JMm1Y8RVVSeO8bzAfNimuenrkjwiyaOq6iu3KCTWQEFoe3tGkjckuSbJpUcaq+o3kpyR5MAwtOtHhvYnVdWtQ0X51VX1pUvWOVRV/6aq/nToyfNrVfXIqnrl8Ov8H1TV5w/L7hoq3ycO9x9aVS+sqruG3kovWyXea7MscQ33b+juD1bV11TVTVW1OPz7NSttZHnXwBXieXVV/dTQm+Cvq+pAVT2sql5UVX81bHvXkvW/pKp+v6o+VFW3V9V3ruXFB7ZOdy929/VJnprk0qp6dFU9sKp+tqreU1Xvr6rnV9WDkk8PW6iqH6qqu6vqfVX1vUe2V1XfUlVvG/Lbe6vqh5euN/x9n1xaVTdU1bOXxjbkzSdv0UsBO1JVfX5VvaKq7hmOJV5RVacNj/10Zj+A/dLwXfylqnrtsOpbh7an1rLhSlV1elX97rDND1bVLy157J9V1W3Dc72qqr5oldCuTfKUqnrwkrZvzuwY+pVVtTAcM71vyCU/VUuG1FfVZcPzfGTIOY9dx3Haj1bVnyb5aB1DUWidufJhw3HUkeOnn6qq1w2P3ec9WLLeMeVemFdy04blpkuTvDzJjVly3jps49VV9e+r6n8N8fxeVT18yePPqKp3D6/Vv62j9GKqqsfV7Bzww1X11qp6/JLHvqdmvZQ+UlV/XlXftUqs09Ldbtv0luSOJP8yyVck+WSSRy557FCSJyy5/8VJPprkG5M8IMmPDOuftGT5NyR5ZJJTk9yd5E1JHpPkgUn+R5KfGJbdlVmvpBOH+zdkVqX+/GHb/3iVeE8f4jxjuP9ZmfUaenKShyb5yyRPT3JiZtXtv0zysGHZVyf558PfVyb5zSXbXR7Pq4d9+/tJFpK8Lcnbkzxh2PavJ3nhsOxDktyZ5HuHxx6b5ANJvmzs99fNbeq35XlsSft7kvyLJL+Q5Pohf3xOkgNJfmZY5vFJ7k3yk0Ne+pYkH0vy+cPj70vyj4a/Pz/JY5esd3i1GJJ8Z5L/veT+lyf54JFc6ubmdvTbUb7XD8usF/GDh+/zf03ysiWPf+o4YElbJ9m95P6nvr9JTkjy1iQ/P/xff3KSrx0ee/JwnPClw//9P57kj48S89uTfPeS+9cl+YXh75cl+ZXhOR6R5E+SfN/w2HckeW+Sr0xSSXYn+aKVXoes7TjtLZkdSz1olTg/4/VY0r6eXPni4fbgzHp035nkdffzHhxz7nVzG/smN21qbnpwkr8a8sFTMjvXOmnZa/jO4bkeNNy/anjsnCR/neRrk5yU5GczO598wvD4lRnOCzM7h/3g8DyfNcT8wSSnDK/DXyU5e1j2C+J8L92th9B2VVVfm9kQipd09xsz+xI97SirPDWznji/392fzOzL9KAkS3vh/GJ3v7+735vkjzI76Xlzd/9Nkv+WWXFoeRxfkOSJSS7v7r/s7k9292tWCqC770zymiTfPTR9Q2ZJ8IYkFyZ5R3f/Rnff293XJfmzJHvX9ILc1wu7+53dvZjklUne2d1/0N33ZpbIj+zLtyY51N0vHJ73TUl+J8m3H+fzApvvrsxObC5L8q+7+0Pd/ZEk/yHJxUuW+2SSnxzy0o2ZHVCcveSxc6rqc4fc9aY1PvfLk5xVVWcN95+e5Le7+xPr3CeYtO7+YHf/Tnd/bPg+/3SSf7yOTZ6f5AuT/Jvu/mh3/5/uft3w2PdlVhC5bTgu+A9JzjvKL/G/nqGHc1V9bpKLklxbVY/M7BjoB4fnuDuzk7wjeeifJ/l/u/umnrmju9+9ynOs5Tjt6u6+s7s/vtYXoaoqx5krh94ET8nsB8GPdffbsrahKJuRe2EUctOG5KZvS/I3SX4vySsyK3ZduGyZF3b324dtvCTJeUP7tyc50N2vG461/p/MCm4r+e4kN3b3jd39d939+0luzqxAlCR/l+TRVfWg7n5fd9+6ynYmRUFo+7o0ye919weG+7+VZd3vlvnCJJ/6onf332X2K8+pS5Z5/5K/P77C/c9eYbunJ/lQd//lGuNeOmzs6Ul+a0gunxHf4N3L4jsWa92XL0ryVUO3wg9X1YeTfFeSv3eczwtsvlMzO5h4cJI3Lvnu/vfMfgU64oPDAdURH8unv/tPyewA4d1V9Zqq+uq1PPFQIH9Jku+u2eTWlyT5jfXsDJBU1YOr6leGYQF/leS1ST6vjv+KpqcnefeyHHDEFyX5T0tyx4cy+5V8tWOOX0/yT6rq1MxOTu7o7jcP23lAkvct2davZPZr/JEY3rnGeNdynHbnGre11Ck5/lx5Sma5dunzriWGDc+9MBa5aUNy06WZdWK4dziO+t3c97z1L5b8vTRnfOHS7Xf3xzLr9bOSL0ryHcvO6742yRd090czK25dntnrckNVfcn9xD0JJqXbhmo27vs7k5xQVUe+PA/MLDl9eXe/NfetnN6V5Nwl26jMksF71xnOnUkeWlWf190fXsPyv5vkl6vqn2RWLX78kviWV7/PyOygZbmPZnZwc8R6ijd3JnlNd3/jOrYBbJGaTUR4amZdoX80s+6+x5zHuvumJBdV1QOSPCuzIs/pKy26Qtu1mRWBXpfkYz2bNB9Ynx/KrBfJV3X3X1TVeUnenNnJULL6L8KruTPJGVV14gonXncm+enuftFaNtTd76mqP8rsB6MnZnYSdmQ7f5Pk4auc3N2Z2fD1FTe77P5ajtOO9TVIZkMzPp7jy5X3ZDb867TMhqYkK+fJNTuG3AvzQm5aR26q2XxLX5/k/Ko6cnGhByc5uaoevqRzw2rel0/3MDxyHvywVZa9M8lvdPdlKz3Y3a9K8qphGz+V5FczmwNq0vQQ2p6enORvMxtTed5w+9LMhnkd6X3z/iSPWrLOS5JcWFXfMPwn/EOZJYo/Xk8g3f2+zIZk/XLNJl17QFV93VGW/2iSlyZ5YWbV8ZuHh25M8sVV9bSqOrFmExOek1m3wuXekuTrquqMqlpI8px17MIrhud9+hD7A6rqK2vJZGnA+Krqc6vqWzOby+I3h8L3ryb5+ap6xLDMqVX1zWvY1klV9V1VtTD0UPyrzHLqSpbn0gwFoL9L8nPROwiOxwNqdtnkI7cTM5ub4+NJPlxVD03yE8vWuc93cZW2I/4ksxOJq6rqIcPz/MPhsecneU5VfVmS1Gzy1e+4n5ivzayA8Q+TvCj51DHQ7yX5uSFHfVZV/f2qOjKc5L8k+eGq+oqa2b1k6MdmHaedtPS1zeyk9bhyZXf/bWY/5F059JL4ktz34iBHew8+wzHmXhiD3LTxuenpmRWUz86nz1u/OLN5ZC9Zw/ovTbK3ZhcfOinJv8uni3HL/eaw7DdX1QnDa/v4qjqtZhdLelJVPWSI/68j/yRRENquLs1snOV7uvsvjtyS/FKS7xqS188k+fGhu9wPd/ftmY2r/MXMfi3am9nlnDdi3ounZzYm/M8ym4z6B+9n+Wsz6w10pIqd7v5gZvP5/FBm3QB/JMm3rlQ1HsaD/naSP03yxqxcNFqTYSzwN2U2pvauzLorPjezHlfA+A5U1Ucy+9Xnx5L8x8wmgU9mPYTuSPKGmnXj/oMs+RXpfjw9yaFhvcvz6bnNlvuMXLqk/dcz+8XsN1deDTiKGzM7wTpyuzKziY8flNkxyhty3x7C/ynJt9fsyjtXD21XZjZfxodr2RVCh2LG3swmS31PZicfTx0e+2+Z/V//4iEH3JLZr+tH89LMJkH+w+Fk64hnZDbR6dsyuxjGSzObrDTd/V8zm2/kt5J8JLOejQ8d1tus47Rb85mv7fdmfbnyWZldoOMvMiuAX5fZydQRV2aV92AVa829MAa5aeNz06VJfnnpOetw3vr8HH26kwyx3prk2Zn9IPi+Id6785l56Miyd2Y2j9L/nVkPxzuT/JvMah6fldl55l2ZDcX7x5ldnGnyqvt4ep8CwHRV1TOS7Ovurx07FoCtUlXPTfL3uvt+T+QANlpVfXaSDyc5q7v/fORwdgQ9hADgGFTVgzP7VWn/2LEAbKaq+pKq+gfDsJLzkzwzsyvPAmyJqto7DFt9SGZXOTuY2eXu2QAKQgCwRsO8G/dkNsb+t0YOB2CzfU5m8wh9NLO5RH4uyctHjQiYmosyG+p1V5KzklzchjltGEPGAAAAACZGDyEAAACAiTlx7ACS5OEPf3jv2rVr7DCAdXrjG9/4ge4+Zew4jpdcBDuDXATMA7kImAdHy0VzURDatWtXbr755rHDANapqt49dgzrIRfBziAXAfNALgLmwdFykSFjAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIATsWFX15Kr61ap6eVV909jxAAAAzAsFIWBbqaoXVNXdVXXLsvYLqur2qrqjqq5Iku5+WXdfluR7kjx1hHABAADmkoIQsN1ck+SCpQ1VdUKS5yV5YpJzklxSVecsWeTHh8cBAACIghCwzXT3a5N8aFnz+Unu6O53dfcnkrw4yUU189wkr+zuN620varaV1U3V9XN99xzz+YGDwAAMCcUhICd4NQkdy65f3hoe3aSJyT59qq6fKUVu3t/d+/p7j2nnHLK5kcKAAAwB04cOwCADVArtHV3X53k6q0OBgAAYN6N2kOoqvZW1f7FxcUxwwC2v8NJTl9y/7Qkd40UCwAAwNwbtSDU3Qe6e9/CwsKYYQDb301JzqqqM6vqpCQXJ7l+5JgAAADmljmEgG2lqq5L8vokZ1fV4ap6Znffm+RZSV6V5LYkL+nuW8eMEwAAYJ6ZQwjYVrr7klXab0xy4xaHAwAAsC3pIQQAAAAwMTu6h9CuK25Y87KHrrpwEyMB5llV7U2yd/fu3WOHwjbm/xyYY1euMl/llS5sAtuW7zWs244uCAGsRXcfSHJgz549l40dC7DzVNWTk1yY5BFJntfdvzduRDvXaoXZQydvcSAAsA0YMgYAcIyq6gVVdXdV3bKs/YKqur2q7qiqK5Kku1/W3Zcl+Z4kTx0hXACA+1AQAgA4dtckuWBpQ1WdkOR5SZ6Y5Jwkl1TVOUsW+fHhcQCA0SkIAQAco+5+bZIPLWs+P8kd3f2u7v5Ekhcnuahmnpvkld39ppW2V1X7qurmqrr5nnvu2dzgAQCiIAQAsFFOTXLnkvuHh7ZnJ3lCkm+vqstXWrG793f3nu7ec8opp2x+pADA5JlUGgBgY9QKbd3dVye5equDAQA4Gj2EAAA2xuEkpy+5f1qSu0aKBQDgqBSEAAA2xk1JzqqqM6vqpCQXJ7l+5JgAAFakIARMXlXtrar9i4uLY4cCbBNVdV2S1yc5u6oOV9Uzu/veJM9K8qoktyV5SXffOmacAACrMYcQMHndfSDJgT179lw2dizA9tDdl6zSfmOSG7c4HACAY6aHEAAAAMDEKAgBAMwBw1cBgK2kIAQAMAe6+0B371tYWBg7FABgAhSEAAAAACZGQQgAAIAkhq/ClCgIAQAAkMTwVZgSl50HAABgRzj32nNXbD946cEtjgTmnx5CAAAAABOjIAQAAAAwMQpCwOSZPBGYB3IRALCVFISAyTN5IjAP5CIAYCspCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAzIGq2ltV+xcXF8cOBQCYAAUhAIA50N0HunvfwsLC2KEAABOgIARMnl/lAQCAqVEQAibPr/IAAMDUKAgBAAAATMyJYwcAAMDx2XXFDSu2Hzr5aSuvcKWhsQDAjB5CAAAAABOjhxAAAOt27rXnrth+8NKDWxwJALAWm9JDqKqeXFW/WlUvr6pv2oznAAAAAOD4rLkgVFUvqKq7q+qWZe0XVNXtVXVHVV2RJN39su6+LMn3JHnqhkYMAAAAwLocSw+ha5JcsLShqk5I8rwkT0xyTpJLquqcJYv8+PA4AAAAAHNizQWh7n5tkg8taz4/yR3d/a7u/kSSFye5qGaem+SV3f2mlbZXVfuq6uaquvmee+453vgBAAAAOEbrnVT61CR3Lrl/OMlXJXl2kickWaiq3d39/OUrdvf+JPuTZM+ePb3OOAAAtrWq2ptk7+7du8cOhWV2XXHDiu2HrrpwxXYTbAOwHax3Uulaoa27++ru/oruvnylYhAAAJ+puw90976FhYWxQwEAJmC9BaHDSU5fcv+0JHetc5sAAAAAbKL1FoRuSnJWVZ1ZVScluTjJ9esPC2DrVNXeqtq/uLg4digAAABb4lguO39dktcnObuqDlfVM7v73iTPSvKqJLcleUl337o5oQJsDsM0AACAqVnzpNLdfckq7TcmuXHDIgIAgO3gylV+SDjzjK2NA3awVSd1P3mLA4EdaL1DxtbFMA0AAACArTdqQcgwDQAAAICtN2pBCAAAAICtpyAEAAAAMDEKQgAAAAAToyAEAAAAMDEKQgAAAAATc+LYAQAAkFTV3iR7d+/ePXYok3Huteeu2H7w0oNbHAkAbL1RewhV1d6q2r+4uDhmGAAAo+vuA929b2FhYexQAIAJGLUg5MAHAAAAYOuZQwgAAABgYhSEAAAAACZGQQgAAABgYlxlDIDJ2HXFDWte9tBVF25iJAAAMC49hAAAAAAmRkEImLyq2ltV+xcXF8cOBQAAYEsoCAGT190HunvfwsLC2KEAAABsiVELQn6VBwAAANh6oxaE/CoPAAAAsPVcZQwAANg051577ortBy89uMWRALCUOYQAAAAAJkZBCAAAAGBiFIQAAAAAJsYcQgCwgl1X3DB2CAAAsGn0EAIAmANVtbeq9i8uLo4dCgAwAQpCAABzoLsPdPe+hYWFsUMBACZAQQgAAABgYkYtCOkaDQAAALD1Ri0I6RoNAAAAsPVcZQyAbc3VwAAA4NiZQwgAAABgYhSEAAAAACbGkDEAjtuxDNc6dNWFmxgJAABwLPQQAgAAAJgYBSEAAACAiVEQAgAAAJgYBSEAAACAiVEQAiavqvZW1f7FxcWxQwEAANgSCkLA5HX3ge7et7CwMHYoAAAAW2LUgpBf5QEAAAC23qgFIb/KAwAAAGw9Q8YAAAAAJkZBCAAAYIerqidX1a9W1cur6pvGjgcYn4IQAADANlRVL6iqu6vqlmXtF1TV7VV1R1VdkSTd/bLuvizJ9yR56gjhAnNGQQgAAGB7uibJBUsbquqEJM9L8sQk5yS5pKrOWbLIjw+PAxN34tgBAAAwu/pqkr27d+8eO5Qkya4rblix/dDJT1t5hTPP2MRogJV092uratey5vOT3NHd70qSqnpxkouq6rYkVyV5ZXe/aWsjBeaRHkIAAHPA1VeBDXJqkjuX3D88tD07yROSfHtVXb7SilW1r6purqqb77nnns2PFBiVHkIAAAA7R63Q1t19dZKrj7Zid+9Psj9J9uzZ05sQGzBHFIQAACbi3GvPXbH94KUHtzgSYBMdTnL6kvunJblrpFiAOWbIGAAAwM5xU5KzqurMqjopycVJrh85JmAOKQgBAABsQ1V1XZLXJzm7qg5X1TO7+94kz0ryqiS3JXlJd986ZpzAfDJkDAAAYBvq7ktWab8xyY1bHA6wzSgIHYfVLsO6kkNXXbiJkQAAAAAcO0PGAAAAACZm1IJQVe2tqv2Li4tjhgEAAAAwKaMWhLr7QHfvW1hYGDMMAAAAgEkxZAwAAABgYrbdpNLHMqEzAAAAAPe17QpCAAAAbI6q2ptk7+7du8cOBXac1Tq4jHV1cgUhAACYN1euMsfmlS7Gwubq7gNJDuzZs+eysWMBNpc5hAAAAAAmRkEIAAAAYGIUhAAAAAAmRkEIAAAAYGIUhAAAAAAmRkEIAAAAYGIUhAAAAAAmRkEIAAAAYGJOHDsAgLFV1d4ke3fv3j12KABwVOdee+6K7QcvPbjFkQCw3ekhBExedx/o7n0LCwtjhwIAALAlFIQAAAAAJkZBCAAAgCSzofRVtX9xcXHsUIBNpiAEAABAEkPpYUpGLQipPgMAAABsvVELQqrPAAAAAFvPkDEAgDmg5zQAsJUUhAAA5oCe0wDAVlIQAgAAAJgYBSEAAACAiVEQAgAAAJgYBSEAAACAiVEQAgAAAJiYE8cOYF7suuKGsUMAAAAA2BJ6CAEAAABMjIIQAAAAwMQYMgbAZzCEdvMdy2t86KoLNzESAACmSg8hAAAAkiRVtbeq9i8uLo4dCrDJ9BACAICJO/fac1dsP3jpwS2OhLF194EkB/bs2XPZ2LEAm0sPIQAAAICJURACAAAAmBhDxgAAAOAoDKtkJ9JDCAAAAGBi9BACAICR7LrihhXbD528xYEAMDl6CAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMzKgFoaraW1X7FxcXxwwDAAAAYFJGLQh194Hu3rewsDBmGAAAAACTcuLYAQAAMB27rrhhxfZDV124xZEAwLSZQwgAAABgYhSEAAAASGKeV5gSBSEAAACSmOcVpkRBCAAAAGBiTCoNwJZYbSLZlZhcFgAANpeCEAAAACTJlasMlTvzjK2NA7aAIWMAAAAAE6MgBAAAADAxCkIAAAAAE6MgBAAAADAxCkIAAAAAE6MgBAAAADAxCkIAAAAAE6MgBAAAADAxCkIAAAAAE6MgBOxYVfWoqvq1qnrp2LEAAADMEwUhYFupqhdU1d1Vdcuy9guq6vaquqOqrkiS7n5Xdz9znEgBAADml4IQsN1ck+SCpQ1VdUKS5yV5YpJzklxSVedsfWgAAADbg4IQsK1092uTfGhZ8/lJ7hh6BH0iyYuTXLSW7VXVvqq6uapuvueeezY4WgAAgPmkIATsBKcmuXPJ/cNJTq2qh1XV85M8pqqes9KK3b2/u/d0955TTjllK2IFAAAY3YljBwCwAWqFtu7uDya5fKuDAQAAmHd6CAE7weEkpy+5f1qSu0aKBeAzuOIhADCPFISAneCmJGdV1ZlVdVKSi5NcP3JMwA7miofATlVVe6tq/+Li4tihAJtMQQjYVqrquiSvT3J2VR2uqmd2971JnpXkVUluS/KS7r51zDiBHe+auOIhsAN194Hu3rewsDB2KMAmM4cQsK109yWrtN+Y5MYtDgeYqO5+bVXtWtb8qSseJklVHbni4dvub3tVtS/JviQ544wzNjbYbe7ca89dsf3gpQe3OBKO2HXFDSu2Hzr5aSuvcKbPNMA80kMIAGBjuOIhALBt6CEETF5V7U2yd/fu3WOHAmxvrngIAGwbeggBk2esPLBBXPEQANg2FIQAADaGKx4CANuGghAAwDFyxUMAYLszhxAAwDFyxUMAYLvTQwgAAABgYhSEAADmQFXtrar9i4uLY4cCAEyAghAAwBxwxUMAYCspCAEAAABMjEmlgcmrqr1J9u7evXvsUBjsuuKGsUMAAIAdTUEImLzuPpDkwJ49ey4bOxYAgJ3u3GvPXbH94KUHtzgSmDZDxgAAAAAmRkEIAAAAYGI2vCBUVY+qql+rqpdu9LYBAAAAWL81FYSq6gVVdXdV3bKs/YKqur2q7qiqK5Kku9/V3c/cjGABAHaqqtpbVfsXFxfHDgUAmIC19hC6JskFSxuq6oQkz0vyxCTnJLmkqs7Z0OgAACaiuw90976FhYWxQwEAJmBNBaHufm2SDy1rPj/JHUOPoE8keXGSi9b6xFW1r6purqqb77nnnjUHDAAAAMD6rGcOoVOT3Lnk/uEkp1bVw6rq+UkeU1XPWW3l7t7f3Xu6e88pp5yyjjAAAAAAOBYnrmPdWqGtu/uDSS5fx3YBAAAA2ETr6SF0OMnpS+6fluSu9YUDsPVM5AoAAEzNegpCNyU5q6rOrKqTklyc5PqNCQtg65jIFQAAmJq1Xnb+uiSvT3J2VR2uqmd2971JnpXkVUluS/KS7r5180IFAABgM+k5DdOxpjmEuvuSVdpvTHLjhkYEAADAKLr7QJIDe/bsuWzsWIDNtZ4hY+um+gwAAACw9dZzlbF1U30GAJipqr1J9u7evXvsUGBbOPfac1dsP3jpwS2OBGB7GrWHEAAAMya4BwC2koIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMSMetl5l1cF5oFcxDzbdcUNa1720FUXbmIkAADsJKP2EHJ5VWAeyEUAAMDUGDIGAAAAMDEKQgAAAAAToyAEAAAAMDGjTioNAMDM5Ce4v3KVedzOPGNr44Ak51577ortBy89uMWRAGwePYQAAOaACe4BgK2kIAQAAAAwMQpCAAAAABMzakGoqvZW1f7FxcUxwwAAAACYlFELQsbKAwAAAGw9Q8YAAAAAJkZBCAAAAGBiFIQAAAAAJubEsQMAGFtV7U2yd/fu3WteZ9cVN6x52UNXXXgcUQEAAGwePYSAyTPBPQAAMDUKQgAAAAAToyAEAAAAMDHmEAIAmAPHM58Z7CSrzc936OSnrbzCmWdsYjQAO9+oPYSqam9V7V9cXBwzDACA0ZnPDADYSqMWhBz4AAAAAGw9cwgBAAAATIyCEAAAAMDEKAgBAACQxDyvMCUKQgAAACQxzytMiYIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMzKgFoaraW1X7FxcXxwwDmDi5CAAAmJpRC0LdfaC79y0sLIwZBjBxchEAADA1howBAAAATIyCEAAAAMDEKAgBAMwB85kBAFtJQQgAYA6YzwwA2EoKQgAAAAAToyAEAAAAMDEKQgAAAAAToyAEAAAAMDEKQgAAAAAToyAEAAAAMDEKQgAAAAAToyAEAAAAMDEKQgAAAAATc+KYT15Ve5Ps3b1795hhbKpdV9yw5mUPXXXhJkYCAAAAMDNqD6HuPtDd+xYWFsYMAwAAAGBSRu0hBAAAAFtttZEch07e4kBgROYQAgAAAJgYBSEAAACAiVEQAgAAAJgYBSEAAACAiTGpNDB5VbU3yd7du3dvyvZXm7RwJYeuunBTYmAafNYAAFgrPYSAyevuA929b2FhYexQAAAAtoSCEAAAAMDEKAgBAMyBqtpbVfsXFxfHDgUAmAAFIQCAOWD4KgCwlUwqDQAAwHFb7aIGh05+2sornHnGJkYDrJUeQgAAAAAToyAEAAAAMDEKQgAAAAAToyAEAAAAMDEKQgAAAAAToyAEAAAAMDGjFoSqam9V7V9cXBwzDAAAAIBJGbUg1N0HunvfwsLCmGEAAAAATIohYwAAAAAToyAEAAAAMDEKQgAAACQxzytMiYIQAAAASczzClOiIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMQpCAAAAABOjIAQAAAAwMSeOHQDA2Kpqb5K9u3fvHjuUY7LrihvWvOyhqy7cxEjg+PgMAwCMRw8hYPK6+0B371tYWBg7FAAAgC2hhxAAwBzYrr0VmU+r9cA7dPLTVl7hzDM2MZo5duUqPwZN9fUAJkUPIQCAOaC3IgCwlRSEAAAAACZGQQgAAABgYhSEAAAAACZGQQgAAABgYka9ypiraRy/1a4csZJDV124iZGsjXjny07fPwAAAI5u1B5CrqYBAAAAsPUMGQMAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIlREAIAAACYGAUhAAAAgIk5caM3WFUPSfLLST6R5NXd/aKNfg6A+yMXAfNALgIA5tWaeghV1Quq6u6qumVZ+wVVdXtV3VFVVwzN35bkpd19WZInbXC8wITJRcA8kIsAgJ1grUPGrklywdKGqjohyfOSPDHJOUkuqapzkpyW5M5hsb/dmDABkshFwHy4JnIRALDNrakg1N2vTfKhZc3nJ7mju9/V3Z9I8uIkFyU5nNnBz5q3D7AWchEwD+QiAGAnWM8cQqfm0794JbMDnq9KcnWSX6qqC5McWG3lqtqXZF+SnHHGGesIg/uz64ob1rzsoasu3JTt7mSb9fqyZjsqF/lesd1N+DO8o3IR7DSr5aZDJ29xIEzCqp835wLbwpTev/UUhGqFtu7ujyb53vtbubv3J9mfJHv27Ol1xAFMm1wEzAO5CADYVtbTdflwktOX3D8tyV3rCwfgmMlFwDyQiwCAbWU9BaGbkpxVVWdW1UlJLk5y/caEBbBmchEwD+QiAGBbWetl569L8vokZ1fV4ap6Znffm+RZSV6V5LYkL+nuWzcvVGDq5CJgHshFAMBOsKY5hLr7klXab0xy44ZGBLAKuQiYB3IRALATjHr506raW1X7FxcXxwwDAAAAYFJGLQh194Hu3rewsDBmGAAAo/NDGbCZqupRVfVrVfXSsWMB5sOoBSGAeeAkDJgHfigDjlVVvaCq7q6qW5a1X1BVt1fVHVV1RZJ097u6+5njRArMIwUhYPKchAEA29Q1SS5Y2lBVJyR5XpInJjknySVVdc7WhwbMOwUhAACAbai7X5vkQ8uaz09yx9Aj6BNJXpzkorVsr6r2VdXNVXXzPffcs8HRAvNGQQgAAGDnODXJnUvuH05yalU9rKqen+QxVfWclVbs7v3dvae795xyyilbESswojVddh4AAIBtoVZo6+7+YJLLtzoYYH7pIQQAALBzHE5y+pL7pyW5a6RYgDk2akHIlX0AAAA21E1JzqqqM6vqpCQXJ7l+5JiAOTRqQciVfQAAAI5PVV2X5PVJzq6qw1X1zO6+N8mzkrwqyW1JXtLdt44ZJzCfzCEEADAHqmpvkr27d+8eOxRgm+juS1ZpvzHJjVscDrDNVHePHUOq6p4k797ip314kg9s8XMeKzFuDDFujLXE+EXdve0uSXHkJCzJU5O8Y+Rw1mI7fF6Oh/3aXuZ5v7ZlLjpipOOi+zNv7/e8xZOIaa2mFJNcNF/m8bO30aawj8k09nMj93HVXDQXBaExVNXN3b1n7DiORowbQ4wbYzvEOBU79b2wX9vLTt0vVjZv7/e8xZOIaa3ExFim8D5PYR+TaeznVu2jq4wBAAAATIyCEAAAAMDETLkgtH/sANZAjBtDjBtjO8Q4FTv1vbBf28tO3S9WNm/v97zFk4hprcTEWKbwPk9hH5Np7OeW7ONk5xACAAAAmKop9xACAAAAmCQFIQAAAICJmURBqKpOr6r/WVW3VdWtVfUDQ/tDq+r3q+odw7+fP3KcJ1TVm6vqFfMY3xDT51XVS6vqz4bX86vnLc6q+tfD+3xLVV1XVSePHWNVvaCq7q6qW5a0rRpTVT2nqu6oqtur6ptHjPH/G97rP62q/1ZVnzdmjFNQVRcMr+kdVXXFCo9XVV09PP6nVfXYoX3FPDcPjnefljz+GblxXqxnv1bKpVsb/erWuV/3yb9bGz2bYd6+g/P4/ZmHz/6xHmuMGNOqxxZjxLPksR+uqq6qh29VPGyeqvqB4ft4a1X94NA2V+csx+NYv+fb8Xh9lX38juG9/Luq2rNs+W23j8n8nHtNoiCU5N4kP9TdX5rkcUn+VVWdk+SKJH/Y3Wcl+cPh/ph+IMltS+7PW3xJ8p+S/Pfu/pIkX55ZvHMTZ1WdmuT7k+zp7kcnOSHJxXMQ4zVJLljWtmJMw2fz4iRfNqzzy1V1wkgx/n6SR3f3P0jy9iTPGTnGHW14DZ+X5IlJzklyyfBaL/XEJGcNt31J/vPQvlqeG9U69+mI5blxdBuwXyvl0tGtZ7+Okn/Z/ubtOzhX3585+uxfkzUea4wc04rHFiPGk6o6Pck3JnnPFsbCJqmqRye5LMn5meWIb62qszL+92EjXJP5P6dYr2ty3328Jcm3JXnt0sZtvI/JnJx7TaIg1N3v6+43DX9/JLMDh1OTXJTk2mGxa5M8eZQAk1TVaUkuTPJfljTPTXxJUlWfm+TrkvxaknT3J7r7w5mzOJOcmORBVXVikgcnuSsjx9jdr03yoWXNq8V0UZIXd/ffdPefJ7kjs//QtjzG7v697r53uPuGJKeNGeMEnJ/kju5+V3d/IsmLM3utl7ooya/3zBuSfF5VfcFR8tzYjnufklVz4zw47v06Si6dB+t6v7Jy/mUbm7fv4Bx/f0b/7B/jscZoMR3l2GKUeAY/n+RHkrjazs7wpUne0N0fGz5rr0nyTzN/5yzHbDucU6zXKnnjtu6+fYXFt+U+JvNz7jWJgtBSVbUryWOS/O8kj+zu9yWzolGSR4wY2i9k9h/R3y1pm6f4kuRRSe5J8sKh6/h/qaqHZI7i7O73JvnZzH7heV+Sxe7+vXmKcYnVYjo1yZ1Lljuc+Tix/2dJXjn8Pa8xbndreV3vd5lleW5s692nX8h9c+M8WM9+rZZL58Fx79dR8i/b2y9kvr6Dc/f9mfPP/jwe/yy19NhiFFX1pCTv7e63jhkHG+qWJF9XVQ+rqgcn+ZYkp2f+vw/Ha7udU2yknbyPW3LuNamCUFV9dpLfSfKD3f1XY8dzRFV9a5K7u/uNY8dyP05M8tgk/7m7H5Pko5mzrpbDmNmLkpyZ5AuTPKSqvnvcqI5ZrdA26i9WVfVjmQ1JetGRphUW86va+q3ldT3qMnOY5457n+Y8N67nvZrnXLqe92sn5F+WmNPv4Nx9f3z2j88KxxZjxPDgJD+W5P8ZKwY2XnffluS5mQ2/+e9J3prZZ21qpnC8viP3cSvPvSZTEKqqB2R2kvSi7v7dofn9S4YlfEGSu0cK7x8meVJVHcqse/7XV9VvzlF8RxxOcri7j/Q6eGlmB2XzFOcTkvx5d9/T3Z9M8rtJvmbOYjxitZgOZ/YrxhGnZcRhF1V1aZJvTfJd3X0k8cxVjDvIWl7XVZdZJc+NbT37tFpunAfr2a/Vcuk8WM9+rZZ/2b7m8Ts4j9+fef7sz+Pxz2rHFmP4+5kV8t46fM5PS/Kmqvp7I8bEBujuX+vux3b312U2LOcdmdPvwwbYFucUm2TH7eNWn3tNoiBUVZXZWPPbuvs/Lnno+iSXDn9fmuTlWx1bknT3c7r7tO7eldlkUf+ju797XuI7orv/IsmdVXX20PQNSd6W+YrzPUkeV1UPHt73b8hsLpV5ivGI1WK6PsnFVfXAqjozs4lb/2SE+FJVFyT50SRP6u6PLXlobmLcYW5KclZVnVlVJ2WWD65ftsz1SZ5RM4/LbGjC+46S58Z23Pt0lNw4D9azX6vl0nlw3PuV1fMv29Q8fgfn9Pszz5/9uTv+OcqxxZbr7oPd/Yju3jV8zg8neezwOWMbq6pHDP+ekdlkxNdlDr8PG2Tuzyk20Y7ax1HOvbp7x9+SfG1mXar+NMlbhtu3JHlYZjOxv2P496FzEOvjk7xi+Hse4zsvyc3Da/myJJ8/b3Em+XdJ/iyz8cO/keSBY8eY2X9C70vyycwONp55tJgy6778ziS3J3niiDHekdl41SPfm+ePGeMUbkNuevvw2v7Y0HZ5ksuHvyuzq0C9M8nBzK5qs2qeG3t/1rNPy7bxqdw4L7f17NdKuXTs/dmg/bpP/h17f9w27HMxN9/Befz+zMNnf5X/x+fx+GfVY4sx4ln2+KEkDx/78+S2Ie/1H2VWLH5rkm8Y2ubqnOU492vuzyk2aR//6fD33yR5f5JXbed9PMp+bvm5Vw0bBwAAAGAiJjFkDAAAAIBPUxACAAAAmBgFIQAAAICJURACAAAAmBgFIQAAAICJURACAAAAmBgFIQAAAICJURBiS1XVL1bVm6rqK5e0fWlVPb+qXlpV/2LM+ICda6X8c5Rl5SVgbh1LPgOmq6p+sqoOVtXbq2rfOre1q6o+XlVvWdJ28ZCLfnC4/6CqektVfaKqHr6+6NkKCkJsmap6SJJHJPm+JN96pL27b+vuy5N8Z5I9I4UH7GCr5Z/VyEvAvDrWfAZMU1V9c5LHJDkvyVOSPHkDNvvO7j5vyf2Lk3xlksdV1Wd398eHx+/agOdiCygIcUyqandVHVzW9sCq+vOqOmdJ230qyN390SRfkOTVSa5eto0nJXldkj8c7qsuA8dspdyTrJ5/qurcqnrFstsjhsc+lZfkJGAtqurxVfUbG7StNeczOQqmoaq+rKr+YOjx82+H3oKr9RR8UpJrkjwgybOS/M5RtntWVR2qqt3D/QdU1Vur6rT7C2n4t5f8zTZy4tgBsO28K8npVfVZ3f13Q9u+JK/p7rctW/YzKshV9bAkD07ykSR/u3TB7r4+yfVVdUOS3+rujyc5r6oObc5uADvY8l+vVs0/3X0wq/zCvjQvdfdvRU4C7t95Sd68gdtbUz5z3AQ7X1WdnOS/JvmOzM7J/izJG7v7plVW+YokNyX5YJJDSf71atvu7ndU1f4k35zkjswKSC/v7sP3E9bvJrk5yW9290fWvjfMCz2EOCZDEeg9SXYls1+kkvxQkivXsPqPJ/nZJLcmWdqb6PFVdXVV/UqSGzc4ZGCHqap/WVW3VNW7q+rZa1xtxfxzlOeQl4AkSVV9e1W9Yfi1/HVVdcpRFv/yJKdW1f+uqndV1eOPst0vrKrfqao3V9WfVdX5awzpmPIZsGM8Icmbu/vWoQh8UpKfW2nBqvqsJKd19zVJHp7kjUn+r/vZ/i1Jzq6qhyZ5ZpLn3l9A3X1tdz+mu1eMg/mnIMTxuC3Jlwx//6sk13f3oaOtUFW7knxNkt8e1v+yI49196u7+/u7+/u6+3mbEjGwI1TVU5J8Y2Zj4h+X5Ceq6qi9XY+Wf1YjLwFL/M/uflx3f3mS389sbrHVnJfkI939VUkuT/LvV1poyFuvTPLC7n5Mksdmlp+O6njyGbBjPCbJm5JZQTnJX3f3/1pl2bOTvCP5VA/C/5XkhPvZ/tuH9a5M8rPD8FR2OAUhjsdtmVWPPzuzgtBPr2Gdn0ryk93dcQADHL/vT/Kj3f3J7n5fkk/m/v8vk3+A9fieqvqTqnprkn+Z5P+stNBQ5HlYkv8wNL0ls1/mV/LkJLd19yuSpLs/tsbhFvIZTNffJDkyp8/PZNZDKElSVX9YVacuWfYxSR5YVSdU1QOTPC3Jy46yfJK8M7Pi9PlJfn3jw2cemUOI43Fbkq9P8gNJXtTd7z/awlV1XpJvS/K1VfW8JCcnOXi0dQCWq6oHJPkH3f324f4XJPlAd3/iKOucF/kHOE5V9YzMTo6+vrv/uqpem9lQrZWck+SOJTnpsUneusqy5yV5wzHGcl7kM5iy30ry8qq6PcmvZFbw+YXMhoLtTvKhJcuel+RBmRV5PpDkl7v7rcmnhpMtXz7d/cmq+qskVyyZK5YdTkGI43FbkisyG8f62DUs/9wke7v7yBXEHpmNnXARmIZzkixU1aMymxzxZ5L84v2sI/8A63Fukj8eikFPyWy41sFk9gt7kmd093uHZb88yZnDr/EPSPITGSZxXWHZvxiWz/D4Kd19z/3EIp/BhA0TPH/F8vaqenSS3xmGhh3xmCRP7+5bVtjUOSssf8QDkrxmI+JlezBkjONxe2YHSPu7e/FoC1bV1yd5yJGDlyQZehQ9ZJiwDGCtHpPkRUmuS/KnSd7T3ftXW1j+ATbAtUm+v6r+KMkXJ3lXd390lV/YvzyzHPXHSf4kydXd/YZVlr0mySOr6tbhsvJffbQg5DNgNd19S3cvnzD6SzK7Ctlalz8yR9m7hyGpK/nbzH6Ye8tqsVTVg4bHH5BEL6NtoFZ/v+H4DQnlFd396HVu51CSPd39gY2IC9i+hm7Rr+/u3z7KMruyAbnnKNs/FDkJJm/4Rf6frXRStZ5ll623K8eYz+QoAI6FHkJslvutIB+N6jKwgvMym6T1aNaVe1YjJwFLrfYL+3qXXWbN+UyOAuB46CEEAAAAMDF6CAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMjIIQAAAAwMQoCAEAAABMzP8PUC52vwGAreUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1440x504 with 4 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(20,7))\n",
    "tc.plot.cell()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4cb440b6-aa79-4369-80d6-141dcfc37696",
   "metadata": {},
   "source": [
    "### Create an atomicrex job"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "56951cee-038f-44e7-bb11-b20841036f81",
   "metadata": {},
   "outputs": [],
   "source": [
    "job = pr.create.job.Atomicrex(\"FitAl\", delete_existing_job=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9807a140-dc20-4c4a-b22c-dcc89c789425",
   "metadata": {},
   "source": [
    "### Training Data\n",
    "Set the training data. This can also be done structure by structure to set other fit properties and weights, but here we simply load the TrainingContainer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "adbcf0a6-1ef8-4697-93d5-bd9346aad1ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "job.add_training_data(tc)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d275454-0b14-4862-b4f0-8b7166852f96",
   "metadata": {},
   "source": [
    "Set the potential type. In this case an EAM potential"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e90476e0-54cf-4a6e-9424-bf282517a4b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "job.potential = job.factories.potentials.eam_potential()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1cd689cb-0d35-4b5c-93e6-e0112a5382b2",
   "metadata": {},
   "source": [
    "### Functions\n",
    "Reminder: $E = \\sum_{ij}V(r_{ij}) + \\sum_i F(\\rho_i)$ with $\\rho_i = \\sum_j \\rho(r_{ij})$\n",
    "\n",
    "It is necessary to define a pair potential, an electronic density function and an embedding function.\n",
    "For all of those it is possible to choose between different functional forms.\n",
    "Classic pair potentials are physically motivated and have a very limited number of paramaters that can often be derived from an experimentally measurable quantity.\n",
    "Splines or polynomials offer more flexibility, but can lead to unphysical oscillations or overfitting. Compared with the machine learning potentials shown later the number of parameters is very low no matter which functions you choose.\n",
    "\n",
    "In this case a generalized morse function is used for the pair interaction. It has the form\n",
    "\n",
    "$(\\frac{D_0}{S-1}exp(-\\beta \\sqrt{2S}(r-r_0))-\\frac{D_0S}{S-1}exp(-\\beta\\sqrt{2/S}(r-r_0)))+\\delta $\n",
    "\n",
    "The parameters in the morse potential can be derived from phyiscal quantities, here they are just educated guesses. For example $r_0$ is the equilibrium distance of a dimer. The nearest neighbor distance in fcc Cu is about 2.8 $\\mathring A$ so it is taken as initial value.\n",
    "In the case of analytic functions the initial parameter choices should not matter too much, since the functional form is constrained.\n",
    "\n",
    "The electronic density will be a cubic spline. The embedding function will be $-A*sqrt(\\rho)+B*rho$, which can be defined as a user function.\n",
    "\n",
    "The pair function and the electron denity and their first derivatives are required to smoothly approach 0 at the cutoff distance $r_{c}$\n",
    "For this purpose the pair function is screened by multiplying with the function:\n",
    "\n",
    "$\\Psi(\\frac{r-rc}{h})$ where $\\Psi(x) = \\frac{x^4}{1+x^4}$ if $x<0$ else $\\Psi(x)=0$\n",
    "\n",
    "For the spline it is necessary to set a node point with y value 0 at the cutoff "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "96a1900f-f4d2-43b6-87dd-cf5570517836",
   "metadata": {},
   "outputs": [],
   "source": [
    "morseB = job.factories.functions.morse_B(\"V\", D0=0.15, r0=3.05, beta=1.1, S=4.1, delta=-0.01)\n",
    "morseB.screening = job.factories.functions.x_pow_n_cutoff(identifier=\"V_screen\", cutoff=7.6)\n",
    "morseB.parameters.D0.min_val = 0.05\n",
    "morseB.parameters.D0.max_val = 1.55\n",
    "\n",
    "morseB.parameters.r0.min_val = 2.6\n",
    "morseB.parameters.r0.max_val = 3.1\n",
    "\n",
    "morseB.parameters.S.min_val = 1.5\n",
    "morseB.parameters.S.max_val = 4.5\n",
    "morseB.parameters.delta.max_val = 0.005"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "252c78d0-9230-4e23-83a1-20304f1630b5",
   "metadata": {},
   "source": [
    "It is also possible to plot most of the functions. This can help to judge if the initial parameters are reasonable"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "1c380b21-78e8-404c-a9ae-a5b6d6ea85fd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(<Figure size 720x504 with 1 Axes>,\n",
       " <AxesSubplot:xlabel='r [$\\\\AA$]', ylabel='func(r)'>)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAGzCAYAAABjHhDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkQklEQVR4nO3de3Scd33n8c93ZqTR1ZJv8kW+xUmwIbZJYgU2CVAwaTcEGrq0oVC23aVp3XZpF5bdbpfSLdvbKV0Kp7d0u1nu3VCg0Gxowr3hWpIQ2yRxHMdu4sSOYyeW7diWZVvSzHz3j3kkj21FHluX7zwz79c5Oppn9EjzZeCEd57Lb8zdBQAAgBiZ6AEAAAAaGTEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBwmLMzFrM7Idm9rCZbTOz34uaBQAAIIpFrTNmZiap3d2Pm1mTpO9Lere73x8yEAAAQIBc1At7uQKPJ5tNyRcr0AIAgIYSFmOSZGZZSZslXSbpNnd/YJx9NkraKEnt7e3rV69ePbNDoqY9f+yUDgwMaW1vV/QoAACcYfPmzQfdff759gs7TXnGEGbdku6U9Bvu/uiL7dfX1+ebNm2asblQ+z7zwB799p1bdd/7NmhRV2v0OAAAjDGzze7ed779auJuSnc/Iunbkm6MnQRps7i7RZK078jJ4EkAALg4kXdTzk+OiMnMWiXdIOnxqHmQTr3d5aNhzx45FTwJAAAXJ/KasUWSPpVcN5aR9Hl3vztwHqTQoiTGODIGAEiryLspH5F0VdTroz505HPqam0ixgAAqVUT14wBk7G4u5UYAwCkFjGG1OvtbuGaMQBAahFjSD2OjAEA0owYQ+ot7m7V0ZMjOj5UiB4FAIALRowh9RYnd1Tu5+gYACCFiDGkXm+y8OuzxBgAIIWIMaTe4rGFX4kxAED6EGNIvZ7OFmUzxkX8AIBUIsaQetmMaeGsFu1jeQsAQAoRY6gLvd2tevYFjowBANKHGENd6J3dyjVjAIBUIsZQF5bNadO+oyc1XChFjwIAwAUhxlAXls1pkzt3VAIA0ocYQ11YNrdNkrT70GDwJAAAXBhiDHVh2ZxyjD1z+ETwJAAAXBhiDHVhfkde+VxGe4gxAEDKEGOoC5mMaemcNmIMAJA6xBjqxvI5bdp9iBgDAKQLMYa6sXROm545fELuHj0KAABVI8ZQN5bNadPgcFGHB4ejRwEAoGrEGOrG6B2VXDcGAEgTYgx1Y3StMWIMAJAmxBjqxtLZSYxxET8AIEWIMdSN1uasejrzHBkDAKQKMYa6soy1xgAAKUOMoa4sS5a3AAAgLYgx1JWlc9q0/9gpDRWK0aMAAFAVYgx1ZfncNrlLe184GT0KAABVIcZQV1hrDACQNsQY6spojHHdGAAgLYgx1JX5nXnlcxk+MBwAkBrEGOqKmbG8BQAgVYgx1B2WtwAApAkxhrqzbG75yJi7R48CAMB5EWOoOyvmtuvEcFEHBoaiRwEA4LyIMdSdlfPbJUlP9h8PngQAgPMjxlB3Vs7vkCTt6h8MngQAgPMjxlB3Fs1qUUtThhgDAKQCMYa6k8mYLpnXoV0HOU0JAKh9xBjq0sr57RwZAwCkAjGGunTpvHbtfeGEhgrF6FEAAJgQMYa6tHJ+h0ouPhYJAFDziDHUpdHlLXaxvAUAoMYRY6hLl8wbXWuM68YAALWNGENd6mxpUk9nXk8dJMYAALWNGEPdKt9RyWlKAEBtI8ZQt1bO79AujowBAGocMYa6tXJeu46cGNHhweHoUQAAeFHEGOrWpWOfUcmpSgBA7SLGULdOL2/BqUoAQO0ixlC3lsxuU3M2oyf5jEoAQA0jxlC3shnT8rltHBkDANQ0Ygx1jeUtAAC1jhhDXVs5v0N7Dp9QoViKHgUAgHERY6hrK+e1a6To2nOYDwwHANSmsBgzs6Vm9i0z225m28zs3VGzoH5dvqBTkvQvBzhVCQCoTZFHxgqS/rO7v1TSv5L0LjN7WeA8qEOX95TXGtv53EDwJAAAjC8sxtx9v7tvSR4PSNouqTdqHtSn9nxOy+a06fHniTEAQG2qiWvGzGyFpKskPTDOzzaa2SYz29Tf3z/jsyH9XrKgkyNjAICaFR5jZtYh6YuS3uPux87+ubvf7u597t43f/78mR8QqbdqYYeeOjiooUIxehQAAM4RGmNm1qRyiN3h7v8QOQvq16qFs1QoOYu/AgBqUuTdlCbpY5K2u/tHouZA/VuV3FG5k+vGAAA1KPLI2PWSfl7SBjN7KPm6KXAe1KlL5rWrKWt6nOvGAAA1KBf1wu7+fUkW9fpoHM25jFbO6+AifgBATQq/gB+YCasWdmoHpykBADWIGENDWLWwU3tfOKnjQ4XoUQAAOAMxhobwEi7iBwDUKGIMDWH1wiTGuG4MAFBjiDE0hN7uVrU1Z7mjEgBQc4gxNIRMxsofi8RpSgBAjSHG0DBWLejUDo6MAQBqDDGGhvGShZ06NDisg8eHokcBAGAMMYaGwUX8AIBaRIyhYYzG2GP7jwVPAgDAacQYGsbcjrwWdbVo67NHo0cBAGAMMYaGsqa3S48SYwCAGkKMoaGsWdylXQcH+VgkAEDNIMbQUNYumSV36bF9XDcGAKgNxBgayprFXZLEqUoAQM0gxtBQema1qKczT4wBAGoGMYaGs7a3izsqAQA1gxhDw7mit0tP9h/XiWEu4gcAxCPG0HDW9nap5NJ2Fn8FANQAYgwNZ21v+SL+rXs5VQkAiEeMoeEsmJXXvI5mbX2WI2MAgHjEGBqOmWlNb5e27ePIGAAgHjGGhrS2t0v/cuC4To0Uo0cBADQ4YgwN6YrFXSqWXI9xET8AIBgxhoa0dkn5Iv5trDcGAAhGjKEhLe5q0dz2Zj30DDEGAIhFjKEhmZmuWjZbP9rzQvQoAIAGR4yhYa1fPlu7Dg7q8OBw9CgAgAZGjKFhrV8+W5K0ZTdHxwAAcYgxNKx1S7qUy5g2c6oSABCIGEPDamnK6orFszgyBgAIRYyhoV29fLYe3ntEI8VS9CgAgAZFjKGhrV8+W6dGStrO4q8AgCDEGBra1cvKF/Fv5lQlACAIMYaGtri7VYu6WogxAEAYYgwN7+rls/WjPUeixwAANChiDA1v/bLZevbISe0/ejJ6FABAAyLG0PCuHlv89UjsIACAhkSMoeG9bNEs5XMZrhsDAIQgxtDwmnMZvXxptx58+nD0KACABkSMAZKuXTlX2/Yd1dETI9GjAAAaDDEGSLru0rkqufTAU4eiRwEANBhiDJB05bJutTRl9IMniTEAwMwixgBJ+VxW16yYo/uIMQDADCPGgMS1l87VjucHdPD4UPQoAIAGQowBiesunSdJun8XR8cAADOHGAMSaxbPUmc+x3VjAIAZRYwBiVw2o1eu5LoxAMDMIsaACtdeOk9PHRzUviN8TiUAYGYQY0CF6y6dK0kcHQMAzBhiDKiwakGn5rQ3c90YAGDGEGNAhUzGdO3KufrBkwfl7tHjAAAaADEGnOU1L5mn/UdPacfzA9GjAAAaADEGnOV1q3okSf+0/UDwJACARhAaY2b2cTM7YGaPRs4BVOqZ1aI1vbP0rceJMQDA9Is+MvZJSTcGzwCcY8PqBdqy5wW9MDgcPQoAoM6Fxpi7f1fS4cgZgPFsWN2jkkvf2dkfPQoAoM5FHxk7LzPbaGabzGxTfz//x4iZsa63S/M6mnUvpyoBANOs5mPM3W939z5375s/f370OGgQmYzptat69J2d/SoUS9HjAADqWM3HGBBlw+oeHT05oi17jkSPAgCoY8QY8CJeffk85TLGqUoAwLSKXtri7yTdJ2mVme01s1sj5wEqdbY06RWXzGGJCwDAtIq+m/Lt7r7I3ZvcfYm7fyxyHuBsG1b3aMfzA9pz6ET0KACAOsVpSmACN65ZKEm6Z+v+4EkAAPWKGAMmsGR2m65c2q17tu6LHgUAUKeIMeA83rRukR599piePjgYPQoAoA4RY8B53LR2kSROVQIApgcxBpzH4u5WrV8+W3c/QowBAKYeMQZU4Y1rF2n7/mN6sv949CgAgDpDjAFVGD1V+WWOjgEAphgxBlRhYVeLrlkxm+vGAABTjhgDqvTGtYv0+HMDeuLAQPQoAIA6QowBVbpp3SJlM6YvbH42ehQAQB0hxoAq9XS26HWrevTFLXtVKJaixwEA1AliDLgAb+1bov6BIX17R3/0KACAOkGMARfgdat7NK8jr89teiZ6FABAnSDGgAvQlM3op9f36t7HD+jAwKnocQAAdYAYAy7QLeuXqlhy3bmFC/kBAJNHjAEX6LKeDvUtn63PbXpG7h49DgAg5Ygx4CK8tW+pdvUPavPuF6JHAQCkHDEGXIQ3rlukjnxOf3v/7uhRAAApR4wBF6E9n9Nb+5bqnkf267mjXMgPALh4xBhwkd55/QqV3PWp+56OHgUAkGLEGHCRls5p00+8bKE+88AenRguRI8DAEgpYgyYhFtffYmOnhzRF1nmAgBwkYgxYBL6ls/WuiVd+sT3n1KpxDIXAIALR4wBk2BmuvVVl2jXwUF9e+eB6HEAAClEjAGTdNPaRVo4q0V/851dLAILALhgxBgwSU3ZjH7ttZfqh08d1n1PHooeBwCQMsQYMAV+9pqlWjirRR/5xk6OjgEALggxBkyBlqas3rXhMm3a/YK+/8TB6HEAAClCjAFT5K19S9Tb3crRMQDABSHGgCmSz2X1rtddph/tOaLv7OyPHgcAkBLEGDCFfmb9Ei2Z3aoPf30n644BAKpCjAFTqDmX0X/5iVXa+uxRfWHL3uhxAAApQIwBU+zNVy7W1cu69T+/ukMDp0aixwEA1DhiDJhiZqb/cfMVOjQ4pL+894nocQAANY4YA6bBuiXdumX9En3in5/Srv7j0eMAAGoYMQZMk9/816uVz2X1B3c/xlIXAIAXRYwB02R+Z17vueFyfWtHv/7xkf3R4wAAahQxBkyjf3/dCr18abc+cNej6h8Yih4HAFCDiDFgGuWyGX34lnUaHC7qd/7fVk5XAgDOQYwB0+yynk6998dfoq9te15fenhf9DgAgBpDjAEz4JdfvVJXLu3WB760Tc8dPRU9DgCghhBjwAzIZkx/esvLNVwo6dc/s0UjxVL0SACAGkGMATPksp4O/fFb1mrT7hf0J195PHocAECNIMaAGfTmK3v1C9cu10e//5S+spXlLgAAVcSYmV1rZreZ2SNm1m9me8zsy2b2LjPrmokhgXry/je+VC9f2q3f/MIjeuIAq/MDQKObMMbM7CuSfknS1yTdKGmRpJdJ+h1JLZLuMrObp3tIoJ7kc1n99TuuVj6X0Ts/+UMdGOCCfgBoZDbRukdmNs/dD074B6rYZ6r09fX5pk2bZuKlgGn38DNH9Lbb79elPe367MZr1ZHPRY8EAJhCZrbZ3fvOt9+ER8bc/aCZZc3smxPtczEDAo3u5Uu7dds7rtL2/QP6D3dwhyUANKrzXjPm7kVJJ7g+DJh6G1Yv0B/91Bp9d2e/3vv5h1UgyACg4VR7XuSUpK1m9g1Jg6NPuvt/nJapgAbytlcs05GTI/rgVx5XoVjSn7/tKjXnuNEZABpFtTF2T/IFYBr86o9dqlzG9If3bNfIHZt12zuuVj6XjR4LADADqooxd//UdA8CNLpfevVK5XMZ/fe7tunWT27Sbe+4Wl2tTdFjAQCm2fmWtvhHM/tJMzvn/xHMbKWZ/b6Z/eL0jQc0lp+/doU+9DPrdP+uQ3rLX/+zdh8aPP8vAQBS7XwXpvyypFdLetzMHkwWe73XzJ6S9L8lbXb3j0/7lEADuaVvqf721lfq0OCwfuq2f9YDuw5FjwQAmEYTrjN2xo5mK1Re9PWkpJ3ufmLSL252o6Q/l5SV9FF3/+BE+7POGBrJ0wcHdeunHtTTh07oP91wuX7ttZcpm7HosQAAVZqSdcYq/tglkp5z9/vc/SFJpSTOJjNgVtJtkt6g8qr+bzezl03mbwL1ZMW8dt35rut109pF+tOv79Q7Pnq/9h89GT0WAGCKVXv//N9LqlwAqZQ8NxmvkPSEu+9y92FJn5X05kn+TaCuzGpp0l+87Up96GfW6ZG9R3Xjn31Pn3twj0ql6o5oAwBqX7UxlkuCSZKUPG6e5Gv3SnqmYntv8hyACmamW/qW6u7feJVesqBDv/XFrfrZ2+/TzucHokcDAEyBatcZ6zezm939S5JkZm+WNNmPQRrv4pdz/nXfzDZK2ihJy5Ytm+RLAum1cn6HPrfxWn1hy1798Ze366Y//55+7pXL9OsbLlNPZ0v0eABSrFRyFd1VLLncNfZ49PlSyVVKni+Vyj8rusvdVSypvK9f3PMlH3189hyjv3fu8+5SyaVS8jdHH5dcciU/L/k5+7iS7+4qlSp+x12u09tjv5Ps49K5r5PM7ec8d3q7WtXG2K9KusPM/krliHpG0i9c4H/XZ9sraWnF9hJJ+87eyd1vl3S7VL6Af5KvCaRaJmN6a99S3fDSBfrw13foMw/s0d9v2qt3Xr9CG1+zUt1tkz1gDWA87q6RomukWEq+Kh+fuT1ccBVKpx+PFEvl7YJrpFRSseQqFMthUSi5iqXy71duF0qntwvFM7eLxeT5c/5WqeJ3ztyu/D5SPPP5YsovezCTMmbKmGSyM7YzlmxnTKbR7dM/y1j57MO4v2M29ni83xnveyaTOeN3qv7PUO3dlOX/wNaR/M6kz4+YWU7STkmvl/SspAcl/Zy7b3ux3+FuSuBMTx8c1Ee+sVNfenifWpuyuqVviW591SVaPrc9ejTgohVLruFCScOFkoYKRQ0VSslXMXmu/DX285GShoslDY0Uk+/Jz1/kuZFiSYWijz0+ZzuJqeHC6cgqzECwZEzKZTPKZUzZjCXfy9u5rFU8nyl/z5a3m87artzvzOdO/+2mbHk7m5GyZspk7PT3zOnwyI5tW7J9/ufH/paZMsnfH/f5itfM2OjjiZ8ffb3KaLqQ6Jlp1d5NWVWMmVle0k9LWqGKo2nu/vuTmFFmdpOkP1N5aYuPu/sfTbQ/MQaMb8dzA/o/39ulux56VoWSa8OqHr31mqXasLpHTVk+5xKT4+4aKpR0aqSokyNFnRwufz81kjw3tl0c2+fUSGls38rnT46UdGq4qFOF8nNDhdIZMTVUmJrwMZPyuYzyuazyuYyak698LqumrKkpm6n4fvpxc7YcMGc/35Qt/34uk2znMmrOloNn9HFTNqNc8jvNye/kznrclMRWLpNRtiKwRuMD9WWqY+yrko5K2iypOPq8u394MkNeKGIMmNiBY6f06ft26/ObntGBgSHNbW/WzVcu1hvWLNL65bNZp6xBuLtODBd1fKhQ/jpV0OBQQQND5e/jPX/8VEGDw+Xvx4cK5YgqlJLvRV3ASZQxTVlTS1NWrU1ZtTZn1ZLLqqU5q9amjFqbsuVQasqMRVM5lk5H0+nHGeWbsmrOZsr7j36f4HdyGavpIyZoDFMdY4+6+5opmWwSiDGgOoViSd/9l359/sG9unfHAQ0XSprX0awbXrpA1102T9eunKv5nfnoMVHB3XVypDgWQ2cE01gkFXV8aOSMx4NDxdORlcTV8eFCVfGUzZg68rnTXy05tedz6shn1dacU2tTVi1JOJUjKjsWVy0VP2ttrnxuNLzKR4mARlZtjFV7Af8PzGytu2+d5FwAZkAum9GG1Qu0YfUCHR8q6Ns7Duirjz6nex7Zr88+WF5R5vKeDl136Vxdc8kcXbG4S8vntHGa5AK5u06NlDSQRFFlSJ1xxGmcuBo46/nBoUJVd19lM6b25qw6W5rUns+qI5/TrJacertb1N5cDqrRuGrP59TZknvR5/O5DEePgBpQ7ZGxxyRdJukpSUMq31Hp7r5uesc7E0fGgMkpFEvatu+YfvDkId2365AefOqwTo6Urzxob87qpYtm6YrFs3TZgk4tn9OmFXPbtbi7pa6OcIxe/3R2DJ19RGpw6NxgOl5xBGp0u5qAypjKAZSE0NlhdPaRqc5xn8+qM9+kliYCCkiLqT5NuXy8591990XMdtGIMWBqDRdK2vn8gB7bd0zb9h3Vtn3HtH3/MQ0Oj10aqlzG1Du7VQtmtainM6/5yde8jrxmteTU2dI0FgydLTl15puUz2UmdZRtorvphpLrmAaHykeYBoeKOlH5fbioE0Pl03iV25XXUFVzK7+Z1NFceepunCNO+aw68k3qyGfL+511BGr0fWltyhJQQAOa6tOU6V6EBMC4mnMZrent0preLo0u+1cquQ4MDGn3oUHtPnRCuw+Xvx8YGNJj+47pwMCQjg8Vzvu3R2+nr7w7LZuxisURz1poMVnvaDJ307U2ZdWeXO/Uns+pvTmrrtYmLe5qSZ7LjgXSGWFVccRq9HFrU5bTtgBmRLUxdo/KQWaSWiRdImmHpCumaS4AQTIZ08KuFi3satErV84dd58TwwUdOj6sgVMFDZwaGTvidCzZHi6U122qXAyzUCo/l82cXhtodBHG0UUTsxl7kTvrKu6my2XU1pwtx1YSXG1JPHG3KIA0qirG3H1t5baZXS3pV6ZlIgA1r605p7Y51f67HABgIhd1Va67b5F0zRTPAgAA0HCq+ldbM3tvxWZG0npJ/dMyEQAAQAOZ8MiYmf1t8vB3JXUmX3lJd0t68/SOBgAAUP/Od2RsfbKsxR5Jf3nWz9oknZqWqQAAABrE+WLsbyR9VeW7JysX+DKV765cOU1zAQAANIQJT1O6+1+4+0slfcLdV1Z8XeLuhBgAAMAkVXU3pbv/2nQPAgAA0Ijq5wPnAAAAUogYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABAoJMbM7BYz22ZmJTPri5gBAACgFkQdGXtU0lskfTfo9QEAAGpCLuJF3X27JJlZxMsDAADUjJq/ZszMNprZJjPb1N/fHz0OAADAlJq2I2Nm9k1JC8f50fvd/a5q/4673y7pdknq6+vzKRoPAACgJkxbjLn7DdP1twEAAOpFzZ+mBAAAqGdRS1v8GzPbK+laSfeY2dci5gAAAIgWdTflnZLujHhtAACAWsJpSgAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABAqJMTP7kJk9bmaPmNmdZtYdMQcAAEC0qCNj35C0xt3XSdop6X1BcwAAAIQKiTF3/7q7F5LN+yUtiZgDAAAgWi1cM/aLkr4SPQQAAECE3HT9YTP7pqSF4/zo/e5+V7LP+yUVJN0xwd/ZKGmjJC1btmwaJgUAAIgzbTHm7jdM9HMz+3eS3iTp9e7uE/yd2yXdLkl9fX0vuh8AAEAaTVuMTcTMbpT0W5J+zN1PRMwAAABQC6KuGfsrSZ2SvmFmD5nZ3wTNAQAAECrkyJi7XxbxugAAALWmFu6mBAAAaFjEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAoXEmJn9gZk9YmYPmdnXzWxxxBwAAADRoo6Mfcjd17n7lZLulvS7QXMAAACECokxdz9WsdkuySPmAAAAiJaLemEz+yNJvyDpqKTXTbDfRkkbk80hM3t0BsarV/MkHYweIqV47yaH929yeP8mh/fv4vHeTc6qanYy9+k5KGVm35S0cJwfvd/d76rY732SWtz9A1X8zU3u3jeFYzYU3r+Lx3s3Obx/k8P7Nzm8fxeP925yqn3/pu3ImLvfUOWun5F0j6TzxhgAAEC9ibqb8vKKzZslPR4xBwAAQLSoa8Y+aGarJJUk7Zb0q1X+3u3TN1JD4P27eLx3k8P7Nzm8f5PD+3fxeO8mp6r3b9quGQMAAMD5sQI/AABAIGIMAAAgUCpizMxuNLMdZvaEmf236HnSxsw+bmYHWKPtwpnZUjP7lpltN7NtZvbu6JnSxMxazOyHZvZw8v79XvRMaWNmWTP7kZndHT1L2pjZ02a2NfnovU3R86SNmXWb2RfM7PHkn4HXRs+UFma2Kvnf3ejXMTN7z4vuX+vXjJlZVtJOST8uaa+kByW93d0fCx0sRczsNZKOS/q0u6+JnidNzGyRpEXuvsXMOiVtlvRT/O+vOmZmktrd/biZNUn6vqR3u/v9waOlhpm9V1KfpFnu/qboedLEzJ6W1OfuLFp6EczsU5K+5+4fNbNmSW3ufiR4rNRJOuZZSa90993j7ZOGI2OvkPSEu+9y92FJn5X05uCZUsXdvyvpcPQcaeTu+919S/J4QNJ2Sb2xU6WHlx1PNpuSr9r+N8AaYmZLJL1R0kejZ0FjMbNZkl4j6WOS5O7DhNhFe72kJ18sxKR0xFivpGcqtveK/zNEADNbIekqSQ8Ej5IqyWm2hyQdkPQNd+f9q96fSfqvKi8DhAvnkr5uZpuTj9ZD9VZK6pf0ieQ0+UfNrD16qJR6m6S/m2iHNMSYjfMc/2aNGWVmHZK+KOk9Z33QPc7D3YvufqWkJZJeYWacKq+Cmb1J0gF33xw9S4pd7+5XS3qDpHcll2ygOjlJV0v6X+5+laRBSVyzfYGS07s3S/r7ifZLQ4ztlbS0YnuJpH1Bs6ABJdc6fVHSHe7+D9HzpFVyiuPbkm6MnSQ1rpd0c3Ld02clbTCz/xs7Urq4+77k+wFJd6p82Quqs1fS3ooj2V9QOc5wYd4gaYu7Pz/RTmmIsQclXW5mlySF+TZJXwqeCQ0iuQD9Y5K2u/tHoudJGzObb2bdyeNWSTeIjz+riru/z92XuPsKlf+5d6+7/9vgsVLDzNqTm26UnF77CUncUV4ld39O0jPJp+VI5eueuHHpwr1d5zlFKcV9HFLV3L1gZr8u6WuSspI+7u7bgsdKFTP7O0mvlTTPzPZK+oC7fyx2qtS4XtLPS9qaXPckSb/t7l+OGylVFkn6VHI3UUbS592dJRowExZIurP871PKSfqMu381dqTU+Q1JdyQHQnZJemfwPKliZm0qrwTxK+fdt9aXtgAAAKhnaThNCQAAULeIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAKCCmf2lmW0xs2uiZwHQGIgxAEgkH5vTo/KK2W8KHgdAgyDGADQcM1thZicrPuJKkuTugyp/hNO3Jf1Fsm+rmT1kZsNmNm/GhwVQ94gxAHXPys7+592T7n7lWfvNldQmaUBSUZLc/WSy374ZGBVAAyLGANSl5OjXdjP7a0lbJC2t4td+R9KfStom6WXTOR8AjCLGANSzVZI+7e5XufvuiXY0sxWSrpP0OUnbJV0x/eMBADEGoL7tdvf7q9z3DyX9vru7iDEAMygXPQAATKPBanYysyslvUXSq8zsNkktkrZO41wAMIYYAwDpTyT9pLv/kySZ2QJJP4odCUCj4DQlgIZmZhsktY+GmCS5+/OS2s1sTtxkABoFR8YA1CV3f1rSmir2u1fSveM83zUNYwHAOTgyBqARFSV1nb3o63hGF32V1CSpNM1zAWhAVr5xCAAAABE4MgYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQKD/D+Ek1yBJ3W++AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x504 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "morseB.plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "b93e8548-cdcf-4d51-bbc0-ae7e5646cd02",
   "metadata": {},
   "outputs": [],
   "source": [
    "rho = job.factories.functions.spline(identifier=\"rho_AlAl\", cutoff=7.6, derivative_left=-0.2, derivative_right=0)\n",
    "## the spline requires node points and initial values\n",
    "init_func = lambda r: np.exp(-r)\n",
    "nodes = np.array([1.0, 2.2, 2.7, 3.2, 4.0, 5.0])\n",
    "init_vals = init_func(nodes)\n",
    "rho.parameters.create_from_arrays(x=nodes, y=init_vals, min_vals=np.zeros(len(nodes)), max_vals=np.ones(len(nodes)))\n",
    "# set node point at cutoff\n",
    "rho.parameters.add_node(x=7.6, start_val=0, enabled=False)\n",
    "rho.derivative_left.max_val = 0.0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "56710703-5e6e-485e-a9d9-bc2c4bedac5b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# User function for embedding term\n",
    "F = job.factories.functions.user_function(identifier=\"F\", input_variable=\"r\")\n",
    "F.expression = \"-A*sqrt(r)+B*r\"\n",
    "F.derivative = \"-A/(2*sqrt(r))+B\"\n",
    "F.parameters.add_parameter(\"A\", start_val=3.3, min_val=0.0)\n",
    "F.parameters.add_parameter(\"B\", start_val=1.8, min_val=0.0)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "865bca67-41c4-4bb1-b357-ba2c4d37ce8b",
   "metadata": {},
   "source": [
    "Assign functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "ce82c058-99b1-4044-89e4-d5b9fc6191d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "job.potential.pair_interactions[morseB.identifier] = morseB\n",
    "job.potential.electron_densities[rho.identifier] = rho\n",
    "job.potential.embedding_energies[F.identifier] = F"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3fa3875d-c6ac-4a93-8917-0219be6bd90e",
   "metadata": {},
   "source": [
    "Set a fit algorithm"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 14,
   "id": "d0c70020-3999-482a-9fc3-037d6b4e5be9",
   "metadata": {},
   "outputs": [],
   "source": [
    "job.input.fit_algorithm = job.factories.algorithms.ar_lbfgs(max_iter=10000)"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 15,
   "id": "6e161ce8-8d33-4eea-8d41-889287ccb7c5",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The job FitAl was saved and received the ID: 8397\n"
     ]
    }
   ],
   "source": [
    "job.run()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cd20a5b9-74f8-4609-96f8-d8c84f7a6976",
   "metadata": {},
   "source": [
    "Have a look at some of the outputs"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 16,
   "id": "8a895b83-d90e-489f-8382-393a520ae0a3",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "text/plain": [
       "499.7455700028165"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdwUlEQVR4nO3df3Bd5X3n8ffnSv4J2BhbsEZ2axNMW6CJiVWv22yYZJ0Uh9nGZDe0ZmaDs8uME4bskiY7W2h2JpnOeiZ0N2HL7OLGCQyGSfkRSAZPGzehJFvKxoXIxPgHjkEGE4QdWwkOiBjLlvTdP85z7aOrq19Xkq+k83kNd+7R95zn3OccCX/v8zznnEcRgZmZWaneFTAzs4nBCcHMzAAnBDMzS5wQzMwMcEIwM7Oksd4VqNWCBQtiyZIl9a6GmdmksmPHjl9ERFO1dZM2ISxZsoTW1tZ6V8PMbFKR9OpA69xlZGZmgBOCmZklTghmZgY4IZiZWeKEYGZmgBOCmZklTghmZgYUMCH8+OAbfOOfXqa314/9NjPLGzIhSFos6YeS9knaK+nWFL9A0hOSXkrv83JlbpfUJmm/pGty8RWSdqd1d0lSis+Q9HCKPyNpyTgcKwAPPvMz/vvf7ePFo53j9RFmZpPScFoI3cDnI+J3gFXALZIuB24DnoyIZcCT6WfSunXAFcAa4G5JDWlfm4ANwLL0WpPiNwHHIuJS4E7gjjE4tqr+aPnFABw/2TNeH2FmNikNmRAi4nBEPJeWO4F9QDOwFtiSNtsCXJeW1wIPRURXRLwCtAErJS0E5kTE9simabu/okx5X48Cq8uth7E2szHLTSdOOSGYmeWNaAwhdeVcBTwDXBQRhyFLGsCFabNm4LVcsfYUa07LlfE+ZSKiG3gTmF/l8zdIapXU2tHRMZKqnzZzWnbIB46+XVN5M7OpatgJQdK5wGPAZyPircE2rRKLQeKDlekbiNgcES0R0dLUVPVhfUO6aM5MALq6e2sqb2Y2VQ0rIUiaRpYMvhkR307hI6kbiPR+NMXbgcW54ouAQym+qEq8TxlJjcBc4I2RHsxwnDcze8Br+CIjM7M+hnOVkYB7gH0R8dXcqq3A+rS8Hng8F1+XrhxaSjZ4/GzqVuqUtCrt88aKMuV9fRz4QRpnGHPloYno3wAxMyu04cyH8D7gE8BuSTtT7M+BLwOPSLoJ+BlwPUBE7JX0CPAC2RVKt0REeQT3ZuA+YBawLb0gSzgPSGojaxmsG91hDayUOqfcQjAz62vIhBART1O9jx9g9QBlNgIbq8RbgSurxE+QEsp4UzoU35dmZtZX4e5ULl/M6i4jM7O+ipsQnA/MzPooXkJIXUbjNGZtZjZpFS4heFDZzKy6wiWE8mWnHlQ2M+ureAkhvXtQ2cysr+IlBHcZmZlVVcCE4EFlM7NqCpcQIGslOB2YmfVVyIRQktxlZGZWoZAJQUCvM4KZWR/FTAjuMjIz66egCcFdRmZmlYqZEPBVRmZmlQqZEEqSu4zMzCoUMiFI0OtnV5iZ9TGcKTTvlXRU0p5c7GFJO9PrYHkmNUlLJL2TW/fXuTIrJO2W1CbprjSNJmmqzYdT/BlJS8b+MCuOCQ8qm5lVGk4L4T5gTT4QEX8SEcsjYjnwGPDt3OoD5XUR8elcfBOwgWyO5WW5fd4EHIuIS4E7gTtqOZCR8H0IZmb9DZkQIuIpsnmO+0nf8v8YeHCwfUhaCMyJiO2RjebeD1yXVq8FtqTlR4HV5dbDuJHvQzAzqzTaMYT3A0ci4qVcbKmkn0j6R0nvT7FmoD23TXuKlde9BhAR3cCbwPxqHyZpg6RWSa0dHR01V7q3N9j/886ay5uZTUWjTQg30Ld1cBj4jYi4Cvgc8DeS5nDmqdN55a/og63rG4zYHBEtEdHS1NRUc6V/fbKH6Y2FHE83MxtQY60FJTUC/xZYUY5FRBfQlZZ3SDoAXEbWIliUK74IOJSW24HFQHva51wG6KIaK+9eNJdx7pQyM5t0RvM1+UPATyPidFeQpCZJDWn5ErLB45cj4jDQKWlVGh+4EXg8FdsKrE/LHwd+EON811h2Y9p4foKZ2eQznMtOHwS2A78lqV3STWnVOvoPJl8N7JL0PNkA8acjovxt/2bgG0AbcADYluL3APMltZF1M902iuMZHt+YZmbWz5BdRhFxwwDxT1aJPUZ2GWq17VuBK6vETwDXD1WPseRHV5iZ9VfIkVWPH5iZ9VfMhIDHEMzMKhUyIWQPt3NGMDPLK2RCyB5uV+9amJlNLMVMCLiFYGZWqZAJAXkMwcysUiETgh9/bWbWXzETgjOCmVk/xUwIHkMwM+unmAnBYwhmZv0UNyHUuxJmZhNMMRMC8rOMzMwqFDMhuIVgZtZPIRMCeAzBzKxSIROCPB+CmVk/xUwI4CaCmVmF4cyYdq+ko5L25GJfkvS6pJ3pdW1u3e2S2iTtl3RNLr5C0u607q40lSaSZkh6OMWfkbRkjI+xyjF5DMHMrNJwWgj3AWuqxO+MiOXp9V0ASZeTTa15RSpzd3mOZWATsIFsnuVluX3eBByLiEuBO4E7ajyWYfN8CGZm/Q2ZECLiKeCNobZL1gIPRURXRLxCNn/ySkkLgTkRsT2y6z3vB67LldmSlh8FVpdbD+NFng/BzKyf0YwhfEbSrtSlNC/FmoHXctu0p1hzWq6M9ykTEd3Am8D8ah8oaYOkVkmtHR0dNVfcLQQzs/5qTQibgHcBy4HDwFdSvNo3+xgkPliZ/sGIzRHREhEtTU1NI6pwnh9dYWbWX00JISKORERPRPQCXwdWplXtwOLcpouAQym+qEq8TxlJjcBcht9FVSNfdmpmVqmmhJDGBMo+BpSvQNoKrEtXDi0lGzx+NiIOA52SVqXxgRuBx3Nl1qfljwM/iHF+rkTWQnBKMDPLaxxqA0kPAh8AFkhqB74IfEDScrKunYPApwAiYq+kR4AXgG7glojoSbu6meyKpVnAtvQCuAd4QFIbWctg3Rgc1+DHNN4fYGY2CQ2ZECLihirhewbZfiOwsUq8FbiySvwEcP1Q9RhLHkMwM+uvoHcq+7JTM7NKxUwIbiGYmfVT3IRQ70qYmU0wxUwIiNfeOF7vapiZTSiFTAgdnV10dffWuxpmZhNKIRNCy5J5Q29kZlYwhUwIjQ3ZYfvmNDOzMwqZEBrSw1R7nQ/MzE4rZkJIR93jjGBmdlohE0KpVG4hOCGYmZUVMiGUu4zcQjAzO6OYCSG1EHrcQjAzO62QCaE8Q2f4VgQzs9MKmRAa0vOv3UIwMzujmAmh5DEEM7NKhUwI5auMjp/srnNNzMwmjiETgqR7JR2VtCcX+x+Sfippl6TvSDo/xZdIekfSzvT661yZFZJ2S2qTdFeaSpM03ebDKf6MpCVjf5gVx5TmTHv9V++M90eZmU0aw2kh3AesqYg9AVwZEe8GXgRuz607EBHL0+vTufgmYAPZPMvLcvu8CTgWEZcCdwJ3jPgoRujSC88FPCeCmVnekAkhIp4im+s4H/t+RJT7W/4ZWDTYPiQtBOZExPbIHiB0P3BdWr0W2JKWHwVWl1sP46U8htDtMQQzs9PGYgzhPwLbcj8vlfQTSf8o6f0p1gy057ZpT7HyutcAUpJ5E5hf7YMkbZDUKqm1o6Oj5go3lhNCj687NTMrG1VCkPQFoBv4ZgodBn4jIq4CPgf8jaQ5QLVv/OWv54Ot6xuM2BwRLRHR0tTUVHO9GxvcQjAzq9RYa0FJ64F/A6xO3UBERBfQlZZ3SDoAXEbWIsh3Ky0CDqXldmAx0C6pEZhLRRfVWGssZXnQl52amZ1RUwtB0hrgz4CPRsTxXLxJUkNavoRs8PjliDgMdEpalcYHbgQeT8W2AuvT8seBH8Q4T1TgMQQzs/6GbCFIehD4ALBAUjvwRbKrimYAT6Tx339OVxRdDfyFpG6gB/h0RJS/7d9MdsXSLLIxh/K4wz3AA5LayFoG68bkyAZRHkPwvMpmZmcMmRAi4oYq4XsG2PYx4LEB1rUCV1aJnwCuH6oeY2n+udMBeOvEqbP5sWZmE1oh71Q+b+Y0Zk1roNddRmZmpxUyIQDMmFbiZLcvOzUzKytsQpjWUOKtE36WkZlZWWETQkSw49Vj9a6GmdmEUfN9CJPdvNnTmT29od7VMDObMArbQviNC2Z7ghwzs5zCJoSGkujucUIwMysrbEJobJAfXWFmllPYhNBQKjkhmJnlFDYhNJbkZxmZmeUUNiE0lNxlZGaWV9iE0FiS51Q2M8spbEL49ckeAN5J72ZmRVfYhPC7zXMA6PW9CGZmQIETQimbx8EJwcwsKWxC0OmEUOeKmJlNEEMmBEn3SjoqaU8udoGkJyS9lN7n5dbdLqlN0n5J1+TiKyTtTuvuSlNpImmGpIdT/BlJS8b4GKtKk6YxzrN1mplNGsNpIdwHrKmI3QY8GRHLgCfTz0i6nGwKzCtSmbvLcywDm4ANZPMsL8vt8ybgWERcCtwJ3FHrwYxEyS0EM7M+hkwIEfEU2VzHeWuBLWl5C3BdLv5QRHRFxCtAG7BS0kJgTkRsj+wr+f0VZcr7ehRYXW49jKdyC8FjCGZmmVrHEC6KiMMA6f3CFG8GXstt155izWm5Mt6nTER0A28C86t9qKQNkloltXZ0dNRY9dP7ApwQzMzKxnpQudo3+xgkPliZ/sGIzRHREhEtTU1NNVYxU+4ycj4wM8vUmhCOpG4g0vvRFG8HFue2WwQcSvFFVeJ9ykhqBObSv4tqzLnLyMysr1oTwlZgfVpeDzyei69LVw4tJRs8fjZ1K3VKWpXGB26sKFPe18eBH8RZuPTHg8pmZn0NOYWmpAeBDwALJLUDXwS+DDwi6SbgZ8D1ABGxV9IjwAtAN3BLRJSfDXEz2RVLs4Bt6QVwD/CApDaylsG6MTmyIZSHrXudEczMgGEkhIi4YYBVqwfYfiOwsUq8FbiySvwEKaGcTR5DMDPrq7B3KpfSkXsMwcwsU9yE4MtOzcz6KGxC8LOMzMz6KmxCKF92+qvjJ+tbETOzCaKwCWF6Q3bov3jbCcHMDAqcEBZfMDstuc/IzAwKnBAaUp9RT2+dK2JmNkEUNiGUrzLq7nVGMDODAieExpIvOzUzyytsQnCXkZlZX4VNCKVyC8E3IpiZAQVOCA1pDKHHXUZmZkCBE0L5WUbdbiGYmQEFTgjlFoK7jMzMMsVNCGkMYf+RzjrXxMxsYihsQjhv5jTgTEvBzKzoak4Ikn5L0s7c6y1Jn5X0JUmv5+LX5srcLqlN0n5J1+TiKyTtTuvuksb/X+mGklhw7gyPIZiZJTUnhIjYHxHLI2I5sAI4Dnwnrb6zvC4ivgsg6XKy6TGvANYAd0tqSNtvAjaQzcG8LK0fd40l0eM7lc3MgLHrMloNHIiIVwfZZi3wUER0RcQrQBuwUtJCYE5EbI+IAO4Hrhujeg2qsUFuIZiZJWOVENYBD+Z+/oykXZLulTQvxZqB13LbtKdYc1qujPcjaYOkVkmtHR0do6501kJwQjAzgzFICJKmAx8FvpVCm4B3AcuBw8BXyptWKR6DxPsHIzZHREtEtDQ1NY2m2kA2juAWgplZZixaCB8BnouIIwARcSQieiKiF/g6sDJt1w4szpVbBBxK8UVV4uOusVSip8cJwcwMxiYh3ECuuyiNCZR9DNiTlrcC6yTNkLSUbPD42Yg4DHRKWpWuLroReHwM6jWkUkm86PsQzMwAaBxNYUmzgQ8Dn8qF/1LScrJun4PldRGxV9IjwAtAN3BLRPSkMjcD9wGzgG3pNe46OruYPb1h6A3NzApgVAkhIo4D8ytinxhk+43AxirxVuDK0dSlFqsuuYC9h9462x9rZjYhFfZOZcgGlcNPOzUzAwqeEAT4IiMzs0yhE0JJIqpf4WpmVjiFTgiS8JMrzMwyhU4IJeExBDOzpOAJQR5DMDNLip0QStDrFoKZGVDwhCC3EMzMTit0QvAYgpnZGYVOCELuMjIzSwqdEEoa4DnbZmYFVOiEkN2H4JRgZgYFTwglCfcYmZllCp4QfNmpmVlZsRNCyZedmpmVFTohSPDOqZ6hNzQzK4BRJQRJByXtlrRTUmuKXSDpCUkvpfd5ue1vl9Qmab+ka3LxFWk/bZLuSlNpjru3T3QD8MavT56NjzMzm9DGooXwwYhYHhEt6efbgCcjYhnwZPoZSZcD64ArgDXA3ZLK81duAjaQzbO8LK0fd+9ZfD4AvzruhGBmNh5dRmuBLWl5C3BdLv5QRHRFxCtAG7BS0kJgTkRsj+y24ftzZcbVnJnTAHcbmZnB6BNCAN+XtEPShhS7KCIOA6T3C1O8GXgtV7Y9xZrTcmW8H0kbJLVKau3o6Bhl1WHmtOzw9x3uHPW+zMwmu8ZRln9fRBySdCHwhKSfDrJttXGBGCTePxixGdgM0NLSMurrg5ZddB4Av+7qHu2uzMwmvVG1ECLiUHo/CnwHWAkcSd1ApPejafN2YHGu+CLgUIovqhIfdxeeNwOAe//fK2fj48zMJrSaE4KkcySdV14G/hDYA2wF1qfN1gOPp+WtwDpJMyQtJRs8fjZ1K3VKWpWuLroxV2ZcTWso8XtL5vHqL4+z5/U3z8ZHmplNWKNpIVwEPC3peeBZ4O8i4u+BLwMflvQS8OH0MxGxF3gEeAH4e+CWiCiP5t4MfINsoPkAsG0U9RqRL/+7dwPwowO/OFsfaWY2IdU8hhARLwPvqRL/JbB6gDIbgY1V4q3AlbXWZTQunjsLgIO/PF6PjzczmzAKfacywKzpDcydNa3e1TAzq7vCJwSAc6Y3cKq7t97VMDOrKycEYFpjiVM9TghmVmxOCEBjSZzq8WNPzazYnBDILj/1VUZmVnROCGQzpx07fopjfuqpmRWYEwLwH963BIAdrx6rb0XMzOrICQFYdcl8AB5pfW2ILc3Mpi4nBGDxBbNZuuAcjnR21bsqZmZ144SQXHHxHPYdfqve1TAzqxsnhOTEqR5OdvfS1e3JcsysmJwQkpVLLwDgpO9YNrOCckJIpjVkp6LbN6iZWUE5ISSNpWzitu5eJwQzKyYnhKSx3ELodZeRmRWTE0JyuoXgLiMzK6jRTKG5WNIPJe2TtFfSrSn+JUmvS9qZXtfmytwuqU3SfknX5OIrJO1O6+5KU2meVY0N7jIys2IbTQuhG/h8RPwOsAq4RdLlad2dEbE8vb4LkNatA64A1gB3S2pI228CNpDNs7wsrT+rGkvZqfjxK2+c7Y82M5sQak4IEXE4Ip5Ly53APqB5kCJrgYcioisiXiGbP3mlpIXAnIjYHhEB3A9cV2u9avUv02WnHW/7bmUzK6YxGUOQtAS4CngmhT4jaZekeyXNS7FmIP+woPYUa07LlfFqn7NBUquk1o6OjrGo+mkXzplJY0k8/ZIfg21mxTTqhCDpXOAx4LMR8RZZ98+7gOXAYeAr5U2rFI9B4v2DEZsjoiUiWpqamkZb9X7mnzud7S//kr/6h5f4zk/aebure8w/w8xsomocTWFJ08iSwTcj4tsAEXEkt/7rwN+mH9uBxbnii4BDKb6oSvys2/yJFv7ssV3c+Q8vAtBY2sWffvgybvngpfWojpnZWTWaq4wE3APsi4iv5uILc5t9DNiTlrcC6yTNkLSUbPD42Yg4DHRKWpX2eSPweK31Go33LD6fbbe+n31/sYZ7P9lCd2/w6I72oQuamU0Bo2khvA/4BLBb0s4U+3PgBknLybp9DgKfAoiIvZIeAV4gu0LplogoP0nuZuA+YBawLb3qQhKzpjfwr3/7Im5YuZiHfuw5EsysGGpOCBHxNNX7/787SJmNwMYq8VbgylrrMl5KEhHwy7e7mH/ujHpXx8xsXPlO5UH8wbsWAPC1p14muyLWzGzqckIYxNWXZQlh81Mv8/lvPV/n2piZjS8nhEGcN3Marf/tQ6xdfjHffu51nvVdzGY2hTkhDGHBuTP40w9dBsAff207n3qglb/ddYgeP/PIzKaYUd2HUBRLFpzD5z58GT868Av2vP4W39t7hN/+F21su/X91OE5fGZm48IthGH6z6uX8dCG3+ep//pB/qRlMT/9eSdPt/kxF2Y2dTghjFBDSfyn1dmdy//ze/vddWRmU4YTQg0WzZvN1Zc18Xz7m6z+yv+l9aAHm81s8nNCqNF9n/w9/mrdcg796gTXf22771Mws0nPCaFGpZJYu7yZ6666mAhY87/+ifu3H+TEqZ6hC5uZTUCarN9sW1paorW1td7VoKc3+Fbra9z3o4P89OedAHzyD5bwu81z+ejyi5nW4JxrZhOHpB0R0VJ1nRPC2Nnyo4Pc8/Qr/OyN4wAsnDuTf7/qNzl/9jTOmzmNmY0lZk5rYP6501m64BxmT/dVv2Z2djkhnGUnTvVw9w/beHRHO4fePFF1m+kNJd69aC7nz55O8/kzaZ43i+kNJSQhZU9dFWTLpBjZA/dIy+VtSqUz25CPp33NnFZiRmMDjSXR2CAaSyUaSsr2lT6D3GedWabPevKfQd/PqlaeivKV26Y99tsnA9ZDfbcbgVpvF1FNn0Z2DBW/p/zvkoqfy9uVdOY4zcaDE0IdvXOyhzffOcXbXac4caqXE6d6eP1X7/Dcq8d48cjbHDt+ktePvUOnZ2ezCgMllDNfCPonFEHfLwz99pElnVJuXfXPHllSGmjzAeMDfPJIPna4m47kWEZ01MPceCT7HG5db129jD96z8Uj2HOfzxgwIbjPYpzNmt7ArOkNwMzTsRZg7fIz00ZHBJ1d3XT3BBFBAL0RkP1HthhEZPFyDu8XTzFSrLyfE6d66TrVQ09vcKo36Ont5VRPnN72zL767pfT+yvXo++Xh8rt8tuWj+t0iQH3WV7uXw9y5c8c88i/wNT6lafW70r5c5X/HVX+LknbVa7rTT9Ubp//+czfxhD7rrqPoLc3/Y0NUP+RnI8YqMTIwiP63Q53y5H8Dkfy6x5uXUf0JzSCjefOmjaSPQ+bE8IEIIk5M8fnF2xmNlwT5hIYSWsk7ZfUJum2etfHzKxoJkRCkNQA/B/gI8DlZNNwXl7fWpmZFcuESAjASqAtIl6OiJPAQ8DaOtfJzKxQJkpCaAbys9m3p1gfkjZIapXU2tHRcdYqZ2ZWBBMlIVS71qrfmHtEbI6IlohoaWpqOgvVMjMrjomSENqBxbmfFwGH6lQXM7NCmigJ4cfAMklLJU0H1gFb61wnM7NCmRD3IUREt6TPAN8DGoB7I2JvnatlZlYok/bRFZI6gFdrLL4A8PyXGZ+LjM/DGT4Xmal6Hn4zIqoOwk7ahDAakloHepZH0fhcZHwezvC5yBTxPEyUMQQzM6szJwQzMwOKmxA217sCE4jPRcbn4Qyfi0zhzkMhxxDMzKy/orYQzMysghOCmZkBBUwIRZt3QdJBSbsl7ZTUmmIXSHpC0kvpfV5u+9vTudkv6Zr61Xz0JN0r6aikPbnYiI9d0op0Dtsk3aVJNunxAOfhS5JeT38XOyVdm1s3Vc/DYkk/lLRP0l5Jt6Z44f4mBpRNwVeMF9ld0AeAS4DpwPPA5fWu1zgf80FgQUXsL4Hb0vJtwB1p+fJ0TmYAS9O5aqj3MYzi2K8G3gvsGc2xA88Cv0/2EMZtwEfqfWxjcB6+BPyXKttO5fOwEHhvWj4PeDEdb+H+JgZ6Fa2F4HkXMmuBLWl5C3BdLv5QRHRFxCtAG9k5m5Qi4ingjYrwiI5d0kJgTkRsj+xfgvtzZSaFAc7DQKbyeTgcEc+l5U5gH9lj9gv3NzGQoiWEYc27MMUE8H1JOyRtSLGLIuIwZP+TABemeBHOz0iPvTktV8angs9I2pW6lMrdJIU4D5KWAFcBz+C/idOKlhCGNe/CFPO+iHgv2fSkt0i6epBti3h+ygY69ql6TjYB7wKWA4eBr6T4lD8Pks4FHgM+GxFvDbZpldiUOheVipYQCjfvQkQcSu9Hge+QdQEdSc1e0vvRtHkRzs9Ij709LVfGJ7WIOBIRPRHRC3ydM12DU/o8SJpGlgy+GRHfTmH/TSRFSwiFmndB0jmSzisvA38I7CE75vVps/XA42l5K7BO0gxJS4FlZINnU8mIjj11IXRKWpWuJLkxV2bSKv8DmHyM7O8CpvB5SPW+B9gXEV/NrfLfRFm9R7XP9gu4luzqggPAF+pdn3E+1kvIrpJ4HthbPl5gPvAk8FJ6vyBX5gvp3Oxnkl85ATxI1h1yiuxb3U21HDvQQvYP5gHgf5Pu8J8srwHOwwPAbmAX2T98CwtwHv4VWdfOLmBnel1bxL+JgV5+dIWZmQHF6zIyM7MBOCGYmRnghGBmZokTgpmZAU4IZmaWOCGYmRnghGBmZsn/B4ND3bJqd4vQAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(job.output.iterations, job.output.residual)\n",
    "job.output.residual[-1]"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 17,
   "id": "74465658-bc69-486c-a327-4cd7a5790ec7",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
   "outputs": [
    {
     "data": {
      "application/json": {
       "electron_densities": {
        "rho_AlAl": {
         "cutoff": "7.6",
         "derivative_left": {
          "enabled": "True",
          "final_value": "-0.06831674064258404",
          "fitable": "True",
          "max_val": "0.0",
          "min_val": "None",
          "param": "'derivative-left'",
          "reset": "False",
          "start_val": "-0.2",
          "tag": "None"
         },
         "derivative_right": {
          "enabled": "False",
          "final_value": "None",
          "fitable": "True",
          "max_val": "None",
          "min_val": "None",
          "param": "'derivative-right'",
          "reset": "False",
          "start_val": "0",
          "tag": "None"
         },
         "identifier": "'rho_AlAl'",
         "parameters": {
          "node_1": {
           "enabled": "True",
           "final_value": "0.6975272401967035",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.36787944117144233",
           "tag": "None",
           "x": "1.0"
          },
          "node_2.2": {
           "enabled": "True",
           "final_value": "0.4485553370334013",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.11080315836233387",
           "tag": "None",
           "x": "2.2"
          },
          "node_2.7": {
           "enabled": "True",
           "final_value": "0.249476700848156",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.06720551273974976",
           "tag": "None",
           "x": "2.7"
          },
          "node_3.2": {
           "enabled": "True",
           "final_value": "0.1295270275286893",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.04076220397836621",
           "tag": "None",
           "x": "3.2"
          },
          "node_4": {
           "enabled": "True",
           "final_value": "0.03827121929229796",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.01831563888873418",
           "tag": "None",
           "x": "4.0"
          },
          "node_5": {
           "enabled": "True",
           "final_value": "0.009166357392206875",
           "fitable": "True",
           "max_val": "1.0",
           "min_val": "0.0",
           "param": "'node'",
           "reset": "False",
           "start_val": "0.006737946999085467",
           "tag": "None",
           "x": "5.0"
          },
          "node_7.6": {
           "enabled": "False",
           "final_value": "None",
           "fitable": "True",
           "max_val": "None",
           "min_val": "None",
           "param": "'node'",
           "reset": "False",
           "start_val": "0",
           "tag": "None",
           "x": "7.6"
          }
         },
         "species": "['*', '*']"
        }
       },
       "embedding_energies": {
        "F": {
         "cutoff": "None",
         "derivative": "'-A/(2*sqrt(r))+B'",
         "expression": "'-A*sqrt(r)+B*r'",
         "identifier": "'F'",
         "input_variable": "'r'",
         "is_screening_function": "False",
         "parameters": {
          "A": {
           "enabled": "True",
           "final_value": "3.140023073816899",
           "fitable": "True",
           "max_val": "None",
           "min_val": "0.0",
           "param": "'A'",
           "reset": "False",
           "start_val": "3.3",
           "tag": "None"
          },
          "B": {
           "enabled": "True",
           "final_value": "1.937752361781043",
           "fitable": "True",
           "max_val": "None",
           "min_val": "0.0",
           "param": "'B'",
           "reset": "False",
           "start_val": "1.8",
           "tag": "None"
          }
         },
         "screening": "None",
         "species": "['*', '*']"
        }
       },
       "export_file": "'output.eam.fs'",
       "identifier": "'EAM'",
       "pair_interactions": {
        "V": {
         "identifier": "'V'",
         "is_screening_function": "False",
         "parameters": {
          "D0": {
           "enabled": "True",
           "final_value": "0.5283592428701012",
           "fitable": "True",
           "max_val": "1.55",
           "min_val": "0.05",
           "param": "'D0'",
           "reset": "False",
           "start_val": "0.15",
           "tag": "None"
          },
          "S": {
           "enabled": "True",
           "final_value": "3.130831392281273",
           "fitable": "True",
           "max_val": "4.5",
           "min_val": "1.5",
           "param": "'S'",
           "reset": "False",
           "start_val": "4.1",
           "tag": "None"
          },
          "beta": {
           "enabled": "True",
           "final_value": "1.666163438367291",
           "fitable": "True",
           "max_val": "None",
           "min_val": "None",
           "param": "'beta'",
           "reset": "False",
           "start_val": "1.1",
           "tag": "None"
          },
          "delta": {
           "enabled": "True",
           "final_value": "-0.01240825471771807",
           "fitable": "True",
           "max_val": "0.005",
           "min_val": "None",
           "param": "'delta'",
           "reset": "False",
           "start_val": "-0.01",
           "tag": "None"
          },
          "r0": {
           "enabled": "True",
           "final_value": "2.6",
           "fitable": "True",
           "max_val": "3.1",
           "min_val": "2.6",
           "param": "'r0'",
           "reset": "False",
           "start_val": "3.05",
           "tag": "None"
          }
         },
         "screening": {
          "identifier": "'V_screen'",
          "is_screening_function": "True",
          "parameters": {
           "N": {
            "enabled": "False",
            "final_value": "None",
            "fitable": "True",
            "max_val": "None",
            "min_val": "None",
            "param": "'N'",
            "reset": "False",
            "start_val": "4",
            "tag": "None"
           },
           "cutoff": {
            "enabled": "False",
            "final_value": "None",
            "fitable": "False",
            "max_val": "None",
            "min_val": "None",
            "param": "'cutoff'",
            "reset": "False",
            "start_val": "7.6",
            "tag": "None"
           },
           "h": {
            "enabled": "False",
            "final_value": "None",
            "fitable": "True",
            "max_val": "None",
            "min_val": "None",
            "param": "'h'",
            "reset": "False",
            "start_val": "1",
            "tag": "None"
           }
          },
          "species": "['*', '*']"
         },
         "species": "['*', '*']"
        }
       },
       "resolution": "10000",
       "rho_range_factor": "2.0",
       "species": "['*', '*']"
      },
      "text/html": [
       "<pre>EAMPotential({\n",
       "  \"pair_interactions\": {\n",
       "    \"V\": {\n",
       "      \"species\": \"['*', '*']\",\n",
       "      \"parameters\": {\n",
       "        \"D0\": {\n",
       "          \"param\": \"'D0'\",\n",
       "          \"start_val\": \"0.15\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.05\",\n",
       "          \"max_val\": \"1.55\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.5283592428701012\"\n",
       "        },\n",
       "        \"r0\": {\n",
       "          \"param\": \"'r0'\",\n",
       "          \"start_val\": \"3.05\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"2.6\",\n",
       "          \"max_val\": \"3.1\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"2.6\"\n",
       "        },\n",
       "        \"beta\": {\n",
       "          \"param\": \"'beta'\",\n",
       "          \"start_val\": \"1.1\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"None\",\n",
       "          \"max_val\": \"None\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"1.666163438367291\"\n",
       "        },\n",
       "        \"S\": {\n",
       "          \"param\": \"'S'\",\n",
       "          \"start_val\": \"4.1\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"1.5\",\n",
       "          \"max_val\": \"4.5\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"3.130831392281273\"\n",
       "        },\n",
       "        \"delta\": {\n",
       "          \"param\": \"'delta'\",\n",
       "          \"start_val\": \"-0.01\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"None\",\n",
       "          \"max_val\": \"0.005\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"-0.01240825471771807\"\n",
       "        }\n",
       "      },\n",
       "      \"is_screening_function\": \"False\",\n",
       "      \"identifier\": \"'V'\",\n",
       "      \"screening\": {\n",
       "        \"species\": \"['*', '*']\",\n",
       "        \"parameters\": {\n",
       "          \"cutoff\": {\n",
       "            \"param\": \"'cutoff'\",\n",
       "            \"start_val\": \"7.6\",\n",
       "            \"enabled\": \"False\",\n",
       "            \"reset\": \"False\",\n",
       "            \"min_val\": \"None\",\n",
       "            \"max_val\": \"None\",\n",
       "            \"tag\": \"None\",\n",
       "            \"fitable\": \"False\",\n",
       "            \"final_value\": \"None\"\n",
       "          },\n",
       "          \"h\": {\n",
       "            \"param\": \"'h'\",\n",
       "            \"start_val\": \"1\",\n",
       "            \"enabled\": \"False\",\n",
       "            \"reset\": \"False\",\n",
       "            \"min_val\": \"None\",\n",
       "            \"max_val\": \"None\",\n",
       "            \"tag\": \"None\",\n",
       "            \"fitable\": \"True\",\n",
       "            \"final_value\": \"None\"\n",
       "          },\n",
       "          \"N\": {\n",
       "            \"param\": \"'N'\",\n",
       "            \"start_val\": \"4\",\n",
       "            \"enabled\": \"False\",\n",
       "            \"reset\": \"False\",\n",
       "            \"min_val\": \"None\",\n",
       "            \"max_val\": \"None\",\n",
       "            \"tag\": \"None\",\n",
       "            \"fitable\": \"True\",\n",
       "            \"final_value\": \"None\"\n",
       "          }\n",
       "        },\n",
       "        \"is_screening_function\": \"True\",\n",
       "        \"identifier\": \"'V_screen'\"\n",
       "      }\n",
       "    }\n",
       "  },\n",
       "  \"electron_densities\": {\n",
       "    \"rho_AlAl\": {\n",
       "      \"identifier\": \"'rho_AlAl'\",\n",
       "      \"cutoff\": \"7.6\",\n",
       "      \"derivative_left\": {\n",
       "        \"param\": \"'derivative-left'\",\n",
       "        \"start_val\": \"-0.2\",\n",
       "        \"enabled\": \"True\",\n",
       "        \"reset\": \"False\",\n",
       "        \"min_val\": \"None\",\n",
       "        \"max_val\": \"0.0\",\n",
       "        \"tag\": \"None\",\n",
       "        \"fitable\": \"True\",\n",
       "        \"final_value\": \"-0.06831674064258404\"\n",
       "      },\n",
       "      \"derivative_right\": {\n",
       "        \"param\": \"'derivative-right'\",\n",
       "        \"start_val\": \"0\",\n",
       "        \"enabled\": \"False\",\n",
       "        \"reset\": \"False\",\n",
       "        \"min_val\": \"None\",\n",
       "        \"max_val\": \"None\",\n",
       "        \"tag\": \"None\",\n",
       "        \"fitable\": \"True\",\n",
       "        \"final_value\": \"None\"\n",
       "      },\n",
       "      \"species\": \"['*', '*']\",\n",
       "      \"parameters\": {\n",
       "        \"node_1\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.36787944117144233\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.6975272401967035\",\n",
       "          \"x\": \"1.0\"\n",
       "        },\n",
       "        \"node_2.2\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.11080315836233387\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.4485553370334013\",\n",
       "          \"x\": \"2.2\"\n",
       "        },\n",
       "        \"node_2.7\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.06720551273974976\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.249476700848156\",\n",
       "          \"x\": \"2.7\"\n",
       "        },\n",
       "        \"node_3.2\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.04076220397836621\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.1295270275286893\",\n",
       "          \"x\": \"3.2\"\n",
       "        },\n",
       "        \"node_4\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.01831563888873418\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.03827121929229796\",\n",
       "          \"x\": \"4.0\"\n",
       "        },\n",
       "        \"node_5\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0.006737946999085467\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"1.0\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"0.009166357392206875\",\n",
       "          \"x\": \"5.0\"\n",
       "        },\n",
       "        \"node_7.6\": {\n",
       "          \"param\": \"'node'\",\n",
       "          \"start_val\": \"0\",\n",
       "          \"enabled\": \"False\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"None\",\n",
       "          \"max_val\": \"None\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"None\",\n",
       "          \"x\": \"7.6\"\n",
       "        }\n",
       "      }\n",
       "    }\n",
       "  },\n",
       "  \"embedding_energies\": {\n",
       "    \"F\": {\n",
       "      \"input_variable\": \"'r'\",\n",
       "      \"identifier\": \"'F'\",\n",
       "      \"species\": \"['*', '*']\",\n",
       "      \"parameters\": {\n",
       "        \"A\": {\n",
       "          \"param\": \"'A'\",\n",
       "          \"start_val\": \"3.3\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"None\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"3.140023073816899\"\n",
       "        },\n",
       "        \"B\": {\n",
       "          \"param\": \"'B'\",\n",
       "          \"start_val\": \"1.8\",\n",
       "          \"enabled\": \"True\",\n",
       "          \"reset\": \"False\",\n",
       "          \"min_val\": \"0.0\",\n",
       "          \"max_val\": \"None\",\n",
       "          \"tag\": \"None\",\n",
       "          \"fitable\": \"True\",\n",
       "          \"final_value\": \"1.937752361781043\"\n",
       "        }\n",
       "      },\n",
       "      \"expression\": \"'-A*sqrt(r)+B*r'\",\n",
       "      \"derivative\": \"'-A/(2*sqrt(r))+B'\",\n",
       "      \"is_screening_function\": \"False\",\n",
       "      \"cutoff\": \"None\",\n",
       "      \"screening\": \"None\"\n",
       "    }\n",
       "  },\n",
       "  \"identifier\": \"'EAM'\",\n",
       "  \"export_file\": \"'output.eam.fs'\",\n",
       "  \"rho_range_factor\": \"2.0\",\n",
       "  \"resolution\": \"10000\",\n",
       "  \"species\": \"['*', '*']\"\n",
       "})</pre>"
      ],
      "text/plain": [
       "EAMPotential({'pair_interactions': DataContainer({'V': MorseB({'species': ['*', '*'], 'parameters': FunctionParameterList({'D0': FunctionParameter({'param': 'D0', 'start_val': 0.15, 'enabled': True, 'reset': False, 'min_val': 0.05, 'max_val': 1.55, 'tag': None, 'fitable': True, 'final_value': 0.5283592428701012}), 'r0': FunctionParameter({'param': 'r0', 'start_val': 3.05, 'enabled': True, 'reset': False, 'min_val': 2.6, 'max_val': 3.1, 'tag': None, 'fitable': True, 'final_value': 2.6}), 'beta': FunctionParameter({'param': 'beta', 'start_val': 1.1, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 1.666163438367291}), 'S': FunctionParameter({'param': 'S', 'start_val': 4.1, 'enabled': True, 'reset': False, 'min_val': 1.5, 'max_val': 4.5, 'tag': None, 'fitable': True, 'final_value': 3.130831392281273}), 'delta': FunctionParameter({'param': 'delta', 'start_val': -0.01, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': 0.005, 'tag': None, 'fitable': True, 'final_value': -0.01240825471771807})}), 'is_screening_function': False, 'identifier': 'V', 'screening': XpowNCutoff({'species': ['*', '*'], 'parameters': FunctionParameterList({'cutoff': FunctionParameter({'param': 'cutoff', 'start_val': 7.6, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': False, 'final_value': None}), 'h': FunctionParameter({'param': 'h', 'start_val': 1, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None}), 'N': FunctionParameter({'param': 'N', 'start_val': 4, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None})}), 'is_screening_function': True, 'identifier': 'V_screen'})})}), 'electron_densities': DataContainer({'rho_AlAl': Spline({'identifier': 'rho_AlAl', 'cutoff': 7.6, 'derivative_left': FunctionParameter({'param': 'derivative-left', 'start_val': -0.2, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': 0.0, 'tag': None, 'fitable': True, 'final_value': -0.06831674064258404}), 'derivative_right': FunctionParameter({'param': 'derivative-right', 'start_val': 0, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None}), 'species': ['*', '*'], 'parameters': NodeList({'node_1': Node({'param': 'node', 'start_val': 0.36787944117144233, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.6975272401967035, 'x': 1.0}), 'node_2.2': Node({'param': 'node', 'start_val': 0.11080315836233387, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.4485553370334013, 'x': 2.2}), 'node_2.7': Node({'param': 'node', 'start_val': 0.06720551273974976, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.249476700848156, 'x': 2.7}), 'node_3.2': Node({'param': 'node', 'start_val': 0.04076220397836621, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.1295270275286893, 'x': 3.2}), 'node_4': Node({'param': 'node', 'start_val': 0.01831563888873418, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.03827121929229796, 'x': 4.0}), 'node_5': Node({'param': 'node', 'start_val': 0.006737946999085467, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.009166357392206875, 'x': 5.0}), 'node_7.6': Node({'param': 'node', 'start_val': 0, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None, 'x': 7.6})})})}), 'embedding_energies': DataContainer({'F': UserFunction({'input_variable': 'r', 'identifier': 'F', 'species': ['*', '*'], 'parameters': FunctionParameterList({'A': FunctionParameter({'param': 'A', 'start_val': 3.3, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 3.140023073816899}), 'B': FunctionParameter({'param': 'B', 'start_val': 1.8, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 1.937752361781043})}), 'expression': '-A*sqrt(r)+B*r', 'derivative': '-A/(2*sqrt(r))+B', 'is_screening_function': False, 'cutoff': None, 'screening': None})}), 'identifier': 'EAM', 'export_file': 'output.eam.fs', 'rho_range_factor': 2.0, 'resolution': 10000, 'species': ['*', '*']})"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "job.potential"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 18,
   "id": "2fe49eb2-bccb-4ba6-9a9f-8af61f6715c5",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(<Figure size 576x1296 with 3 Axes>,\n",
       " array([[<AxesSubplot:title={'center':'Al F'}, xlabel='$\\\\rho $ [a.u.]'>],\n",
       "        [<AxesSubplot:title={'center':'Al rho_AlAl'}, xlabel='r [$\\\\AA$]'>],\n",
       "        [<AxesSubplot:title={'center':'Al V_AlAl'}, xlabel='r [$\\\\AA$]'>]],\n",
       "       dtype=object))"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAQVCAYAAABwj/kWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB2eklEQVR4nO3dZ3hc1dX28Xtp1CXLVe4dN9yNhU0JhN4DgRB6CQk4EAgQ0sub5HnSn/SE6tCr6QkBQgm9g3vH2MZF7t0qVl/vhxkbWZarRnPmzPx/1zWXphzNXiOwbu199tnb3F0AACC5ZQRdAAAA2DsCGwCAECCwAQAIAQIbAIAQILABAAgBAhsAgBAgsAHsYGb3mtkvg64DwK4IbCANmdnrZrbJzHL243u+Ymb1Zlbe6HZza9YJ4DMENpBmzKyvpKMkuaQz9/Pb33P3wka36+JeIIBmEdhA+rlM0vuS7pV0ebClANhXmUEXACDhLpP0J0kfSHrfzLq4+5qAawKwF/SwgTRiZp+T1EfSY+4+RdIiSRftx1scZmabG90Oa5VCAeyCwAbSy+WSXnL39bHHD2v/hsXfd/d2jW7vx79EAM1hSBxIE2aWJ+k8SREzWx17OkdSOzMb5e4zgqsOwN7QwwbSxxcl1UsaKml07HawpLcUPa8NIIkR2ED6uFzSPe6+zN1Xb79JulnSxWbGiBuQxMzdg64BAADsBT1sAABCIKFDYGa2RFKZoufR6ty9JJHtAwAQVkGcszq20SUlAABgHzAkDgBACCQ6sF3SS2Y2xcwmJLhtAABCK9FD4ke6+0oz6yzpZTOb7+5vNj4gFuQTJKmgoGDskCFDElwigHS0eF2FttXWa2CXQmVHGHxEMKZMmbLe3Yubey2wy7rM7OeSyt39D7s7pqSkxCdPnpy4ogCkpTveWKTf/Ge+/vDlUTp3bM+gy0EaM7Mpu5uQnbA/I82swMzabL8v6SRJsxPVPgA0Z96qrfrjSwt08rAu+tIhPYIuB9itRA6Jd5H0tJltb/dhd38hge0DwE6q6+r1rUenqygvS78+e4Riv5+ApJSwwHb3xZJGJao9ANibP7/8ieavLtNdl5eoY2FO0OUAe8TMCgBp6aMlG3XHm4t0waG9dPzBXYIuB9grAhtA2imvrtNNj01Xz/Z5+skZQ4MuB9gn7M4DIO388tm5Kt20TY99/XAV5vBrEOFADxtAWvnv3DWa9NFyff3og3Ro3w5BlwPsMwIbQNrYUF6tHzw1U0O6ttG3ThwYdDnAfmEsCEBacHf96OlZ2rqtTg9eOV45mZGgSwL2Cz1sAGnhyakr9OKcNfr2SYM0pGtR0OUA+43ABpDySjdV6ufPzNG4vh105VH9gy4HOCAENoCU1tDg+s7jM+Tu+uN5oxTJYDUzhBOBDSCl3f3Op3p/8Ub97AvD1KtDftDlAAeMwAaQshasKdP/vfixTji4i75cwi5cCDcCG0BKqqlr0I2TpqtNTqZ++yU29kD4cVkXgJT011cWaO6qrZp46Vh1YmMPpAB62ABSzpSlG3Xb64v05bE9ddKwrkGXA8QFgQ0gpVRU1+mmx2aoe7s8/fQLbOyB1MGQOICU8svn5mrZxkpNuuowtcnNCrocIG7oYQNIGS/PXaNHPoxu7DG+f8egywHiisAGkBLWllXp+0/O1NBuRbrpxEFBlwPEHYENIPTcXd9/YqYqquv01wtGKzuTX21IPfxfDSD0HvxgmV77eJ1+eOoQDezSJuhygFZBYAMItYVry/Wr5+bq6EHFuuzwvkGXA7QaAhtAaNXUNejGR6cpLyui3587Uhls7IEUxmVdAELrr68s0OwVW3X7JYeoS1Fu0OUArYoeNoBQ+mhJdDWz80p66pTh3YIuB2h1BDaA0CmrqtW3Hp2unu3z9dMvDAu6HCAhGBIHEDo/f2auVm7epsevPlyFOfwaQ3qghw0gVJ6buUpPTi3VdccO0Ng+HYIuB0gYAhtAaKzeUqUfPT1Lo3q21TePHxh0OUBCEdgAQqGhwfWdx2eopq5Bfz5/tLIi/PpCeuH/eAChcM+7S/T2wvX6f2cMVf/iwqDLARKOwAaQ9D5eXabfvTBfxw/prAvH9Qq6HCAQBDaApFZdV68bJk1TUW6mfnfuSJmxmhnSE9dDAEhqf3xpgeavLtNdl5eoU2FO0OUAgaGHDSBpvbtwvf7x1mJdPL63jj+4S9DlAIFKeGCbWcTMppnZs4luG0B4bKms1bcfn6F+HQv049MPDrocIHBB9LBvkDQvgHYBhMhP/jVb68qq9ZcLRis/m7N3QEID28x6Sjpd0p2JbBdAuPxr+gr9e8ZK3XD8QI3s2S7ocoCkkOge9l8kfU9Sw+4OMLMJZjbZzCavW7cuYYUBSA6lmyr1k3/O1tg+7XXNMQcFXQ6QNBIW2GZ2hqS17j5lT8e5+0R3L3H3kuLi4gRVByAZ1De4bnpshhoaXH8+b7QyWc0M2CGR/xqOlHSmmS2RNEnScWb2YALbB5Dkbn9jkT78dKN+fuYw9e6YH3Q5QFJJWGC7+w/dvae795V0gaRX3f2SRLUPILlNX75Zf355gU4f2U3nju0ZdDlA0mG8CUDgyqvrdMOkaercJke//uIIVjMDmhHItRLu/rqk14NoG0Dy+fkzc7R8Y6Ueueowtc3PCrocICnRwwYQqGdnrtQTU0r1jWMGaHz/jkGXAyQtAhtAYFZs3qYfPTVLo3u10w0nDAy6HCCpEdgAAlHf4PrWo9NV3+D66wWjlcUlXMAesd4fgEBsv4TrD18epT4dC4IuB0h6/EkLIOG2X8J1xshu+tIhPYIuBwgFAhtAQm2/hKtLUa5+dTaXcAH7iiFxAAm10yVceVzCBewretgAEoZLuIADR2ADSIgVm7fph1zCBRwwAhtAq6tvcH1r0nQ1cAkXcMA4hw2g1d32+kJ9uIRLuICW4M9cAK1q+vLN+vN/P+ESLqCFCGwArWb7JVxduYQLaDGGxAG0mu2XcE2acDiXcAEtRA8bQKvYfgnXtccO0Lh+HYIuBwg9AhtA3DW+hOv647mEC4gHAhtAXHEJF9A6OIcNIK5ufY1LuIDWwJ++AOJm8pKN+ssrn+jMUd25hAuIMwIbQFxs2VarGyZNV/d2ufrV2cO5hAuIM4bEAbSYu+tHT83Smq1Vevzqw9Uml0u4gHijhw2gxR79aLmem7VK3z5psMb0bh90OUBKIrABtMgna8r083/P0ecGdNLXj+4fdDlAyiKwARywqtp6ffORaSrIztSfzhuljAzOWwOthXPYAA7Yb56fp/mry3TPVw5V56LcoMsBUho9bAAH5OW5a3Tfe0v1tc/107FDOgddDpDyCGwA+231lip994kZGta9SN87ZXDQ5QBpgcAGsF/qG1w3PjpNNXUN+vuFY5STGQm6JCAtcA4bwH657fWFen/xRv3+3JHqX1wYdDlA2qCHDWCfTVm6UX/+7yc6a3R3nTu2Z9DlAGmFwAawT7Zsq9X1j0SXHv3lF1l6FEg0hsQB7BVLjwLBo4cNYK9YehQIXsIC28xyzexDM5thZnPM7H8S1TaAA7dwLUuPAskgkUPi1ZKOc/dyM8uS9LaZ/cfd309gDQD2Q1Vtva57mKVHgWSQsMB2d5dUHnuYFbt5otoHsP9++5/5LD0KJImEnsM2s4iZTZe0VtLL7v5BItsHsO/+O3eN7n13CUuPAkkioYHt7vXuPlpST0njzGx402PMbIKZTTazyevWrUtkeQBiVm3ZxtKjQJIJZJa4u2+W9LqkU5p5baK7l7h7SXFxcaJLA9JeXX2Drn+EpUeBZJPIWeLFZtYudj9P0gmS5ieqfQD75q+vfKKPlmzSr88ZwdKjQBJJ5CzxbpLuM7OIon8oPObuzyawfQB78fYn63Xzawt1XklPnTW6R9DlAGgkkbPEZ0oak6j2AOyftWVVuvHR6RpQXKifnzks6HIANMHSpADU0OC66dEZKq+u1cNXjVd+Nr8agGTDv0oAuu2NRXp74Xr99pwRGtSlTdDlAGgGa4kDae7DTzfqjy99rDNHddf5h/YKuhwAu0FgA2lsY0WNrn9kmnp3yNevzmbLTCCZMSQOpCl313cfn6GNFTV66htHsGUmkOToYQNp6q63P9Ur89fqR6cN0fAebYMuB8BeENhAGpq+fLN+98J8nTS0iy4/om/Q5QDYBwQ2kGa2bKvVNx+Zqs5tcvX7c0dx3hoICc5hA2nE3fXDp2Zq5eYqPfb1w9U2n/PWQFjQwwbSyEMfLNPzs1bruycP1tg+7YMuB8B+ILCBNDF35Vb977Nz9flBxZpwVP+gywGwnwhsIA1UVNfpuoenql1elv503ihlZHDeGggbzmEDaeD//XO2lmyo0ENXHqaOhTlBlwPgANDDBlLcE1NK9dS0Fbr++IE6/KCOQZcD4AAR2EAK+3h1mX7yz1k6rH8HffO4gUGXA6AFCGwgRVVU1+kbD01RYU6W/nbBGEU4bw2EGuewgRTk7vrx07O0eH2FHvraeHUuyg26JAAtRA8bSEGTPlquf05fqW+dMEhHDOgUdDkA4oDABlLMnJVb9LNn5uiogZ107bEDgi4HQJwQ2EAKKauq1bUPTVX7/Cz9+fzRnLcGUgjnsIEU4e76wZOztHzTNj1y1WHqxPXWQEqhhw2kiAfeX6rnZq3Sd04arHH9OgRdDoA4I7CBFDCzdLN+8excHTeks75+NOuEA6mIwAZCbktlrb7x0FQVF+boj19mnXAgVXEOGwgxd9d3npih1Vuq9NjVh6t9QXbQJQFoJfSwgRC76+1P9fLcNfrBqUN0SG/2twZSGYENhNTUZZv02//M10lDu+hrn+sXdDkAWhmBDYTQpooaXffQVHVrl6vff3mUzDhvDaQ6zmEDIdPQ4LrpselaX16jJ685Qm3zsoIuCUAC0MMGQub2NxfptY/X6f+dcbBG9GwbdDkAEoTABkLkw0836o8vLdAZI7vpksP6BF0OgAQisIGQWFtWpesenqreHfL1m3NGcN4aSDMENhACdfUN+ubD07S1qla3XXKI2uRy3hpIN0w6A0Lg9y99rA8+3ag/nz9KQ7oWBV0OgAAkrIdtZr3M7DUzm2dmc8zshkS1DYTZC7NX6443Fuvi8b119pieQZcDICCJ7GHXSfq2u081szaSppjZy+4+N4E1AKHy6foKfffxGRrZs61++oWhQZcDIEAJ62G7+yp3nxq7XyZpnqQeiWofCJttNfW65sEpikRMt158iHIyI0GXBCBAgUw6M7O+ksZI+qCZ1yaY2WQzm7xu3bqE1wYkA3fXj/85Sx+vKdNfzh+tnu3zgy4JQMASHthmVijpSUk3uvvWpq+7+0R3L3H3kuLi4kSXBySFRz5crqemrtANxw/UMYM7B10OgCSQ0MA2syxFw/ohd38qkW0DYTGzdLN+/swcfX5Qsa4/bmDQ5QBIEomcJW6S7pI0z93/lKh2gTDZVFGjax6cquI2OfrL+aOVkcHiKACiEtnDPlLSpZKOM7PpsdtpCWwfSGoNDa4bH52udWXVuvXiQ9S+IDvokgAkkYRd1uXub0uiuwDsxt9fXag3FqzTL784XKN6tQu6HABJhqVJgSTwxoJ1+ssrC3TOmB66eHzvoMsBkIQIbCBgpZsqdcOkaRrcpY1+dTabegBoHoENBKi6rl7XPjRV9fWu2y4Zq7xsFkcB0Dw2/wAC9Itn52pG6Rbdfskh6tepIOhyACQxethAQB6fvFwPvr9ME47ur1OGdwu6HABJjsAGAjCrdIt+/M/ZOrx/R33v5MFBlwMgBAhsIME2VtTo6genqFNBtm6+aIwyI/wzBLB3nMMGEqiuvkHffGSq1pVX64mrD1fHwpygSwIQEvxpDyTQ71/6WO8s3KBfnjVcI3u2C7ocACFCYAMJ8tzMVbrjjcW6eHxvnXdor6DLARAyBDaQAAvWlOm7T8zQmN7t9LMvDAu6HAAhRGADrWxrVa2+/sAU5Wdn6vZLxio7k392APYfvzmAVtTQ4Lrp0elavrFSt158iLoU5QZdEoCQIrCBVnTzawv133lr9ZPTD9a4fh2CLgdAiBHYQCt5bf5a/fm/0R24Lj+ib9DlAAg5AhtoBUvWV+iGSdN0cNciduACEBcENhBnlTV1uvrBKcrIMN1xKTtwAYgPAhuII3fX95+cpQVryvT3C8eoV4f8oEsCkCIIbCCO7nzrU/17xkp95+TBOmpgcdDlAEghBDYQJ28uWKff/GeeTh3eVdd8/qCgywGQYghsIA6WrK/QdQ9P1aAubfSHL49ikhmAuCOwgRYqr67TVfdPVkaG6R+Xlaggh03wAMQfv1mAFmhocH3r0elavL5CD3x1HJPMALQaethAC/z1lU/08tw1+snpB+uIAZ2CLgdACiOwgQP0wuxV+usrn+jcsT31FVYyA9DKCGzgAMxfvVU3PTZDo3u10y+/OJxJZgBaHYEN7KdNFTW66v7JKszJ1B2XjlVuFiuZAWh9TDoD9kNdfYOue2Sq1myp1qSvH8Z2mQAShsAG9sNv/jNf7yzcoP87d6QO6d0+6HIApBGGxIF99OSUUt319qf6yhF9dV5Jr6DLAZBmCGxgH0xfvlk/fHqWDu/fUT8+/eCgywGQhghsYC/Wbq3S1x+YrM5tcnTLxYcoK8I/GwCJxzlsYA+qaut11QNTtHVbnZ685gh1KMgOuiQAaSphXQUzu9vM1prZ7ES1CbSEu+u7T8zUjOWb9ZcLRmto96KgSwKQxhI5tnevpFMS2B7QIje/ulD/nrFS3z15sE4e1jXocgCkuYQFtru/KWljotoDWuI/s1bpjy8v0Nljeugbx7C3NYDgJd3sGTObYGaTzWzyunXrgi4HaWj2ii266bEZGtO7nX5zzgiWHQWQFJIusN19oruXuHtJcXFx0OUgzazdWqWr7p+s9vlZLDsKIKkwSxyI2T4jfHNlrZ645nB1bsOyowCSB4ENKDoj/HuxGeG3XzJWw7q3DbokANhJIi/rekTSe5IGm1mpmX0tUW0De3PLawv1TGxG+CnDmREOIPkkrIft7hcmqi1gf7wwe5X+8NICfXF0d2aEA0haSTfpDEik2Su26FuPRmeE//ZLI5kRDiBpEdhIW2vLmBEOIDyYdIa0tK2mXlfdN1mbK2v1+NXMCAeQ/AhspJ2GBteNj07TzBVbNPHSEg3vwYxwAMmPIXGknd++MF8vzlmjn5w+VCcO7RJ0OQCwTwhspJWHPliqiW8u1mWH99FXj+wbdDkAsM8IbKSNNxas00//NUfHDC7WT88YyoxwAKFCYCMtfLy6TNc+NFUDOxfq5osOUWaE//UBhAu/tZDy1pZV6av3fqT87IjuueJQFeYw1xJA+PCbCyltW029rrxvsjZW1Ojxqw9Xt7Z5QZcEAAeEwEbK2n751iwu3wKQAhgSR8rafvnW/+PyLQApgMBGSmp8+dYVXL4FIAUQ2Eg5r81fy+VbAFIOgY2UMrN0s77x0FQd3K2NbuHyLQAphN9mSBnLNlTqq/d+pI6F2br7K4eqgMu3AKQQAhspYWNFjS6/50PVNbju++o4dt8CkHLogiD0otdaf6QVm7fp4SvH66DiwqBLAoC4o4eNUKtvcN0waZqmLd+sv54/WiV9OwRdEgC0CgIboeXu+p9/z9FLc9fop2cM1akjugVdEgC0GgIboTXxzcW6/72lmnB0f11xZL+gywGAVkVgI5T+NX2FfvOf+TpjZDf94JQhQZcDAK2OwEbovLtovb7z+AyN79dBfzxvlDIyWBgFQOojsBEqc1Zu0dfvn6J+nQo08bIS5WRGgi4JABKCwEZoLN1Qocvv/khtcjN17xXj1DYvK+iSACBhCGyEwtqyKl1614eqb2jQ/V8br+7t2NcaQHph4RQkva1Vtbr87o+0vrxaD191mAZ0ZmEUAOmHHjaSWlVtva68b7IWri3T7ZeM1ehe7YIuCQACQQ8bSauuvkHXPzJNHy3ZqL+cP1pHDyoOuiQACAw9bCQld9ePn56tl+au0c/OGKqzRvcIuiQACBSBjaT0+xc/1qOTl+v64wboK6xiBgAENpLPnW8t1q2vL9JF43vrWycOCrocAEgKBDaSyhNTSvXL5+bp1OFd9YuzhsuMVcwAQCKwkUSem7lK33tihj43oJP+csFoRVhyFAB2SGhgm9kpZvaxmS00sx8ksm0kt9fmr9WNj07TIb3ba+JlY1lyFACaSFhgm1lE0i2STpU0VNKFZjY0Ue0jeb23aIOufnCKBndto7uvOFT52VxtCABNJbKHPU7SQndf7O41kiZJOitRjV/9wBTd+vrCRDWHfTRt2SZded9H6t0hX/d/dbyKclkfHACak8jA7iFpeaPHpbHndmJmE8xssplNXrduXdwan7ViixatrYjb+6Hl5q3aqq/c85E6FubowSvHq0NBdtAlAUDSSmRgNzeDyHd5wn2iu5e4e0lxcfxWtsqMmOoaGuL2fmiZxevKdeldHygvK6KHrhyvLkW5QZcEAEktkYFdKqlXo8c9Ja1MVOOZGaa6+l3+PkAASjdV6pI7P5C79OCV49WrQ37QJQFA0ktkYH8kaaCZ9TOzbEkXSHomUY1nRTJUW08PO2irt1Tp4js/UHl1nR742nh23gKAfZSw6bjuXmdm10l6UVJE0t3uPidR7UeHxOlhB2nt1ipd9I/3tb6sWg9cOV5DuxcFXRIAhEZCr59x9+clPZ/INrfLzKCHHaS1ZVW68B/va/XWKt3/1XE6pHf7oEsCgFBJm5XOsiKcww7K+vJqXfyPD7Ryc5Xu+cqhKunbIeiSACB00iawMzMymCUegA2xsF6+qVJ3f+VQje/fMeiSACCU0iawc7IyVFVLYCfSxooaXXznB1qyoUJ3X36oDj+IsAaAA5U2gd0mN0vl1XVBl5E2NlfW6JI7P9Di9RW68/ISHTGgU9AlAUCopVFgZ2rrttqgy0gLWyprdcldH2jhunL947ISHTUwfgvgAEC6SqvALquih93aNlbU6KI739eC1eW645Kx+vwgwhoA4iFtArsoN0s19Q2qqq0PupSUta6sWhdOfF8L15Zr4mVjdeyQzkGXBAApI232MSzKjX7Usqo65Wax13K8rd5SpYvufF+rNlfp7q8cqiM5Zw0AcZU+Pey86LaNW7bVBFxJ6lmxeZvOn/ie1myp0n1fHUdYA0ArSJvA7twmuhvU2q3VAVeSWpZtqNR5t7+njRU1euDK8RrXj0VRAKA1pM2QeJeiHEnSmrKqgCtJHYvXleuif3ygqrp6PXzlYRrRs23QJQFAykqbwO4c2295DT3suJi/eqsuvetDNTS4HrnqMB3cjY08AKA1pc2QeGFOpgqyIwyJx8GUpZt03u3vKcOkR79OWANAIqRND1uSuhTlas1WhsRb4o0F63T1A1PUpShHD3xtvHp1yA+6JABIC2kV2D3a56l0U2XQZYTWv2es1E2PTdfAzm1031fHqbhNTtAlAUDaSJshcUnq27FAn66vkDvbbO6vB99fqusnTdOYXu016euHEdYAkGBpFdj9OhVoa1WdNlZwLfa+cnfd/Oon+sk/Z+u4wZ11/9fGqSg3K+iyACDtpNWQeL9OBZKkT9dXqGMhPcS9qW9w/fK5ubrnnSU6e0wP/d+5I5UVSau/8QAgaaTVb9/tgb14fUXAlSS/qtp6XfvQVN3zzhJ99ch++uOXRxHWABCgtOph92yfp9ysDH28uizoUpLaxooaXXnfR5q2fLP+3xlD9bXP9Qu6JABIe2kV2JmRDB3crUizVmwJupSktXRDhb5yz0dauXmbbr3oEJ06olvQJQEAlGZD4pI0okdbzVmxRQ0NzBRvatqyTTrn1ne1qbJGD181nrAGgCSSdoE9vEdbVdTUcx67iRdmr9aF/3hfBTmZeuqaIzS2D5t4AEAySbvAHtWznaRobxLRy7ZueW2hrn5wigZ3LdJT3zhC/YsLgy4LANBE2gX2wM6F6lCQrfcWbwi6lMBV1dbrhknT9fsXP9YXR3fXoxMOUycudwOApJRWk84kKSPDdFj/Dnp/0Qa5u8ws6JICsWZrla66f7Jmlm7Rd08erG8cc1Da/iwAIAzSroctSYcf1Ekrt1Rp6Yb0XFd8xvLNOvPmt7VwbbkmXjpW1x47gLAGgCSXloF91IBOkqRX568NuJLEe3zycp13x3vKzMjQk9ccoZOGdQ26JADAPkjLwO7bqUBDurbRC7NXB11KwlTV1uuHT83Ud5+YqbF92uuZ645kH2sACJG0DGxJOmV4V320dKPWlVUHXUqrK91UqS/f/p4e+XC5vnHMQXrga+NZSx0AQiZtA/vU4d3kLj0/a1XQpbSqNxas0xl/f1tL1ldo4qVj9b1ThiiSwflqAAibtA3swV3baESPtnrkw2UpuT92bX2DfvfCfH3lng/VtShX//7m5zhfDQAhlraBLUkXjuut+avLNH355qBLiaulGyp07m3v6rbXF+mCQ3vr6W8cqb6xncoAAOGUkMA2sy+b2RwzazCzkkS0uS/OHN1d+dkR3ffukqBLiZunppbqtL++pU/XV+i2iw/Rb84ZobzsSNBlAQBaKFE97NmSzpH0ZoLa2yeFOZm6eHxvPTNjpZaEfG3xzZU1umHSNN302AwN695W/7nxaDbvAIAUkpDAdvd57v5xItraX1cd1V+ZkQzd8trCoEs5YC/PXaMT//ymnpu5St86YZAemXCYerTLC7osAEAcJd05bDObYGaTzWzyunXrWr29zkW5unh8bz05tVRzV25t9fbiaVNFjW6cNE1X3T9ZnQpz9M9rj9QNJwxkFjgApKC4BbaZ/dfMZjdzO2t/3sfdJ7p7ibuXFBcXx6u8Pbrx+EFql5+tnz0zOxQzxt1dz8xYqRP//KaenblKN54wUP+69kgN79E26NIAAK0kbpt/uPsJ8XqvRGubn6XvnzJY339ylh78YJkuPaxP0CXt1sK15frpv2br3UUbNLxHke776qEa1p2gBoBUl3a7de3Ol8f20nOzVuuXz87VuL4dNLhrm6BL2klFdZ1ufm2h7nxrsXKzIvrFWcN00fg+DH8DQJpI1GVdZ5tZqaTDJT1nZi8mot39kZFh+uOXR6lNbqaufnCKNlbUBF2SpOgCKA++v1Sf//3ruu31RTpzVA+99p1jdOnhfQlrAEgjlsznbEtKSnzy5MkJbXPyko266M4PNLx7kR68crzys4MZhHB3vThntf7vhY+1eH2FSvq01w9PO1hj+7QPpB4AQOszsynu3ux6JUk3SzxoJX076K/nj9b05Zt1yZ0faHNlYnva9Q3RCWWn/vUtXf3gVJlJEy8dq8evPpywBoA0Rg97N16YvUrXPzJdPTvk6daLD9GQrq27FWVFdZ3+OX2F/vHmYi3ZUKmDigt0zTED9MXR3ZUZ4e8qAEgHe+phE9h78P7iDfrmI9O0dVutbjpxkK44sp+yM+MbnvNWbdXDHyzT09NWqLy6TsN7FOnaYwbo5GFdlcE5agBIKwR2C6wrq9YPn5qp/85bq36dCnTN5w/SmaO7KzfrwNbndnd9srZcz89apedmrtIna8uVnZmhM0Z008WH9dEhvdvJjKAGgHREYMfBa/PX6ncvzNf81WVqn5+lE4d20XFDumh0r3bqUpSz25CtrKnTgjXlmrdqqz78dKPeXbRea7ZWy0wa17eDTh/ZTV8Y2V3tC7IT/IkAAMlmT4HNddj76NghnXXM4GK9u2iDHv1ouf4za7Uem1wqSWqXn6UubXLVoSBbkQxTg7s2VdZqfXm11pdXa/vfRB0LsnX4QR115IBOOn5IZ3Uuyg3wEwEAwoTA3g9mpiMHdNKRAzqpuq5es1ds0azSLfpkbbnWllVrU0WNauqjx/Zol6tRPduqW9s8De7aRkO6tlGfjvkMdwMADgiBfYByMiMa26eDxvbpEHQpAIA0wPVCAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEgLl70DXslpmtk7Q0jm/ZSdL6OL5fuuDndmD4uR0Yfm4Hhp/bgUumn10fdy9u7oWkDux4M7PJ7l4SdB1hw8/twPBzOzD83A4MP7cDF5afHUPiAACEAIENAEAIpFtgTwy6gJDi53Zg+LkdGH5uB4af24ELxc8urc5hAwAQVunWwwYAIJQIbAAAQiAtAtvMTjGzj81soZn9IOh6wsLMepnZa2Y2z8zmmNkNQdcUFmYWMbNpZvZs0LWEiZm1M7MnzGx+7P+7w4OuKQzM7Fuxf6OzzewRM8sNuqZkZGZ3m9laM5vd6LkOZvaymX0S+9o+yBr3JOUD28wikm6RdKqkoZIuNLOhwVYVGnWSvu3uB0s6TNK1/Oz22Q2S5gVdRAj9VdIL7j5E0ijxM9wrM+sh6XpJJe4+XFJE0gXBVpW07pV0SpPnfiDpFXcfKOmV2OOklPKBLWmcpIXuvtjdayRNknRWwDWFgruvcvepsftliv7y7BFsVcnPzHpKOl3SnUHXEiZmViTpaEl3SZK717j75kCLCo9MSXlmlikpX9LKgOtJSu7+pqSNTZ4+S9J9sfv3SfpiImvaH+kQ2D0kLW/0uFSEzn4zs76Sxkj6IOBSwuAvkr4nqSHgOsKmv6R1ku6JnU6408wKgi4q2bn7Ckl/kLRM0ipJW9z9pWCrCpUu7r5KinZSJHUOuJ7dSofAtmae41q2/WBmhZKelHSju28Nup5kZmZnSFrr7lOCriWEMiUdIuk2dx8jqUJJPDyZLGLnXM+S1E9Sd0kFZnZJsFWhNaRDYJdK6tXocU8xXLTPzCxL0bB+yN2fCrqeEDhS0plmtkTR0y/HmdmDwZYUGqWSSt19+yjOE4oGOPbsBEmfuvs6d6+V9JSkIwKuKUzWmFk3SYp9XRtwPbuVDoH9kaSBZtbPzLIVnYzxTMA1hYKZmaLnE+e5+5+CricM3P2H7t7T3fsq+v/aq+5Ob2cfuPtqScvNbHDsqeMlzQ2wpLBYJukwM8uP/Zs9XkzW2x/PSLo8dv9ySf8KsJY9ygy6gNbm7nVmdp2kFxWdPXm3u88JuKywOFLSpZJmmdn02HM/cvfngysJKe6bkh6K/XG9WNIVAdeT9Nz9AzN7QtJURa/smKaQLLWZaGb2iKRjJHUys1JJP5P0W0mPmdnXFP3j58vBVbhnLE0KAEAIpMOQOAAAoUdgAwAQAgQ2AAAhQGADABACBDYAACFAYAMAEAIENgAAIUBgA2nGzPqa2bZGi+HE873zzGy6mdWYWad4vz+QzghsID0tcvfR8X5Td98We1/W6wfijMAGUpCZfcPMZpvZUjP75j4c/08zm2Jmc8xsQjOv9zWz2Y0ef8fMfh7nsgHsQcqvJQ6kGzP7kqQTFd2/vJOia8Hf5u51e/i2r7r7RjPLk/SRmT3p7hsSUS+AfUNgA6nneklXxbZaXGVmtdr7aNr1ZnZ27H4vSQMlEdhAEiGwgRQS2798pLsviD3uJmm9u9fs4XuOUXRP5cPdvdLMXpeU2+SwOu0c+k1fB9DKOIcNpJahktqaWX8zy5D0G0l/38v3tJW0KRbWQyQd1swxayR1NrOOZpYj6Yy4Vg1grwhsILWMkfSQpEckzZS0zN33tjfyC5IyzWympF9Ien/7C2b2vJl1jw2v/6+kDyQ9K2l+4zfYflz8PgaAptgPG0ghZvYXSe+5+6N7OKavpGfdfXgr1rFEUom7r2+tNoB0Qw8bSC2jJU3fyzH1ig6b7+24/bZ94RRJWZIa4v3+QDqjhw0AQAjQwwYAIAQIbAAAQoDABgAgBAhsAABCgMAGACAECGwAAEKAwAYAIAQIbAAAQoDABgAgBAhsIKTM7F4z+2VrHR8PZvZzM3twP45fYmYntGZNQFgR2ECSM7PXzWxTbFvLpBT7Y6BuX3bsMrMCMys3s+cTURuQKghsIInFdtY6SpJLOrMF75MZr5qaee8CSV+StEXSxfvwLedKqpZ0kpl1a626gFRDYAPJ7TJF96e+V9Ll+/pNZvYVM3vHzP5sZhsl/Tz2Unsze87MyszsAzM7qNH3HGFmH5nZltjXI/axuS9J2qzoftn7UuPlkm5XdL/ufQl4ACKwgWR3maSHYreTzazLfnzveEmLJXWW9KvYcxdK+h9J7SUt3P68mXWQ9Jykv0nqKOlPkp4zs4770M7lkh6RNEnSEDM7ZHcHmllvScc0+kyX7cfnAdIagQ0kKTP7nKQ+kh5z9ymSFkm6aD/eYqW7/93d69x9W+y5p9z9Q3evUzQwR8eeP13SJ+7+QOz4RyTNl/SFvdTYW9Kxkh529zWSXtGee9mXSZrp7nMVDflhZjZmPz4TkLYIbCB5XS7pJXdfH3v8sPZjWFzS8maeW93ofqWkwtj97pKWNjl2qaQee2njUknz3H167PFDki4ys6zdHL99xEDuvlLSG9q/zwSkrVabiALgwJlZnqTzJEXMbHvI5khqZ2aj3H3GPryN70eTKxXtzTfWW9ILe/m+yyT1blRjpqJD6qdKeqbxgbFz4gMl/dDMvh17uo2ivezvxHr9AHaDHjaQnL4oqV7SUEWHrUdLOljSW2qd877PSxpkZheZWaaZnR9r+9ndfYOZHS7pIEnjGtU4XLsfCbhc0sva+TMNl5SvaMAD2AN62EByulzSPe6+rPGTZnazpL+Z2ffj2Zi7bzCzMyT9VdJtik5IO6PRcPzuavyXu89qUuNfJb0Vm8i2/blcRUcMLnP31U2OfyD2Xv+Oy4cBUpS578+oGQAACEJchsTN7G4zW2tms3fzupnZ38xsoZnN3NNlHwAAYFfxOod9r6RT9vD6qYpONhkoaYKiQ24AQiC2jGhzt6OCrg1IJ3E5h+3ub8aWUNydsyTd79Hx9/fNrJ2ZdXP3VfFoH0DrcffCvR8FoLUlatJZD+18TWhp7LldAtvMJijaC1dBQcHYIUOGJKRAAACCNmXKlPXuXtzca4kKbGvmuWZnu7n7REkTJamkpMQnT57cmnUBAJA0zKzpAkY7JOo67FJJvRo97qnoQg0AAGAfJCqwn5F0WWy2+GGStnD+GgCAfReXIXEze0TRHXg6mVmppJ9JypIkd79d0VWUTlN0MYZKSVfEo10AANJFvGaJX7iX113StfFoCwCAdMRa4gAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhACBDQBACBDYAACEAIENAEAIENgAAIQAgQ0AQAgQ2AAAhEBcAtvMTjGzj81soZn9oJnX25rZv81shpnNMbMr4tEuAADposWBbWYRSbdIOlXSUEkXmtnQJoddK2muu4+SdIykP5pZdkvbBgAgXcSjhz1O0kJ3X+zuNZImSTqryTEuqY2ZmaRCSRsl1cWhbQAA0kI8AruHpOWNHpfGnmvsZkkHS1opaZakG9y9obk3M7MJZjbZzCavW7cuDuUBABB+8Qhsa+Y5b/L4ZEnTJXWXNFrSzWZW1NybuftEdy9x95Li4uI4lAcAQPjFI7BLJfVq9Linoj3pxq6Q9JRHLZT0qaQhcWgbAIC0EI/A/kjSQDPrF5tIdoGkZ5ocs0zS8ZJkZl0kDZa0OA5tAwCQFjJb+gbuXmdm10l6UVJE0t3uPsfMro69frukX0i618xmKTqE/n13X9/StgEASBctDmxJcvfnJT3f5LnbG91fKemkeLQFAEA6YqUzAABCgMAGACAE4jIkHgY/f2aOuhTl6vQR3dS7Y37Q5QAAsF/SIrDr6hs0e8UW3fvuEv3uhfka2bOtzhjZTaeN6Kae7QlvAEDyM/ema5wkj5KSEp88eXLc3m/5xko9P2uVnpu1SjNLt0iSRvdqtyO8u7fLi1tbAADsLzOb4u4lzb6WToHd2LINlXpu1io9N2ulZq/YKkka26e9Th8RDe+ubXNbpV0AAHaHwN6LT9dX6PlZq/TszFWatyoa3of2/Sy8OxcR3gCA1kdg74dF68r13MxVem7mKn28pkxm0ri+HXTGyG46ZXg3FbfJSWg9AID0QWAfoE/WlOm5WM974dpyZZg0vl9HnTGqm04Z1lUdCwlvAED8ENgt5O5asKZcz81cqWdnrtLi9RWKZJgO799Rp4+Mhnf7guygywQAhByBHUfurvmry/TczFV6duZKLdlQqUiG6cgBnXTGiG46aVgXtcsnvAEA+4/AbiXurjkrt0Znm89cpWUbK5WZYTpqYCedPrK7ThzaRW3zsoIuEwAQEgR2Ari7Zq/Yqmdjw+YrNm9TVsR09MBinT6ym04Y2kVFuYQ3AGD3COwEc3fNKN2i52au1HMzV2nlliplRzL0+cHFOmNkNx1/cBcV5qTFInMAgP1AYAeoocE1bflmPTdzlZ6ftUqrt1YpOzNDxw4u1ukju+v4IZ1VQHgDAERgJ42GBtfUZZv0bCy815ZVKzcrQ8cN6azTR3TXsUOKlZ9NeANAuiKwk1B9g2vyko16btYqPT9rtdaXVysvK6LjD+6sM0Z20zGDOys3KxJ0mQCABCKwk1x9g+uDTzfouZmr9MLs1dpQUaOC7IiOP7iLzhjZTUcPKia8ASANENghUlffoA8+3ahnZ67UC7NXa1NlrQpzMnXi0C46fUQ3HTWok3IyCW8ASEUEdkjV1jfovUWxnvec1dqyrVZtcjN10tCuOmNkNx05oJOyMzOCLhMAECcEdgqoqWvQO4vW67mZq/TinNUqq6pTUW6mTh7WVafHwjsrQngDQJgR2Cmmpq5Bby9cp2dnrtLLc9aorLpO7fKzdMqwrjprdA8d1r+DzCzoMgEA+4nATmFVtfV665P1em7mSr08d40qauo1uEsbXX5EX509pofysjnfDQBhQWCniaraej0zY6XufWeJ5q7aqrZ5Wbr0sD762uf6sZsYAIQAgZ1m3F2Tl27SXW99qhfnrlZ+VkSXHdFXV36uH3t4A0ASI7DT2II1Zfr7qwv17MyVysuKaMLR/TXh6P6sqAYASYjAhhauLdOfXl6g52etVteiXH335ME6e0wPZWQwOQ0AksWeApvrgNLEgM5tdOvFY/XE1YerS9tcffvxGfrire9o9ootQZcGANgHBHaaKenbQU9fc4T+esFordxcpbNueUe/fn6eKmvqgi4NALAHBHYaysgwnTW6h1656fM6r6SnJr65WCf9+U29s3B90KUBAHaDwE5jbfOz9JtzRurRCYcpO5Khi+/8QL96bq6q6+qDLg0A0ASBDY3v31HPXv85XTy+t/7x1qf64i3vasGasqDLAgA0QmBDkpSfnalfnT1Cd15WorVbq/SFv7+tJ6aUBl0WACCGwMZOThjaRf+58SiN6d1O33l8hv7fP2erpq4h6LIAIO0R2NhF5za5evBr4/X1o/vrgfeX6vyJ72n1lqqgywKAtEZgo1mZkQz98LSDdevFh2jB6jKddcvbXLMNAAEisLFHp43opqe+caQiZjrvjvf06vw1QZcEAGmJwMZeDe7aRk9fe6T6Fxfoyvsm6/73lgRdEgCkHQIb+6RLUa4enXC4jhvSWT/91xz96aWPlczr0ANAqiGwsc8KcjJ1x6UlOq+kp/726kL94tl5hDYAJAh7LGK/RDJMvz1npApyMnX3O5+qsqZOvzp7hCLs+gUArYrAxn7LyDD99IyhapOTqb+9ulCVNfX68/mjCW0AaEUENg6ImemmkwYrLztTv3thvrIiGfr9uSPZXxsAWklczmGb2Slm9rGZLTSzH+zmmGPMbLqZzTGzN+LRLoJ3zTEH6VsnDNKTU0v143/O5pw2ALSSFvewzSwi6RZJJ0oqlfSRmT3j7nMbHdNO0q2STnH3ZWbWuaXtInlcf/wAVdfV69bXFyknM0M/+8JQmdHTBoB4iseQ+DhJC919sSSZ2SRJZ0ma2+iYiyQ95e7LJMnd18ahXSQJM9N3Tx6s6roG3fX2pyrKy9JNJw4KuiwASCnxCOwekpY3elwqaXyTYwZJyjKz1yW1kfRXd78/Dm0jSZiZfnL6wdq6rVZ/e+UTdWubqwvH9Q66LABIGfEI7ObGPpueyMyUNFbS8ZLyJL1nZu+7+4Jd3sxsgqQJktS7N7/ww8TM9OtzRmhdebV+/PQsdW6To+MP7hJ0WQCQEuIx6axUUq9Gj3tKWtnMMS+4e4W7r5f0pqRRzb2Zu0909xJ3LykuLo5DeUikrEiGbrnoEA3v0VbXPjxV05ZtCrokAEgJ8QjsjyQNNLN+ZpYt6QJJzzQ55l+SjjKzTDPLV3TIfF4c2kYSKsjJ1N1fOVRdinL1tfsma/nGyqBLAoDQa3Fgu3udpOskvahoCD/m7nPM7Gozuzp2zDxJL0iaKelDSXe6++yWto3k1akwR/d85VDV1jfoqvsnq6K6LuiSACDULJmvmy0pKfHJkycHXQZa4I0F63TFPR/qxKFddNvFY1lYBQD2wMymuHtJc6+x+Qda1ecHFetHpx2sF+es0V9e+STocgAgtFiaFK3ua5/rp49Xl+lvr3yiIV3b6LQR3YIuCQBChx42Wp2Z6ZdnD9foXu30vSdmavG68qBLAoDQIbCREDmZEd1y8SHKjJi+8dBUVdXWB10SAIQKgY2E6dEuT38+f7Tmry7TT//FRQIAsD8IbCTUsYM767pjB+ixyaV6fPLyvX8DAEASgY0A3HjCQB3Wv4P+379m65M1ZUGXAwChQGAj4TIjGfrbBWOUn52pGyZNV01dQ9AlAUDSI7ARiM5FufrtOSM0d9VW/fHlj4MuBwCSHoGNwJw0rKsuHNdLE99crPcWbQi6HABIagQ2AvX/zhiqvh0L9O3HpmvLttqgywGApEVgI1D52Zn6y/mjtaasmku9AGAPCGwEblSvdrr+uIH61/SVemnO6qDLAYCkRGAjKXzj2IN0cLci/eSfs7WlkqFxAGiKwEZSyIpk6PfnjtSGihr98rm5QZcDAEmHwEbSGN6jra75/EF6fEqp3liwLuhyACCpENhIKt88foAGdC7UD5+cqbIqhsYBYDsCG0klJzOi3587Uqu3VukPL7KgCgBsR2Aj6Yzp3V6XHd5XD7y/VLNKtwRdDgAkBQIbSemmkwapY2GOfvzPWapv8KDLAYDAEdhISkW5WfrJ6QdrZukWPfzB0qDLAYDAEdhIWmeO6q4jB3TU/734sdaWVQVdDgAEisBG0jIz/eKs4aqubdCvn5sXdDkAECgCG0mtf3Ghrv58f/1z+kp9sJgdvQCkLwIbSe+aYwaoe9tc/e+zc5mABiBtEdhIennZEf3gtIM1Z+VWPTmlNOhyACAQBDZC4Qsju2lsn/b6vxc/ZgU0AGmJwEYomJl+esZQrS+v1q2vLwq6HABIOAIboTGqVzudc0gP3fXWp1q2oTLocgAgoQhshMr3Th6iSIbp189zmReA9EJgI1S6ts3VNcccpBfmrNaUpZuCLgcAEobARuhceVQ/dSrM0e9emC93LvMCkB4IbIROfnambjh+gD78dKNe/3hd0OUAQEIQ2AilC8b1Vp+O+frdC/NZTAVAWiCwEUpZkQx9+6TBmr+6TP+aviLocgCg1RHYCK0zRnTTsO5F+uNLC1RdVx90OQDQqghshFZGhun7pwzRis3b9ND7y4IuBwBaFYGNUDtqYCcdcVBH3fr6QlXW1AVdDgC0GgIboWZmuunEQVpfXqMH3lsadDkA0GoIbIReSd8OOmpgJ93x5mJVVNPLBpCaCGykhG+dOEgbK2p0P71sACmKwEZKOKR3ex0zuFh3vLlI5fSyAaQgAhsp48YTBmlzZa3ue3dJ0KUAQNwR2EgZo3u10/FDOmvim4u1tao26HIAIK7iEthmdoqZfWxmC83sB3s47lAzqzezc+PRLtDUjScM0pZttbr3nSVBlwIAcdXiwDaziKRbJJ0qaaikC81s6G6O+52kF1vaJrA7I3q21YlDu+gfby3Wlm30sgGkjnj0sMdJWujui929RtIkSWc1c9w3JT0paW0c2gR268YTBqqsqk73vPNp0KUAQNzEI7B7SFre6HFp7LkdzKyHpLMl3b63NzOzCWY22cwmr1vH1onYf8O6t9VJQ7vorrc/pZcNIGXEI7Ctmeea7nf4F0nfd/e97tDg7hPdvcTdS4qLi+NQHtLR9cdHe9mcywaQKuIR2KWSejV63FPSyibHlEiaZGZLJJ0r6VYz+2Ic2gaaNbzH9l4257IBpIZ4BPZHkgaaWT8zy5Z0gaRnGh/g7v3cva+795X0hKRvuPs/49A2sFvXHz9QW+llA0gRLQ5sd6+TdJ2is7/nSXrM3eeY2dVmdnVL3x84UMN7RGeM3/U212UDCL+4XIft7s+7+yB3P8jdfxV77nZ332WSmbt/xd2fiEe7wN7cQC8bQIpgpTOktOE92uqEg7vozrfoZQMINwIbKe/GE+hlAwg/Ahspj142gFRAYCMtbO9l30cvG0BIEdhIC9Fedmfd+fan9LIBhBKBjbRxw/HRnbzoZQMIIwIbaWNEz8962WX0sgGEDIGNtLKjl/3ukqBLAYD9QmAjrYzo2VbHD+msf7xFLxtAuBDYSDs3nDCQXjaA0CGwkXZG9myn44dwLhtAuBDYSEs3nDBQmytrdf97S4MuBQD2CYGNtDSyZzsdN6Sz/vHWYnrZAEKBwEbauuF4etkAwoPARtoa1euzXnZ5dV3Q5QDAHhHYSGvbe9nMGAeQ7AhspLVRvdrp2MHF9LIBJD0CG2nvhhMGxc5lLwm6FADYLQIbaW/09l72m/SyASQvAhtQtJe9iV42gCRGYAOK9rKPifWyK+hlA0hCBDYQc8PxA2O9bK7LBpB8CGwgZkzv9vr8oGJNfHMRvWwASYfABhq54QR62QCSE4ENNHJIrJd9x5uLtGUba4wDSB4ENtDE904ZrC3banXrawuDLgUAdiCwgSaGdW+rLx3SU/e8s0TLN1YGXQ4ASCKwgWZ9+6RBysiQfv/ix0GXAgCSCGygWd3a5umqo/rrmRkrNX355qDLAQACG9idr3/+IHUqzNavn5sndw+6HABpjsAGdqMwJ1PfOnGQPlyyUS/OWR10OQDSHIEN7MH5Jb00pGsb/eLZedpWUx90OQDSGIEN7EFmJEP/e9Zwrdi8TTe/9knQ5QBIYwQ2sBfj+nXQOWN6aOKbi7V4XXnQ5QBIUwQ2sA9+eNrBys2M6GfPzGECGoBAENjAPihuk6NvnzRIb32yXs/PYgIagMQjsIF9dMlhfTS8R5F+9sxsbaqoCbocAGmGwAb2UWYkQ//3pVHaXFmr/312btDlAEgzBDawH4Z2L9K1xw7Q09NW6JV5a4IuB0AaIbCB/XTtsQM0pGsb/ejpWWzBCSBhCGxgP2VnZuj3547S+vIa/c8zc4IuB0CaILCBAzCiZ1t987gBemraCv1r+oqgywGQBghs4ABdd+wAlfRpr588PZt9swG0urgEtpmdYmYfm9lCM/tBM69fbGYzY7d3zWxUPNoFgpQZydBfLhgtmXT9pGmqq28IuiQAKazFgW1mEUm3SDpV0lBJF5rZ0CaHfSrp8+4+UtIvJE1sabtAMujZPl+/OnuEpi3brD//d0HQ5QBIYfHoYY+TtNDdF7t7jaRJks5qfIC7v+vum2IP35fUMw7tAknhzFHddX5JL93y2iK9PJdLvQC0jngEdg9Jyxs9Lo09tztfk/Sf3b1oZhPMbLKZTV63bl0cygNa3/+cNUwje7bVTY9OZ4MQAK0iHoFtzTzX7O4IZnasooH9/d29mbtPdPcSdy8pLi6OQ3lA68vNiujWiw9RZsR09YNTVFFdF3RJAFJMPAK7VFKvRo97SlrZ9CAzGynpTklnufuGOLQLJJWe7fP19wsP0cK15fruEzPU0MCuXgDiJx6B/ZGkgWbWz8yyJV0g6ZnGB5hZb0lPSbrU3ZmZg5T1uYGd9MNTD9bzs1brDy99HHQ5AFJIZkvfwN3rzOw6SS9Kiki6293nmNnVsddvl/RTSR0l3WpmklTn7iUtbRtIRlce1U+L11fo1tcXqXeHfF0wrnfQJQFIAeaevMN2JSUlPnny5KDLAPZbXX2DvnrfZL2zcL3uveJQHTWQ+RgA9s7MpuyuQ8tKZ0AryIxk6JaLxmhg50J948Gpmr1iS9AlAQg5AhtoJW1ys3TPFYeqKC9Ll939oRauLQu6JAAhRmADrahb2zw9eOV4ZZjpkjs/ZM1xAAeMwAZaWb9OBXrwynHaVluvi+/8QGu2VgVdEoAQIrCBBBjStUj3XnGoNpRX6/w73tPKzduCLglAyBDYQIKM6d1e939tvDaU1+j8ie8xPA5gvxDYQAKN7dNeD101Xlu31en8O97TkvUVQZcEICQIbCDBRvZsp4evGq+qugadd8d7mrdqa9AlAQgBAhsIwLDubTVpwmHKMNN5t7+ndxetD7okAEmOwAYCMqhLGz31jSPUrV2uLr/7Qz0zY5c9cwBgBwIbCFD3dnl6/OtHaEzv9rr+kWn6x5uLlczLBQMIDoENBKxtfpbu/+o4nT6im371/Dz98KlZqqlrCLosAEmmxbt1AWi53KyI/n7hGPXrVKCbX1uoRevKddslY9WpMCfo0gAkCXrYQJLIyDB95+TB+vuFYzSzdIvOuvkdzV3JDHIAUQQ2kGS+MKq7nrj6CNU3uL5027v6N5PRAIjABpLSiJ5t9cx1R2po9yJ985Fp+um/Zqu6rj7osgAEiMAGklTnolxNmnCYrjqqn+5/b6m+fDvLmQLpjMAGklhWJEM/Pn2oJl46Vp+ur9Dpf3tLL81ZHXRZAAJAYAMhcNKwrnrum0epT8cCTXhgin709CxV1tQFXRaABCKwgZDo3TFfT1xzuL5+dH898uEynf63tzVt2aagywKQIAQ2ECI5mRH98LSD9chVh6mmrkHn3v6e/vzyAtXWs9AKkOoIbCCEDuvfUf+58SidNaq7/vrKJ/riLe9o9ootQZcFoBUR2EBIFeVm6U/nj9btl4zVurJqnXnz2/r18/O0rYbLv4BURGADIXfK8K56+abP6/xDe2vim4t10l/e0JsL1gVdFoA4I7CBFNA2L0u/OWeEHp1wmLIyMnTZ3R/q6w9M5rptIIUQ2EAKGd+/o56/4Sh99+TBenPBeh3/pzf0hxc/VkU1l4ABYUdgAykmNyuia48doNe+c4xOG95VN7+2UMf/8Q09MaVU9Q3stQ2EFYENpKiubXP1lwvG6MlrDlfnohx95/EZOvkvb+qF2avkTnADYUNgAylubJ8O+te1R+q2iw+Ru+vqB6fqi7e8o7c/WU9wAyFiyfwPtqSkxCdPnhx0GUDKqKtv0FPTVuiv//1EKzZv05je7fSNYwbo+CGdlZFhQZcHpD0zm+LuJc2+RmAD6ae6rl6PTS7VHW8sUummbRrUpVBXf/4gfWFUd2VFGHgDgkJgA2hWXX2Dnp25Sre9vkgfrylT97a5uviwPrrg0F7qWJgTdHlA2iGwAexRQ4Pr1flrdc+7n+qdhRuUHcnQGSO76bIj+mp0r3ZBlwekjT0FdmaiiwGQfDIyTCcM7aIThnbRJ2vK9MD7S/XklFI9NW2FhnYr0pfG9tRZo7urE71uIDD0sAE0q7y6Tk9PLdXjU0o1s3SLIhmmYwYV60tje+q4IZ2VmxUJukQg5TAkDqBFPllTpiemluqf01ZozdZq5WdHdOyQzjplWFcdO6SzCnMYrAPigcAGEBf1Da53F63Xf2av1ktzVmt9eY2yMzN09MBiHTukWEcPLFavDvlBlwmEFoENIO7qG1yTl2zUC3NW66U5a7Ri8zZJUr9OBTp6YCcdNbBY4/p3UFFuVsCVAuFBYANoVe6uResq9OaCdXrrk3V6f/FGbautl5k0uEsblfRtr5I+HVTSt716tMuTGYu0AM0hsAEkVHVdvaYs3aSPPt2kyUs3atqyzSqP7RjWqTBHw7oXaXiPIg3r3lbDuhepV/t8VloDxGVdABIsJzOiIw7qpCMO6iQpOnw+f/VWTV6ySTNKN2vuyq16e+H6HbuHtcnJ1EGdC9W/uEAHFRfqoOIC9S8uVJ+O+crJZDY6IBHYABIgkmGx3nTbHc9V1dZrwZoyzVm5VXNXbtWideV6d+EGPTV1xY5jMkzqWpSr7u3y1L1dnnq0j31tl6tubfPUqTBHHQqyFaF3jjRAYAMIRG5WRCN7ttPInu12er68uk6frqvQ4vXlWrSuQis2bdOKzZWavnyz/jN7lWrrdz6NZyZ1yM9Wx8JsdSrMUcfCHHUqzFa7vGwV5WWqKDdLRXlZKsrNjH6N3S/IzmQYHqESl8A2s1Mk/VVSRNKd7v7bJq9b7PXTJFVK+oq7T41H2wBSS2FOpkb0bKsRPdvu8lpDg2tdebVWbN6mVZurtKGiWuvLqrW+okYbyqu1vrxGs0o3a315zY5z5ruTYVJBTjS487Mjys+JKD92f8dz2RHl52SqIDuivOzo1/ycTOVnRY/Py4ood8ctQ7mZ0fs5mRn8MYC4a3Fgm1lE0i2STpRUKukjM3vG3ec2OuxUSQNjt/GSbot9BYB9lpFh6lKUqy5FuVLvPR9bW9+g8qo6ba2q1dZt27/W7vS4rKpOlTV1qqypV2VNvSqq67SxokbLN1bueFxZU6+6hv2fnJudmaHczIydAz0rotzMiHKyGj2/45jo1+xIhrIyM3Z8zYlkKCvTlBVp+lzscSRD2TuOt52+PzvCHw6pJB497HGSFrr7Ykkys0mSzpLUOLDPknS/R6ekv29m7cysm7uvikP7ALCLrEiG2hdkq31Bdovfq6auoVGw16miul4VNXWqrm1QVW29qurqVbX9fm2DttXWq7q2fsfj6OufHbO1qk7ryqp3eb26rkHxvnAnMyMa9pkZpkjElJkRu59hyozEvmaYIo2f3+n1XZ/PimTsfFyGKSPDlGGmDJMyzGSN7meYYo9jz2WYrNFrGbu8tofvtc++d/vVgabonc8ea6fH2u3r1uzxTd9Xe/i+/sUF6tk+MYsFxSOwe0ha3uhxqXbtPTd3TA9JuwS2mU2QNEGSevfey5/QAJAA2ZkZys7MVrtW/r3s7qpvcNXUN6i2zlVdX6/aeldNXYNq6xtUU9cQey32dcdznx3T+LjG31fXEH3vugZXfX3sa0OT5xsaPV/vqq5tUF1D/Y7n6+obmhzbsNN7uqQG99gt+nkaPPpcEl9B3CI/PWOovvq5fglpKx6B3dx4S9P/NPtyTPRJ94mSJkrR67BbVhoAhIdZtFebGcmQsiUpdVaJ81hoNzQJ8fpYwHvD7sO+oZnvbYidpvAd7x/7Gntmx+PdPK+9fV+juptrZ/sziepdS/EJ7FJJvRo97ilp5QEcAwBIUbZ9KLvZ/hv2RUYc3uMjSQPNrJ+ZZUu6QNIzTY55RtJlFnWYpC2cvwYAYN+1uIft7nVmdp2kFxW9rOtud59jZlfHXr9d0vOKXtK1UNHLuq5oabsAAKSTuFyH7e7PKxrKjZ+7vdF9l3RtPNoCACAdxWNIHAAAtDICGwCAECCwAQAIAQIbAIAQILABAAgBAhsAgBAgsAEACAECGwCAECCwAQAIAQIbAIAQILABAAgBAhsAgBAgsAEACAECGwCAECCwAQAIAQIbAIAQILABAAgBAhsAgBAgsAEACAECGwCAECCwAQAIAXP3oGvYLTNbJ2lpHN+yk6T1cXy/ZJCKn0lKzc/FZwqPVPxcqfiZpNT7XH3cvbi5F5I6sOPNzCa7e0nQdcRTKn4mKTU/F58pPFLxc6XiZ5JS93M1hyFxAABCgMAGACAE0i2wJwZdQCtIxc8kpebn4jOFRyp+rlT8TFLqfq5dpNU5bAAAwirdetgAAIRSWgS2mZ1iZh+b2UIz+0HQ9cSDmd1tZmvNbHbQtcSLmfUys9fMbJ6ZzTGzG4KuKR7MLNfMPjSzGbHP9T9B1xQvZhYxs2lm9mzQtcSDmS0xs1lmNt3MJgddT7yYWTsze8LM5sf+fR0edE0tYWaDY/+Ntt+2mtmNQdfV2lJ+SNzMIpIWSDpRUqmkjyRd6O5zAy2shczsaEnlku539+FB1xMPZtZNUjd3n2pmbSRNkfTFFPhvZZIK3L3czLIkvS3pBnd/P+DSWszMbpJUIqnI3c8Iup6WMrMlkkrcPZWu65WZ3SfpLXe/08yyJeW7++aAy4qL2O/4FZLGu3s81+1IOunQwx4naaG7L3b3GkmTJJ0VcE0t5u5vStoYdB3x5O6r3H1q7H6ZpHmSegRbVct5VHnsYVbsFvq/lM2sp6TTJd0ZdC3YPTMrknS0pLskyd1rUiWsY46XtCjVw1pKj8DuIWl5o8elSoEQSHVm1lfSGEkfBFxKXMSGjqdLWivpZXdPhc/1F0nfk9QQcB3x5JJeMrMpZjYh6GLipL+kdZLuiZ2+uNPMCoIuKo4ukPRI0EUkQjoEtjXzXOh7N6nMzAolPSnpRnffGnQ98eDu9e4+WlJPSePMLNSnMczsDElr3X1K0LXE2ZHufoikUyVdGzv1FHaZkg6RdJu7j5FUISlV5vJkSzpT0uNB15II6RDYpZJ6NXrcU9LKgGrBXsTO8T4p6SF3fyroeuItNhT5uqRTgq2kxY6UdGbsnO8kSceZ2YPBltRy7r4y9nWtpKcVPaUWdqWSShuN6jyhaICnglMlTXX3NUEXkgjpENgfSRpoZv1if41dIOmZgGtCM2KTs+6SNM/d/xR0PfFiZsVm1i52P0/SCZLmB1pUC7n7D929p7v3VfTf1KvufknAZbWImRXEJjsqNmR8kqTQX4Xh7qslLTezwbGnjpcU6omcjVyoNBkOl6JDJSnN3evM7DpJL0qKSLrb3ecEXFaLmdkjko6R1MnMSiX9zN3vCraqFjtS0qWSZsXO90rSj9z9+eBKiotuku6LzWbNkPSYu6fEZVAppoukp6N/NypT0sPu/kKwJcXNNyU9FOu0LJZ0RcD1tJiZ5St69c/Xg64lUVL+si4AAFJBOgyJAwAQegQ2AAAhQGADABACBDYAACFAYAMAEAIENgAAIUBgAwAQAgQ2gD0ys7+b2VQzOzToWoB0RmAD2K3YEp2dFV1NKvT7XQNhRmADkJn1NbNtjZaElSS5e4WiS6u+LulvsWPzzGy6mdWYWaeEFwukKQIbSEMW1fTf/6LYFqCNj+soKV9SmaR6SXL3bbHj2PUOSCACG0gTsV70PDO7VdJU7bzt7O78RNIfJM2RNLQ16wOwZwQ2kF4GS7rf3ce4+9I9HWhmfSUdIelRSfMkDWv98gDsDoENpJel7v7+Ph77S0n/69Et/QhsIGApvx82gJ1U7MtBZjZa0jmSPmdmt0jKlTSrFesCsBcENoDm/E7SF9z9FUkysy6SpgVbEpDeGBIHsBMzO05SwfawliR3XyOpwMw6BFcZkN7oYQNpwt2XSBq+D8e9KunVZp5v2wplAdhH9LABSNFrrNs2XTilOdsXTpGUJamhlesCEGPRCaAAACCZ0cMGACAECGwAAEKAwAYAIAQIbAAAQoDABgAgBAhsAABCgMAGACAECGwghZjZvWb2ywDaXWJmJ+zjsceYWWlr1wSkGgIbCCEze93MNplZzj4ef7iZVZhZm2Zem2Zm1+3DexSYWbmZPb+PbX7FzNzMztuX4wHsGYENhIyZ9ZV0lCSXdOa+fI+7vyepVNKXmrzXcElDJT2yD29zrqRqSSeZWbd9OP5ySRtjXwG0EIENhM9lkt6XdK/2Lwzvi31v0/d6zt037MP3Xy7pdkkzJV28pwPNrI+kz0uaIOnk2PacAFqAwAbC5zJJD8Vu+xOGD0g6ysx6S5KZZUi6SNL9e/vG2Pcc06jdpsHfXI2T3f1JSfO0l4AHsHcENhAiZvY5SX0kPebuUyQtUjR098rdl0t6Q9IlsaeOl5Qr6bl9+PbLJM1097mKDp8PM7Mxezn+4dj9h8WwONBiBDYQLpdLesnd18ce728YNh4Wv1TSw+5euw/ft71XL3dfqWjwN9uumR0pqZ+kSY1qHGFmo/ejTgBNZAZdAIB9Y2Z5ks6TFDGz1bGncyS1M7NR7j5jH97mKUm3mtmxks5RdJh7b+0eIWmgpB+a2bdjT7dRtJf9HXeva/Itl0sySdPNrPHzl0mavg81AmgGPWwgPL4oqV7RWd2jY7eDJb2lvZ9TliS5e4WkJyTdI2mpu0/eh2+7XNLLTdodLilf0qmNDzSzXEX/qJjQ6NjRkr4p6WIzo5MAHCACGwiPyyXd4+7L3H319pukm7V/YXifoufB92Wy2fYA/nvjNt39U0UnsTUdFv+ipG2S7m9S412SIpJO2ccaATRh7h50DQAAYC9a3MM2s15m9pqZzTOzOWZ2QzPHmJn9zcwWmtlMMzukpe0CAJBO4jEkXifp2+5+sKTDJF1rZkObHHOqopNWBip6buu2OLQLIE7M7OLYsqNNb3OCrg1AVIsD291XufvU2P0yRRdJ6NHksLMUPafl7v6+orNa92VpQwAJ4O4PuXthM7dhQdcGICquMzZjaxyPkfRBk5d6SFre6HFp7LlVzbzHBEV74SooKBg7ZMiQeJaIJFRWVaslGyp1UHGh8rMjQZcDAIGZMmXKencvbu61uAW2mRVKelLSje6+tenLzXxLs7Pd3H2ipImSVFJS4pMn78tVJwizdxet10X/+EB3TzhMh/XvGHQ5ABAYM1u6u9ficlmXmWUpGtYPuftTzRxSKqlXo8c9Ja2MR9sIv9ysaK96W219wJUAQPKKxyxxU/Qay3nu/qfdHPaMpMtis8UPk7TF3XcZDkd6yosFdjWBDQC7FY8h8SMVXZN4lplNjz33I0m9Jcndb5f0vKTTJC2UVCnpiji0ixRBDxsA9q7Fge3ub6v5c9SNj3FJ17a0LaSm7T3sqtqGgCsBgOTF0qQIXG5W9H/DbTX0sAFgdwhsBI4hcQDYOwIbgcvJzJAZk84AYE8IbATOzJSbGaGHDQB7QGAjKeRlR5h0BgB7QGAjKeRmZtDDBoA9ILCRFHKzI6oisAFgtwhsJIXcTAIbAPaEwEZSyMtm0hkA7AmBjaSQl8WkMwDYEwIbSSE3K4OVzgBgDwhsJIXcrIiq6ghsANgdAhtJITcroip62ACwWwQ2kkJeFpPOAGBPCGwkhdysDCadAcAeENhICtt72NGt0wEATRHYSAq52dEtNqvr6GUDQHMIbCSF3MxoYLPaGQA0j8BGUsjL3h7Y9LABoDkENpJCblb0f0VmigNA8whsJIW8rGgPm9XOAKB5BDaSQk4ssFntDACaR2AjKWzvYbPaGQA0j8BGUsijhw0Ae0RgIynk7jiHzSxxAGgOgY2ksGPSGbPEAaBZBDaSwvbLulg4BQCaR2AjKeRms9IZAOwJgY2ksH1pUq7DBoDmEdhIClkRUyTDOIcNALtBYCMpmJnysyKqpIcNAM0isJE08nMiDIkDwG4Q2Ega+dmZqmRIHACaRWAjaeRlRbStpi7oMgAgKRHYSBr52ZzDBoDdIbCRNPIIbADYLQIbSSM/m0lnALA7BDaSRnTSGeewAaA5BDaSRl52RJXV9LABoDkENpIGC6cAwO4R2Ega+dkRbautV0ODB10KACQdAhtJIy87U5JUVUcvGwCaIrCRNPJjW2wyLA4AuyKwkTTystliEwB2h8BG0qCHDQC7F5fANrO7zWytmc3ezevHmNkWM5seu/00Hu0itXwW2FyLDQBNZcbpfe6VdLOk+/dwzFvufkac2kMKysuK/u/IkDgA7CouPWx3f1PSxni8F9IXQ+IAsHuJPId9uJnNMLP/mNmwBLaLkNgR2OyJDQC7iNeQ+N5MldTH3cvN7DRJ/5Q0sLkDzWyCpAmS1Lt37wSVh2SQn7N9SJxz2ADQVEJ62O6+1d3LY/efl5RlZp12c+xEdy9x95Li4uJElIckkZ/FkDgA7E5CAtvMupqZxe6Pi7W7IRFtIzzyOIcNALsVlyFxM3tE0jGSOplZqaSfScqSJHe/XdK5kq4xszpJ2yRd4O4sGI2d5GRmKMOYJQ4AzYlLYLv7hXt5/WZFL/sCdsvMontiE9gAsAtWOkNSycuOsHAKADSDwEZSyc9mT2wAaA6BjaSSl0VgA0BzCGwklfzsiLbVMiQOAE0R2EgqTDoDgOYR2EgqedkRLusCgGYQ2EgqTDoDgOYR2EgqBDYANI/ARlLJy8pk8w8AaAaBjaSSnx1RZW29WLkWAHZGYCOp5GVH5C5V1zUEXQoAJBUCG0klnx27AKBZBDaSSkF2dD+aimrOYwNAYwQ2kkp+Dj1sAGgOgY2kUpAT7WGX08MGgJ0Q2EgqhbHAZotNANgZgY2kwjlsAGgegY2kUhA7h11ezTlsAGiMwEZS2X4Omx42AOyMwEZS2X4Ou4Jz2ACwEwIbSSUnM0ORDKOHDQBNENhIKmam/OyIKjiHDQA7IbCRdApzMrkOGwCaILCRdApyMrkOGwCaILCRdApyMrmsCwCaILCRdApzIkw6A4AmCGwknfzsTAIbAJogsJF0mHQGALsisJF0CnIibK8JAE0Q2Eg6BfSwAWAXBDaSTmF2pmrqGlRb3xB0KQCQNAhsJJ18NgABgF0Q2Eg6hbEtNis4jw0AOxDYSDpssQkAuyKwkXS2BzYTzwDgMwQ2kk4hPWwA2AWBjaSTnx07h8164gCwA4GNpEMPGwB2RWAj6eyYdMYWmwCwA4GNpFPIpDMA2AWBjaSTk5mhDJMqOYcNADsQ2Eg6ZsZ64gDQBIGNpFSYw57YANAYgY2kVJCTyaQzAGiEwEZSig6Jcw4bALYjsJGUCnMiDIkDQCNxCWwzu9vM1prZ7N28bmb2NzNbaGYzzeyQeLSL1NUmJ0tlVbVBlwEASSNePex7JZ2yh9dPlTQwdpsg6bY4tYsU1SY3U2VV9LABYLu4BLa7vylp4x4OOUvS/R71vqR2ZtYtHm0jNRXmZqqcwAaAHRJ1DruHpOWNHpfGntuFmU0ws8lmNnndunUJKQ7Jp01ulspr6tTQ4EGXAgBJIVGBbc081+xvYnef6O4l7l5SXFzcymUhWRXlZspdKufSLgCQlLjALpXUq9HjnpJWJqhthFCb3Oh64pzHBoCoRAX2M5Iui80WP0zSFndflaC2EUJtcrMkiZniABCTGY83MbNHJB0jqZOZlUr6maQsSXL32yU9L+k0SQslVUq6Ih7tInXt2LGLHjYASIpTYLv7hXt53SVdG4+2kB4YEgeAnbHSGZLS9iHxrQyJA4AkAhtJqogeNgDshMBGUioksAFgJwQ2klJeVkSRDFN5NUPiACAR2EhSZsZ64gDQCIGNpEVgA8BnCGwkLbbYBIDPENhIWoX0sAFgBwIbSauIwAaAHQhsJK02uVkqY5Y4AEgisJHEmHQGAJ8hsJG0tgd2dCl6AEhvBDaSVmFOluobXFW1DUGXAgCBI7CRtD7bsYvz2ABAYCNpbQ/srZzHBgACG8mrKLbFJj1sACCwkcTYsQsAPkNgI2l91sMmsAGAwEbSKsqL9rC3bGNIHAAIbCSttnnRHjaBDQAENpJYXlZEWREjsAFABDaSmJmpbV4WgQ0AIrCR5NrmZWkrgQ0ABDaSGz1sAIgisJHUCGwAiCKwkdQIbACIIrCR1NrmZWlzZU3QZQBA4AhsJLW2eVkqq65TQwN7YgNIbwQ2klpRXpbcWZ4UAAhsJDVWOwOAKAIbSY3ABoAoAhtJjcAGgCgCG0mtXX62JAIbAAhsJDV62AAQRWAjqRHYABBFYCOp5WZlKDuSoc3bWDwFQHojsJHUzExF7NgFAAQ2kl/bvEyGxAGkPQIbSY8NQACAwEYIENgAQGAjBAhsACCwEQLt8rO1uYLABpDeCGwkvQ4F2SqrrlNtfUPQpQBAYAhsJL32+dHFUzZVci02gPRFYCPptS+Irie+iWFxAGksLoFtZqeY2cdmttDMftDM68eY2RYzmx67/TQe7SI9dIhtAEIPG0A6y2zpG5hZRNItkk6UVCrpIzN7xt3nNjn0LXc/o6XtIf181sMmsAGkr3j0sMdJWujui929RtIkSWfF4X0BSdFJZ5K0kR42gDQWj8DuIWl5o8elseeaOtzMZpjZf8xsWBzaRZpot33SGT1sAGmsxUPikqyZ57zJ46mS+rh7uZmdJumfkgY2+2ZmEyRNkKTevXvHoTyEXU5mRIU5mdrIpDMAaSwePexSSb0aPe4paWXjA9x9q7uXx+4/LynLzDo192buPtHdS9y9pLi4OA7lIRW0L8hi0hmAtBaPwP5I0kAz62dm2ZIukPRM4wPMrKuZWez+uFi7G+LQNtJEh/xsbWRIHEAaa/GQuLvXmdl1kl6UFJF0t7vPMbOrY6/fLulcSdeYWZ2kbZIucPemw+bAbrUvILABpLd4nMPePsz9fJPnbm90/2ZJN8ejLaSnDvnZWrSuPOgyACAwrHSGUGiXn81KZwDSGoGNUOhQkKXy6jpV19UHXQoABILARihsX+1scyW9bADpicBGKGxfT5yJZwDSFYGNUGA9cQDpjsBGKLCeOIB0R2AjFNrv2GKTc9gA0hOBjVDYvgHIxnJ62ADSE4GNUMiKZKhdfpbWl1cHXQoABILARmh0KswhsAGkLQIbodGpMJvABpC2CGyERrSHzTlsAOmJwEZodCrM0foyetgA0hOBjdAobpOjsuo6VdWynjiA9ENgIzQ6FUavxeY8NoB0RGAjNIrb5EiS1jEsDiANEdgIjU6F0cBm4hmAdERgIzQ+C2x62ADSD4GN0Oi4/Rw2Q+IA0hCBjdDIyYyoKDeTHjaAtERgI1Q6tWHxFADpicBGqHQqzNE6etgA0hCBjVApZgMQAGmKwEaodCrM5jpsAGmJwEaoFLfJUVkVy5MCSD8ENkKlc5tcSax2BiD9ENgIlS5to4G9emtVwJUAQGIR2AiVrkWxwN5CYANILwQ2QmV7YK+hhw0gzRDYCJWivEzlZmXQwwaQdghshIqZqWtRLuewAaQdAhuh07kolyFxAGmHwEbodC3K1ZqtXNYFIL0Q2Aidrm2jQ+LuHnQpAJAwBDZCp0tRrmrqGrS5sjboUgAgYQhshM6Oa7E5jw0gjRDYCJ2ubXMkEdgA0guBjdDpsn3xFK7FBpBGCGyEzvYNQOhhA0gnBDZCJzszQ50Ks1ntDEBaIbARSj3a5WnF5m1BlwEACUNgI5R6tM/Tik0ENoD0QWAjlHq2z1fp5m1qaGDxFADpgcBGKPVol6eaugatr2CJUgDpgcBGKPVolydJDIsDSBsENkKpZ4doYJcS2ADSRFwC28xOMbOPzWyhmf2gmdfNzP4We32mmR0Sj3aRvnb0sJkpDiBNtDiwzSwi6RZJp0oaKulCMxva5LBTJQ2M3SZIuq2l7SK9tcnNUlFuJkPiANJGZhzeY5ykhe6+WJLMbJKksyTNbXTMWZLu9+h+iO+bWTsz6+buq+LQPtJUz/b5Kt1UGXQZAOLE3VXX4Kqpa4je6qNfq5s8jt6v3+m1BnfVN0gN7tFbg6veo+9Z3+BqcDV6Pvq46Ra9TXfsde16FUrTY44b0lklfTvE+0fRrHgEdg9Jyxs9LpU0fh+O6SFpl8A2swmK9sLVu3fvOJSHVNWjfZ6WbqgIugwgZdXWN6iqtl5VtdGv1XXR+9u/Nn6tqq7xcQ2qrq3/7PW6z+5XNzmuqnbn1xJ5paaZZLs8t/MzTV/f/n3bdW6TE6rAbu7zNP2R78sx0SfdJ0qaKEklJSVcZIvd6tEuT+8uXC933+UfGZBq3D0WhA3atj3kdgrO+p0DtLZeVXUN2lYTPa66dtdw/CxMGwXs9rCta1B9C9IzJzNDuVkR5WZFv+54nBlRm9xMFbfJiT3e+fXszAzlZGYoe/stkrHzc5HILq9lRzIUiZgiZsrIkDIsdr/x4wyTmRo9H77fGfEI7FJJvRo97ilp5QEcA+yXnu3zVFFTr82VtWpfkB10OcAODQ2usuo6bd1Wq7KqOlXW1Kmipl4V1XWqqK5TZU29KmrqYo/rd3q9sjr6WmVNNEC3h3N1XcMuw7H7anvg7QjQzMiO+4U5mepYEL2fk/lZwDY9Lqdx6DYK2h2vZ+4czvwRHX/xCOyPJA00s36SVki6QNJFTY55RtJ1sfPb4yVt4fw1Wqp3h3xJ0tKNlQQ2WkVtfYM2VdRofXmNNlbUaENFtTZX1mrLtlpt3Rb7WlWrrdvqdtzfsq1W5dV1+xSuGSYV5GSqMCdT+dkRFeRkqiA7U93a5iovO1N5WTsHZE5WRHmNQnKnYM2OxAJ21yCNhLA3iV21OLDdvc7MrpP0oqSIpLvdfY6ZXR17/XZJz0s6TdJCSZWSrmhpu0DfTgWSpKUbKjS6V7tgi0FoNDS4NlTUaM3WKq3eUqXVW6u0ZmuV1pfXaEN5tTZWRMN5fXm1tlbV7fZ98rMjKsrNUtu8LBXlRUN2SNc2KsqLXsFQlJelorwstcnJjAZxzmeBvD2c6Ylif8Sjhy13f17RUG783O2N7ruka+PRFrBd7w75MpM+Xc/EM3ymsqZOyzdu07KNlVq+sVLLN1Vq9ZZoKK/ZWq21ZVWqrd+5+5thUoeCbHUoyFbHghwd3L1IHWP3OxRmq9P21wqz1S4/W0W5WcrOZN0pJFZcAhsIQm5WRN3b5mkJgZ12yqpqtWhdhRatLdfi9eU7Arp0U6XWl9fsdGxeVkTd2uWqa1GuxvfroC5to/e7FOWqa+x+p8JsZUYIYCQ3Ahuh1qdjvpZs4FrsVLW5skZzV23VJ2vKtWhduRaujX5ds/WzTV8iGaYe7fLUq0OeTji4i3p1yI/e2uepd4d8dSjIZtgZKYHARqj17VSg52cxfzHs3F2lm7Zp7qqtmrtyq+as3Kp5q7butPRsm5xMHdS5UJ8bUKwBnQt1UHGBBnQuVK8O+cqid4w0QGAj1Pp1LNDmylptrqxRu3xmiodFeXWdZizfrKlLN2nqsk2atnyzNlfWSoqeT+5fXKixfdrrssP76OBuRRrStY2K2+TQU0ZaI7ARattnin+6vkJjehPYyWpdWbXeW7xB7y/eoKlLN2nBmrIdK1oN7Fyok4d21YiebTWse5GGdC1SXnYk2IKBJERgI9T6doxdi72hUmN6tw+4Gmy3pbJW73+6Qe8t2qB3F63XgjXlkqLD2mP6tNcpw7tqTO/2Gt2rndrmZQVcLRAOBDZCrReXdiUFd9eCNeV6Zf4avTpvraYu26QGj87QPrRfB51zSE8dcVBHDevelkU8gANEYCPUtl/atZjATrja+ga9t2iD/jtvjV6Zt3bHBLHhPYp03bED9LmBxRrdqx3XKwNxQmAj9AZ1KdQna8qCLiMt1NU36INPN+rZmSv1wuzV2lRZq7ysiI4c0EnfPG6Ajh3SWV2KcoMuE0hJBDZCb1CXNnpn4QbV1Tew+EUrcHfNKN2iJ6eU6j+zV2l9eY3ysyM64eAuOmNkNx09qFi5WUwSA1obgY3QG9iljWrqG7R0Y6UOKi4MupyUsaG8Wk9PW6HHJi/XgjXlysnM0PEHd9YZI7vr2MGdmckNJBiBjdAb1CUa0p+sKSOwW8jd9e6iDXrgvaX677w1qmtwje7VTr8+e4TOGNVNRbnM6AaCQmAj9AZ0job0gjXlOmV4wMWEVGVNnZ6etkL3vrNEn6wtV4eCbH3liL76ckkvDe7aJujyAIjARgrIz85Urw55WsDEs/22ass23fPOEk36cJm2VtVpWPci/eHLo3TGyG6clwaSDIGNlDC4SxsCez8s21Cp295YpCemLFeDS6cM76orjuirsX3as/wnkKQIbKSEgV3a6I0F61Rb38BGEHvwyZoy3fr6Ij0zY6UiGabzD+2lrx99kHp1yA+6NAB7QWAjJQzu0ka19a7F6yo459qM5Rsr9eeXF+jp6SuUlxXRV4/sq6uO6q/OXDMNhAaBjZQwvEeRJGnWii0EdiPry6t186sL9dAHS5VhpglH99fVRx+k9gVslAKEDYGNlNCvU6HysyOavWKLzh3bM+hyAldVW6873lisO95cpOq6Bp1X0ks3HD9QXdvSowbCisBGSohkmIZ2K9LsFVuCLiVQ7q4XZq/WL5+bpxWbt+nU4V31nZMHc306kAIIbKSM4T3a6tGPlqu+wdNyR6gFa8r0P/+eo3cWbtCQrm00acJhOqx/x6DLAhAnBDZSxogebXXvu0u0eF25BnZJn/PY22rq9Zf/LtCdb3+qguyI/ufMYbp4fG/WVQdSDIGNlDGiZ1tJ0uyVW9ImsN9btEE/fGqmlmyo1PklvfT9U4eoAxPKgJREYCNl9O9UoNysDM0s3aKzx6T2xLOtVbX6zfPz9ciHy9S7Q74evnK8jhjQKeiyALQiAhspIzOSoVE922nq0k1Bl9Kq3lywTt99YobWlVVrwtH99a0TBrFzFpAGCGyklEP7dtBtbyxSZU2d8rNT63/vqtp6/fY/83Xvu0s0qEuh/nFZiUb2bBd0WQASJLV+oyHtlfRtr/rXXNOXbU6pIeI5K7foxknT9cnacl1xZF99/5QhbM4BpBkCGynlkD7tZSZ9tGRTSgR2Q4PrH28t1h9e+ljt87N1/1fH6ehBxUGXBSAABDZSSlFuloZ0LdLkpRuDLqXFNlXU6NuPz9Cr89fqlGFd9ZtzRrCkKJDGCGyknJI+7fXU1NJQ79w1bdkmXffwNK0tq9L/njVMlx7Wh20vgTQXzt9mwB4ccVBHVdTUa/ryzUGXst/cXfe886nOu+M9mUlPXH2ELju8L2ENgB42Us8RAzopkmF6c8E6Hdq3Q9Dl7LPy6jp9/4mZem7WKp1wcGf98cuj1TY/K+iyACQJethIOW3zsjS6Vzu9uWBd0KXss6UbKnTOre/ohTmr9cNTh+gfl5UQ1gB2QmAjJR09sFgzV2zRxoqaoEvZq3cWrtdZt7yjNVurdd8V4/T1zx/EEDiAXRDYSElHD+okd+mtT5K3l739fPVld3+ozm1y9Mx1R+pzA8N/KRqA1kFgIyWN7NlOnQpz9OKc1UGX0qzqunp974mZ+p9/z9VxQzrrqW8cqT4dC4IuC0ASY9IZUlIkw3TK8C56Ykpp0i1TunZrlb7+4BRNW7ZZ1x8/UDceP1AZabh/N4D9Qw8bKeu0Ed1UVdug1+Ynz7D4rNItOvPmdzR/VZluu/gQ3XTiIMIawD4hsJGyxvfrqE6F2Xp+1qqgS5EkPT9rlb58x7uKZJievOYInTqiW9AlAQgRAhspK5JhOn1EN708b402VwY3W9zd9bdXPtE3HpqqYd3b6l/XHamh3YsCqwdAOBHYSGnnH9pbNXUNemrqikDar6qt1/WTputPLy/QOWN66KErx6tTYU4gtQAINwIbKW1o9yKN6tVOj3y4TO6e0LbXbq3S+Xe8p2dnrtT3TxmiP543ii0xARwwAhsp76JxvfTJ2nK9u2hDwtqcvSI6ueyTteW6/ZKxuuYYFkMB0DIENlLeWaN7qHObHN386sKEtPefWav05dvfU0Zs846Th3VNSLsAUhuBjZSXmxXRhKP7673FGzSlFffJrqtv0G//M1/XPDRVQ7q10T+ZXAYgjloU2GbWwcxeNrNPYl/b7+a4JWY2y8ymm9nklrQJHIiLxvdWp8Js/fr5+a1yLntjRY0uv+dD3f7GIl08vrcmTThMndvkxr0dAOmrpT3sH0h6xd0HSnol9nh3jnX30e5e0sI2gf2Wn52p7508RFOWbtLT0+I7Y3z68s36wt/f1kdLNun/zh2pX509QjmZTC4DEF8tDeyzJN0Xu3+fpC+28P2AVnPu2J4a1audfvHsXK3eUtXi96tvcN386ic697Z3JUlPXn2Ezivp1eL3BYDmtDSwu7j7KkmKfe28m+Nc0ktmNsXMJrSwTeCAZGSY/nTeKFXVNuiGSdNUW99wwO+1bEOlLpz4vv7w0gKdOqKbnr/hKI3o2TaO1QLAzva6I4KZ/VdSc9Ncf7wf7Rzp7ivNrLOkl81svru/uZv2JkiaIEm9e/fejyaAvTuouFC/Onu4bnpshr7z+Az9+bzR+7WWd01dg/7x1mL97ZVPlBXJ0J/OG6Wzx/Tgki0ArW6vge3uJ+zuNTNbY2bd3H2VmXWTtHY377Ey9nWtmT0taZykZgPb3SdKmihJJSUliV3pAmnhnEN6avXWKv3fCx+rorpefz5/lNrkZu3xe+obXP+esVJ/feUTfbq+QqcO76qffmGourXNS1DVANJdS/ccfEbS5ZJ+G/v6r6YHmFmBpAx3L4vdP0nS/7awXaBFrvn8QcrPiugXz83TCX96QzedOEhfGNV9l204l2+s1L9nrtRjHy3Xkg2VGtK1je75yqE6dsjuzv4AQOuwllziYmYdJT0mqbekZZK+7O4bzay7pDvd/TQz6y/p6di3ZEp62N1/tS/vX1JS4pMncxUYWs+0ZZv0s2fmaGbpFuVmZejgbkXqWJCtbbX1WrK+Uis2b5MkjevXQV85oq9OGdaV7TABtBozm7K7q6laFNitjcBGIri7Pvx0o16cs0ZzV23Rlm11ys3KUI92eTq0bwd9flCx+nYqCLpMAGlgT4Hd0iFxIPTMTOP7d9T4/h2DLgUAdoulSQEACAECGwCAECCwAQAIAQIbAIAQILABAAgBAhsAgBAgsAEACAECGwCAECCwAQAIgaRemtTM1klaGse37CRpfRzfLxmk4meSUvNz8ZnCIxU/Vyp+Jin1Plcfdy9u7oWkDux4M7PJu1ujNaxS8TNJqfm5+EzhkYqfKxU/k5S6n6s5DIkDABACBDYAACGQboE9MegCWkEqfiYpNT8Xnyk8UvFzpeJnklL3c+0irc5hAwAQVunWwwYAIJQIbAAAQiAtAtvMTjGzj81soZn9IOh64sHM7jaztWY2O+ha4sXMepnZa2Y2z8zmmNkNQdcUD2aWa2YfmtmM2Of6n6Brihczi5jZNDN7Nuha4sHMlpjZLDObbmaTg64nXsysnZk9YWbzY/++Dg+6ppYws8Gx/0bbb1vN7Mag62ptKX8O28wikhZIOlFSqaSPJF3o7nMDLayFzOxoSeWS7nf34UHXEw9m1k1SN3efamZtJE2R9MUU+G9lkgrcvdzMsiS9LekGd38/4NJazMxuklQiqcjdzwi6npYysyWSStw9lRbikJndJ+ktd7/TzLIl5bv75oDLiovY7/gVksa7ezwX2ko66dDDHidpobsvdvcaSZMknRVwTS3m7m9K2hh0HfHk7qvcfWrsfpmkeZJ6BFtVy3lUeexhVuwW+r+UzaynpNMl3Rl0Ldg9MyuSdLSkuyTJ3WtSJaxjjpe0KNXDWkqPwO4haXmjx6VKgRBIdWbWV9IYSR8EXEpcxIaOp0taK+lld0+Fz/UXSd+T1BBwHfHkkl4ysylmNiHoYuKkv6R1ku6Jnb6408wKgi4qji6Q9EjQRSRCOgS2NfNc6Hs3qczMCiU9KelGd98adD3x4O717j5aUk9J48ws1KcxzOwMSWvdfUrQtcTZke5+iKRTJV0bO/UUdpmSDpF0m7uPkVQhKVXm8mRLOlPS40HXkgjpENilkno1etxT0sqAasFexM7xPinpIXd/Kuh64i02FPm6pFOCraTFjpR0Zuyc7yRJx5nZg8GW1HLuvjL2da2kpxU9pRZ2pZJKG43qPKFogKeCUyVNdfc1QReSCOkQ2B9JGmhm/WJ/jV0g6ZmAa0IzYpOz7pI0z93/FHQ98WJmxWbWLnY/T9IJkuYHWlQLufsP3b2nu/dV9N/Uq+5+ScBltYiZFcQmOyo2ZHySpNBfheHuqyUtN7PBsaeOlxTqiZyNXKg0GQ6XokMlKc3d68zsOkkvSopIutvd5wRcVouZ2SOSjpHUycxKJf3M3e8KtqoWO1LSpZJmxc73StKP3P354EqKi26S7ovNZs2Q9Ji7p8RlUCmmi6Sno383KlPSw+7+QrAlxc03JT0U67QslnRFwPW0mJnlK3r1z9eDriVRUv6yLgAAUkE6DIkDABB6BDYAACFAYAMAEAIENgAAIUBgAwAQAgQ2AAAhQGAD2CMz+7uZTTWzQ4OuBUhnBDaA3Yqt+NVZ0cUpQr99JhBmBDYAmVlfM9vWaIU5SZK7Vyi6Utvrkv4WOzbPzKabWY2ZdUp4sUCaIrCBNGRRTf/9L4rtKNb4uI6S8iWVSaqXJHffFjuOTXSABCKwgTQR60XPM7NbJU3VzrvY7c5PJP1B0hxJQ1uzPgB7RmAD6WWwpPvdfYy7L93TgWbWV9IRkh6VNE/SsNYvD8DuENhAelnq7u/v47G/lPS/Ht0hiMAGApby22sC2EnFvhxkZqMlnSPpc2Z2i6RcSbNasS4Ae0FgA2jO7yR9wd1fkSQz6yJpWrAlAemNIXEAOzGz4yQVbA9rSXL3NZIKzKxDcJUB6Y0eNpAm3H2JpOH7cNyrkl5t5vm2rVAWgH1EDxuAFL3Gum3ThVOas33hFElZkhpauS4AMRadAAoAAJIZPWwAAEKAwAYAIAQIbAAAQoDABgAgBAhsAABCgMAGACAECGwAAEKAwAYAIAT+P9zfoA+s32qkAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 576x1296 with 3 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "job.plot_final_potential()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd58d03d-79bb-4a27-a7bd-371e6dba48a4",
   "metadata": {},
   "source": [
    "Acces the plotting interface common to the different fitting codes usable via pyiron"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 19,
   "id": "1230ba4e-4a4b-42fe-9355-5e1360fab63d",
   "metadata": {},
   "outputs": [],
   "source": [
    "plots = job.plot"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 20,
   "id": "7f94c7c7-eda9-4d39-8e82-a2e498b069cb",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAGrCAYAAAD+XWfjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABAbklEQVR4nO3de5xcdX3w8c+XEHVBMFAukkgMUIxVEUIjolgeESSICpGKgtBiq1Jb75fUpFCBtj7ikz5qL1aNaIuPiCKEBcUaQFS8cQksECKkINdsKMRLAGELIfk+f8zZMAwzs7O7M3Nmdz/v12tfM+ec3znne/Ykc/Y7v1tkJpIkSZKkJ21VdgCSJEmS1GtMlCRJkiSphomSJEmSJNUwUZIkSZKkGiZKkiRJklTDREmSJEmSapgoSZJUJSK+EhEPRMTNVeuWRsStEXFTRFwYETOqti2JiNsjYk1ELCglaElS28VknEdpp512yjlz5pQdhiRNadddd92vMnPnsuMYrYg4GPgd8NXMfEmx7nDgisx8IiI+BZCZH4uIFwHnAgcAM4HLgRdk5qZm5/A5JUnlG+k5tXU3g+mWOXPmsHLlyrLDkKQpLSLuLjuGscjMKyNiTs26S6sWrwLeXLw/GvhGZj4G3BkRt1NJmn7e7Bw+pySpfCM9p2x6J0nS6Pw58J/F+1nAvVXb1hbrJEkTnImSJEktiohTgCeAc4ZX1SlWt017RJwcESsjYuX69es7FaIkqU1MlCRJakFEnAS8ATghn+zguxbYvarY84B19fbPzGWZOT8z5++884TruiVJU46JkiRJI4iII4CPAUdl5qNVmy4GjouIZ0bEHsDewDVlxChJaq9JOZiDJEljFRHnAq8GdoqItcBpwBLgmcBlEQFwVWa+OzNXR8R5wC+oNMl7z0gj3kmSJgYTJUmSqmTm8XVWf7lJ+U8An+hcRJKkMtj0TpIkSZJqmChJkiRJUg0TJUmSJEmqYaIkSZIkSTVMlCRJkiSphomSJEmSJNUwUZIkSZKkGs6jJEnaon9gkNMvXs2GoY0A7LDNdE5744tZOG9WyZFJktRdJkqSJKCSJC361o1s3Jxb1v320Y0sOv9GAJMlSdKUYtM7SRIAS1eseUqSNGzjpmTpijUlRCRJUnmsUZIkAbBuw9CYtklT0ZzFl5R6/rvOfH2p55emAmuUJEkAzJzRN6ZtkiRNRiZKkiQAFi2Yy/St4mnrp08LFi2YW0JEkiSVx6Z3kiTgycEaHPVOkiQTJUlSlYXzZpkUSZKETe8kSZIk6WlMlCRJkiSphomSJEmSJNUwUZIkSZKkGiZKkiRJklTDREmSJEmSapgoSZIkSVINEyVJkiRJqmGiJEmSJEk1TJQkSZIkqYaJkiRJkiTVMFGSJEmSpBqlJEoRcWxErI6IzRExv0m5IyJiTUTcHhGLuxmjJEmSpKmrrBqlm4FjgCsbFYiIacDngNcBLwKOj4gXdSc8SZIkSVPZ1mWcNDNvAYiIZsUOAG7PzDuKst8AjgZ+0fEAJUmSeticxZeUev67znx9qeeXuqGURKlFs4B7q5bXAi8vKRZJ6hn9A4MsXbGGdRuGmDmjj0UL5rJw3qyyw5IkaVLpWKIUEZcDz62z6ZTMvKiVQ9RZl03OdzJwMsDs2bNbilGSJpr+gUGWLF/F0MZNAAxuGGLJ8lUAJkuSJLVRxxKlzDxsnIdYC+xetfw8YF2T8y0DlgHMnz+/YUIlSRPZ0hVrtiRJw4Y2bmLpijUmSpIktVEvDw9+LbB3ROwREc8AjgMuLjkmSSrVug1Do1ovSZLGpqzhwd8UEWuBVwCXRMSKYv3MiPguQGY+AbwXWAHcApyXmavLiFeSesXMGX2jWi9JksamlEQpMy/MzOdl5jMzc9fMXFCsX5eZR1aV+25mviAz98rMT5QRqyT1kkUL5tI3fdpT1vVNn8aiBXNLikiSpMmpl0e9kyTVGO6H5Kh3kiR1lomSJE0wC+fNMjGSJKnDTJQkqYc4R5IkSb3BREmSesSp/as456p7tkwY5xxJkiSVp5eHB5ekKaN/YPApSdKw4TmSJElSd5koSVIPWLpizdOSpGHOkSRJUveZKElSD2iWDDlHkiRJ3WeiJEk9oFEyFOAcSZIklcBESZJ6QL2JZAM44cDZDuQgSVIJHPVOknqAE8lKktRbTJQkqUc4kawkSb3DpneSJEmSVMNESZIkSZJqmChJkiRJUg0TJUmSJEmqYaIkSZIkSTVMlCRJkiSphomSJEmSJNUwUZIkqUpEfCUiHoiIm6vW7RgRl0XEbcXrDlXblkTE7RGxJiIWlBO1JKndTJQkSXqq/wCOqFm3GPh+Zu4NfL9YJiJeBBwHvLjY598iYlr3QpUkdYqJkiRJVTLzSuA3NauPBs4u3p8NLKxa/43MfCwz7wRuBw7oRpySpM4yUZIkaWS7ZuZ9AMXrLsX6WcC9VeXWFuskSROciZIkSWMXddZl3YIRJ0fEyohYuX79+g6HJUkaLxMlSZJGdn9E7AZQvD5QrF8L7F5V7nnAunoHyMxlmTk/M+fvvPPOHQ1WkjR+JkqSJI3sYuCk4v1JwEVV64+LiGdGxB7A3sA1JcQnSWqzrcsOQJKkXhIR5wKvBnaKiLXAacCZwHkR8Q7gHuBYgMxcHRHnAb8AngDek5mbSglcktRWJkqSJFXJzOMbbDq0QflPAJ/oXESSpDLY9E6SJEmSapgoSZIkSVINEyVJkiRJqmGiJEmSJEk1TJQkSZIkqYaJkiRJkiTVMFGSJEmSpBomSpIkSZJUw0RJkiRJkmqYKEmSJElSja3LDkCSekH/wCBLV6xh3YYhZs7oY9GCuSycN6vssCRJUklMlCRNef0DgyxZvoqhjZsAGNwwxJLlqwBMliRJmqJseidpylu6Ys2WJGnY0MZNLF2xpqSIJElS2UyUJE156zYMjWq9JEma/EyUJE15M2f0jWq9JEma/EyUJE15ixbMpW/6tKes65s+jUUL5pYUkSRJKpuDOUia8oYHbHDUO0mSNMxESZKoJEsmRpIkaZhN7yRJkiSphomSJEmSJNUwUZIkSZKkGiZKkiRJklTDREmSJEmSapQy6l1EHAucDvwBcEBmrmxQ7i7gYWAT8ERmzu9WjJImtv6BQYf7liRJY1bW8OA3A8cAX2yh7CGZ+asOxyNpEukfGGTJ8lUMbdwEwOCGIZYsXwVgsiRJklrSsOldRDw0ws/DEfFfYzlpZt6SmWvGHrYkNXbGt1dvSZKGDW3cxNIVfuxIkqTWNOuj9MvM3L7Jz3bAIx2OL4FLI+K6iDi5w+eSNAn0Dwzy20c31t22bsNQl6ORJEkTVbOmd3/cwv4Ny0TE5cBz62w6JTMvauHYAAdl5rqI2AW4LCJuzcwrG5zvZOBkgNmzZ7d4eEmTTbNao5kz+roYiSRJmsgaJkqZeUf1ckRsX10+M39TW6Zm/8PGG1xmriteH4iIC4EDgLqJUmYuA5YBzJ8/P8d7bkkTU7Nao0UL5nYxEkmSNJGNODx4RPxFRNwP3ARcV/zUHaWunSJi24jYbvg9cDiVQSAkqaFGtUYz+qY7kIMkSWpZK/MofRR4cWbOycw9ip89x3PSiHhTRKwFXgFcEhErivUzI+K7RbFdgZ9ExI3ANcAlmfm98ZxX0uS3aMFc+qZPe8q6vunTOP2oF5cUkSRJmohaGR78l8Cj7TxpZl4IXFhn/TrgyOL9HcC+7TyvpMlvuNbIOZQkSdJ4tJIoLQF+FhFXA48Nr8zM93csKkkah4XzZpkYSZKkcWklUfoicAWwCtjc2XAkSZIkqXytJEpPZOaHOx6JJEmSJPWIVgZz+EFEnBwRu0XEjsM/HY9MkiRJkkrSSo3S24rXJVXrEhjXyHeSJEmS1KtGTJQyc49uBCJJkiRJvWLERCkipgN/CRxcrPoh8MXM3NjBuCRJkiSpNK00vfs8MB34t2L5T4p17+xUUJIkSZJUplYSpZdlZvXEr1dExI2dCkiSJEmSytbKqHebImKv4YWI2BPY1LmQJEmSJKlcrdQoLaIyRPgdQADPB/68o1FJkiRJUolaSZR+AuwNzKWSKN3a0YgkSZIkqWStNL37eWY+lpk3ZeaNmfkY8PNOByZJkiRJZWlYoxQRzwVmAX0RMY9KbRLA9sA2XYhNkiRJkkrRrOndAuDtwPOAT1etfxj4mw7GJEmSJEmlapgoZebZwNkR8ceZeUEXY5IkSZKkUo04mENmXhARrwdeDDyrav3fdTIwSZIkSSrLiIM5RMQXgLcC76PST+lYKkOES5IkSdKk1Mqod6/MzD8FfpuZZwCvAHbvbFiSJEmSVJ5WEqWh4vXRiJgJbAT26FxIkiRJklSuViac/U5EzACWAtcDCXypk0FJkiRJUplaGczh74u3F0TEd4BnZeaDnQ1LkiRJksrTStO7LTLzMZMkSdJUFREfiojVEXFzRJwbEc+KiB0j4rKIuK143aHsOCVJ4zeqREmSpKkqImYB7wfmZ+ZLgGnAccBi4PuZuTfw/WJZkjTBNUyUIqKV/kuSJE0lWwN9xTNyG2AdcDRwdrH9bGBhOaFJktqpWY3SVRHRHxHvjog53QpIkqRelJmDwD8C9wD3AQ9m5qXArpl5X1HmPmCX8qKUJLVLw0QpM+cDHygWPxsR10bEZyLi8Ih4ZnfCkySpNxR9j46mMkXGTGDbiDhxFPufHBErI2Ll+vXrOxWmJKlNmvZRysy7M/MLmbkQeCXwbeAw4McRcUkX4pMkqVccBtyZmeszcyOwnMqz8f6I2A2geH2g3s6ZuSwz52fm/J133rlrQUuSxqblfkjFQ+GK4me4U6skSVPFPcCBEbENlcnYDwVWAo8AJwFnFq8XlRahJKltxjxgQ9FWW5KkKSEzr46I86lMvv4EMAAsA54NnBcR76CSTB1bXpSSpHZxZDtJklqUmacBp9WsfoxK7ZIkaRJpNjz4myPiWd0MRpIkSZJ6QbPBHE4A7omIr0bE6yJiWreCkiRJkqQyNRse/E3A71OZZfz9wL0R8fmIOLhbwUmSJElSGUYaHvyhzDw7M18H7APcAPxLRNzbjeAkSZIkqQxNE6VhxSR7xwBvBXYELuhkUJIkSZJUpoaj3kXEdsBC4Hhgf+Bi4B+AH2RmdiU6SZIkSSpBs+HB7wRWAJ8HvldMOCtJkiRJk16zRGl2Zj4KEBF9EbFnZq7pUlySJEmSVJpmo94NJ0lvpDKIw/eK5f0i4uKuRCdJkiRJJWhlMIfTgQOADQCZeQMwp1MBSZIkSVLZWkmUnsjMBzseiSRJkiT1iGZ9lIbdHBFvA6ZFxN5UJp/9WWfDkiRJkqTytFKj9D7gxcBjwNeBB4EPdjAmSZIkSSrViDVKxaAOpxQ/kiRJkjTpNaxRiojTR9q5lTKSJEmSNNE0q1F6Z0Q81GR7AMdRGRVPkiRJkiaNZonSl4DtRtj/S22MRZIkSZJ6QsNEKTPP6GYgkiRJktQrWhkeXNIU0j8wyNIVa1i3YYiZM/pYtGAuC+fNKjssSZKkrmplePC2i4ilEXFrRNwUERdGxIwG5Y6IiDURcXtELO5ymNKU0z8wyJLlqxjcMEQCgxuGWLJ8Ff0Dg2WHJkmS1FWlJErAZcBLMvOlwH8BS2oLRMQ04HPA64AXAcdHxIu6GqU0xSxdsYahjZuesm5o4yaWrlhTUkSSJEnlGLHpXUTsQWXS2TnV5TPzqLGeNDMvrVq8CnhznWIHALdn5h1FHN8AjgZ+MdbzSmpu3YahUa2XJEmarFrpo9QPfBn4NrC5AzH8OfDNOutnAfdWLa8FXt6B80sqzJzRx2CdpGjmjL4SopEkSSpPK4nS/2TmP4/2wBFxOfDcOptOycyLijKnAE8A59Q7RJ112eR8JwMnA8yePXu04UoCFi2Yy5Llq57S/K5v+jQWLZhbYlSSJEnd10qi9E8RcRpwKfDY8MrMvL7ZTpl5WLPtEXES8Abg0MyslwCtBXavWn4esK7J+ZYBywDmz5/fMKGS1Njw6HaOeidJkqa6VhKlfYA/AV7Dk03vslgek4g4AvgY8L8y89EGxa4F9i76SA0CxwFvG+s5JbVm4bxZJkaSJGnKayVRehOwZ2Y+3sbz/ivwTOCyiAC4KjPfHREzgbMy88jMfCIi3gusAKYBX8nM1W2MQZIkSZLqaiVRuhGYATzQrpNm5u83WL8OOLJq+bvAd9t1XkmSJElqRSuJ0q7ArRFxLU/tozTm4cElSZIkqZe1kiid1vEoJEmSJKmHjJgoZeaPImJX4GXFqmsys23N8CRJkiSp12w1UoGIeAtwDXAs8Bbg6oh4c6cDkyRJkqSytNL07hTgZcO1SBGxM3A5cH4nA5MkSZKksoxYowRsVdPU7tct7idJkiRJE1IrNUrfi4gVwLnF8luB/+xcSJLGq39gkKUr1rBuwxAzZ/SxaMFcJ5GVJEkahVYGc1gUEccArwICWJaZF3Y8Mklj0j8wyJLlqxjauAmAwQ1DLFm+CsBkSZIkqUWtDObwqcxcnpkfzswPZeaFEfGpbgQnafTO+PbqLUnSsKGNm1i6Yk1JEUmSJE08rfQ1em2dda9rdyCSxq9/YJDfPrqx7rZ1G4a6HI0kSdLE1bDpXUT8JfBXwJ4RcVPVpu2An3U6MEmj16zWaOaMvi5GIkmSNLE166P0dSqDNnwSWFy1/uHM/E1Ho5I0Js1qjRYtmNvFSCRJkia2hk3vMvPBzLwrM4/PzLsz824qidVfRcTN3QtRUqsa1RrN6JvuQA6SJEmj0MpgDrtFxAcj4hpgNTANOL7jkUkatUUL5tI3fdpT1vVNn8bpR724pIgkSZImpoaJUkS8KyKuAH4E7AS8E7gvM8/IzFXdClBS6xbOm8Unj9mHWTP6CGDWjD4+ecw+1iZJkiSNUrM+Sp8Dfg68LTNXAkREdiUqSWO2cN4sEyNJkqRxapYozQSOBT4dEbsC5wHTuxKVJEmSJJWo2WAOv8rMz2fmwcChwIPAAxFxS0T8765FKEmSJEld1sqEs2Tm2sz8x8z8Q2Ah8FhHo5IkSZKkEjVreldXZq4BzuhALJIkSZLUE1qqUZIkSZKkqaRpohQVu3crGEmSJEnqBU0TpcxMoL87oUiSJElSb2il6d1VEfGyjkciSZIkST2ilcEcDgHeHRF3AY8AQaWy6aWdDEySJEmSytJKovS6jkchSZIkST1kxKZ3mXk3sDvwmuL9o63sJ0nSZBMRMyLi/Ii4tZiA/RURsWNEXBYRtxWvO5QdpyRp/EZMeCLiNOBjwJJi1XTga50MSpKkHvVPwPcy84XAvsAtwGLg+5m5N/D9YlmSNMG1UjP0JuAoKv2TyMx1wHadDEqSpF4TEdsDBwNfBsjMxzNzA3A0cHZR7GxgYRnxSZLaq5VE6fFimPAEiIhtOxuSJEk9aU9gPfDvETEQEWcVz8RdM/M+gOJ1lzKDlCS1RyuJ0nkR8UVgRkS8C7gc+FJnw5IkqedsDewPfD4z51FpadFyM7uIODkiVkbEyvXr13cqRklSm7QymMM/AucDFwBzgY9n5r90OjBJknrMWmBtZl5dLJ9PJXG6PyJ2AyheH6i3c2Yuy8z5mTl/55137krAkqSxazg8eETsDfwjsBewCvhoZg52KzBJknpJZv53RNwbEXMzcw1wKPCL4uck4Mzi9aISw5QktUmzeZS+AnwVuBJ4I/AvwDHdCEqSpB71PuCciHgGcAfwZ1RaZ5wXEe8A7gGOLTE+SVKbNEuUtsvM4b5IayLi+m4EJElSr8rMG4D5dTYd2uVQJEkd1ixRelZEzAOiWO6rXs5MEydJkiRJk1KzROk+4NNVy/9dtZzAazoVlCRJkiSVqWGilJmHdDMQSZIkSeoVrcyjJEmSJElTiomSJEmSJNUwUZIkSZKkGiMmShFxQUS8PiJMqiRJkiRNCa0kP58H3gbcFhFnRsQLOxyTJEmSJJVqxEQpMy/PzBOA/YG7gMsi4mcR8WcRMb3TAUqSJElSt7XUnC4ifg94O/BOYAD4JyqJ02Udi0ySJEmSStJswlkAImI58ELg/wFvzMz7ik3fjIiVnQxOkiRJksowYqIE/GtmXlFvQ2bOb3M8kiRJklS6VhKlGRFxTM26B4FVmflAB2KSJEmSpFK1kii9A3gF8INi+dXAVcALIuLvMvP/dSg2SZIkSSpFK4nSZuAPMvN+gIjYlcqQ4S8HrqTSd0mSJEmSJo1WEqU5w0lS4QHgBZn5m4jYOJaTRsRS4I3A48AvgT/LzA11yt0FPAxsAp6wT5QkSZKkbmhlePAfR8R3IuKkiDgJuAi4MiK2BTaM8byXAS/JzJcC/wUsaVL2kMzczyRJkiRJUreMWKOUmX8VEX8MvAoI4KvABZmZwCFjOWlmXlq1eBXw5rEcR5IkSZI6oWmiFBFbATdl5kuACzoUw58D32ywLYFLIyKBL2bmsg7FIEmSJElbNE2UMnNzRNwYEbMz857RHDgiLgeeW2fTKZl5UVHmFOAJ4JwGhzkoM9dFxC7AZRFxa2Ze2eB8JwMnA8yePXs0oUqSJEnSU7QymMNuwOqIuAZ4ZHhlZh7VbKfMPKzZ9qK/0xuAQ4tmfPWOsa54fSAiLgQOoDLSXr2yy4BlAPPnz697PEmSJElqRSuJ0hntPmlEHAF8DPhfmflogzLbAltl5sPF+8OBv2t3LJIkSZJUq5XBHH4UEc8H9s7MyyNiG2DaOM/7r8AzqTSnA7gqM98dETOBszLzSGBX4MJi+9bA1zPze+M8ryRJkiSNaMREKSLeRaXvz47AXsAs4AvAoWM9aWb+foP164Aji/d3APuO9RySJEmSNFatzKP0HuAg4CGAzLwN2KWTQUmSJElSmVpJlB7LzMeHFyJiayrDdkuSJEnSpNRKovSjiPgboC8iXgt8C/h2Z8OSJEmSpPK0kigtBtYDq4C/AL4LnNrJoCRJkiSpTK2MercZ+FLxI0mSJEmTXiuj3h0EnA48vygfQGbmnp0NTZIkSZLK0cqEs18GPgRcB2zqbDiSJEmSVL5WEqUHM/M/Ox6JJEmSJPWIVhKlH0TEUmA58Njwysy8vmNRSZIkSVKJWkmUXl68zq9al8Br2h+OJEmSJJWvlVHvDulGIJIkSZLUKxrOoxQRn616/4Gabf/RuZAkSZIkqVzNJpw9uOr9STXbXtqBWCRJkiSpJzRLlKLBe0mSJEma1Jr1UdoqInagkkwNvx9OmKZ1PDJJkiRJKkmzROk5VCaZHU6OqocDz45FJEmSJEkla5goZeacLsYhSZIkST2jWR8lSZIkSZqSTJQkSZIkqYaJkiRJkiTVaNhHKSJ2bLZjZv6m/eFIkiRJUvmajXp3HZXR7QKYDfy2eD8DuAfYo9PBSZIkSVIZGja9y8w9MnNPYAXwxszcKTN/D3gDsLxbAUqSJElStzWrURr2ssx89/BCZv5nRPx9B2OSRu3U/lWce/W9bMpkWgTHv3x3/mHhPmWHJUmSpAmqlUTpVxFxKvA1Kk3xTgR+3dGopFE4tX8VX7vqni3LmzK3LJssSdLkM2fxJWWHIGkKaGXUu+OBnYELi5+di3VSTzj36ntHtV6SJEkayYg1SsXodh+IiGdn5u+6EJM0ov6BQZauWMO6DUNkgzKbstEWSZIkqbkRE6WIeCVwFvBsYHZE7Av8RWb+VaeD09RUnQTNnNHHogVzWThv1lO2Lzr/RjZuap4ITYvodKiSJEmapFppevcZYAFFv6TMvBE4uJNBaerqHxhkyfJVDBY1RYMbhliyfBX9A4Nbypzx7dUjJkkAx7989w5GKkmSpMmslUSJzKzt7LGpA7FILF2xhqGNT/3nNbRxE0tXrNmy/NtHNzY9xrQITjxwtgM5SJIkacxaGfXu3qL5XUbEM4D3A7d0NixNVes2DNVdP7hhiIPOvKLh9mF3nfn6ToQlSQBExDRgJTCYmW+IiB2BbwJzgLuAt2Tmb8uLUJLULq3UKL0beA8wC1gL7AfYP0kdMXNGX8Ntg00GbgCY0Te9/QFJ0lN9gKd+WbgY+H5m7g18v1iWJE0CrSRKczPzhMzcNTN3ycwTgT/odGCamhYtmEvf9Gmj3m/6VsHpR724AxFJUkVEPA94PZUBjoYdDZxdvD8bWNjlsCRJHdJKovQvLa6Txm3hvFl88ph9mDWjjwBmNalhAraUWXrsvk8ZGU+SOuCzwF8Dm6vW7ZqZ9wEUr7uUEJckqQMa9lGKiFcArwR2jogPV23aHhj9V/5Si4YTnuEhwpu50z5JkrogIt4APJCZ10XEq8d4jJOBkwFmz57dvuAkSR3RbDCHZ1CZO2lrYLuq9Q8Bb+5kUJq6+gcGOf3i1WwYaj6yHdgnSVJXHQQcFRFHAs8Cto+IrwH3R8RumXlfROwGPNDoAJm5DFgGMH/+fGfElqQe1zBRyswfAT+KiP/IzLu7GJOmqOE5lGqHB6/HPkmSuikzlwBLAIoapY9m5okRsRQ4CTizeL2orBglSe3VSh+lsyJixvBCROwQESs6F5KmqnpzKNWyT5KkHnMm8NqIuA14bbEsSZoEWplHaafM3DC8kJm/jQg7q6rtRuqPBPZJklS+zPwh8MPi/a+BQ8uMR5LUGa3UKG2OiC29TiPi+dB0Ohtp1E7tXzXiPyr7JEmSJKlbWqlROgX4SUT8qFg+mGLUHqkdTu1fxdeuuqdpGfskSZIkqZtGTJQy83sRsT9wIJUuIh/KzF91PDJNGV+/unmSNC3CPkmSJEnqqoZN7yLihcXr/sBsYB0wCMwu1knjdmr/KjaP0OZuc6ZJkiRJkrqqWY3SR4B3Af+3zrYEXtORiDQl9A8McsqFq3jk8ZGHAp85o68LEUmSJElPajaP0ruK10O6F44mg/6BQZauWMO6DUPMnNHHogVzn1Ij1D8wyIfPu2HEmiSAvunTWLRgbgejlSRJkp6uYaIUEcc02zEzl7c/HE10tZPGDm4YYsnyVQBbkqVTLhy5uR1U5kuqTbIkSZKkbmjW9O6NxesuwCuBK4rlQ6jMH2GipKepN2ns0MZNLF2xhoXzZtE/MNhSc7vPvnU/EyRJkiSVplnTuz8DiIjvAC/KzPuK5d2Az3UnPE00jSaNHdwwxJzFlxAtHsckSZIkSWVqZcLZOcNJUuF+4AUdikcT3EgDL7QyU/EsB2+QJElSyVpJlH4YESsi4u0RcRJwCfCDDselCWrRgrn0TZ825v0dvEGSJEm9YMREKTPfC3wB2BfYD1iWme8bz0kj4u8j4qaIuCEiLo2ImQ3KHRERayLi9ohYPJ5zqjsWzpvFJ4/Zh1kz+lpuZjds1ow+PnnMPja7kyRJUumaDeZQ7Xrg4cy8PCK2iYjtMvPhcZx3aWb+LUBEvB/4OPDu6gIRMY1KX6jXAmuBayPi4sz8xTjOqy5qpZndsLvOfH3H4pAkSZJGa8REKSLeBZwM7AjsBcyiUsN06FhPmpkPVS1uS/2/qQ8Abs/MO4o4vgEcDZgo9ZDaOZMOeeHOXHDd4NNGvmvGPkmSJEnqNa3UKL2HStJyNUBm3hYRu4z3xBHxCeBPgQepDDleaxZwb9XyWuDl4z2v2qfenEnnXHXPqGqS7JMkSZKkXtTKYA6PZebjwwsRsTUttKqKiMsj4uY6P0cDZOYpmbk7cA7w3nqHqLOu4Xkj4uSIWBkRK9evXz/iRWn86s2ZNJokyT5JkiRJ6lWt1Cj9KCL+BuiLiNcCfwV8e6SdMvOwFmP4OpWR9E6rWb8W2L1q+XnAuibnWwYsA5g/f/5o/l7XGDWaM6kV9kmSJElSL2ulRuljwHpgFfAXwHeBU8dz0ojYu2rxKODWOsWuBfaOiD0i4hnAccDF4zmv2mukOZMasU+SJEmSel3TGqWI2Aq4KTNfAnypjec9MyLmApuBuylGvCuGCT8rM4/MzCci4r3ACmAa8JXMXN3GGDROixbM5UPfvME+SZIkSZp0miZKmbk5Im6MiNmZeU+7TpqZf9xg/TrgyKrl71KpwVIPWjhvFh/85g0tl581o49FC+baJ0mSJEk9r5U+SrsBqyPiGuCR4ZWZeVTHotKE0D8w2HJZ+yRJkiRpImklUTqj41FoQukfGOSMb6/mt49ubKm8fZIkSZI00TRMlCLiWVT6Dv0+lYEcvpyZT3QrMPWm/oFBFp1/Ixs3tdYzyT5JkiRJmoia1SidDWwEfgy8DngR8IFuBKXedcqFq1pOkuyTJEmSpImqWaL0oszcByAivgxc052Q1KtO7V/FI49vGrkg9kmSJEnSxNYsUdrSAaUYqrsL4ajX9A8MsnTFGgZHMbmsfZIkSZI00TVLlPaNiIeK9wH0FcsBZGZu3/HoVKr+gUGWLF/F0MbWapHAPkmSJEmaHBomSpk5rZuBqPcsXbFmVEmSfZIkSZI0WbQyPLimqFab25144Gz+YeE+HY5GkiRJ6h4TJT3FcJ+kdS0mSds+Y5pJkiRJkiYdEyVtMdo+SdOnBZ94k0mSJEmSJh8TJW0xmj5JO2wzndPe+GL7I0mSJGlSMlHSFq02t9thm+kMfPzwDkcjSZIklWersgNQ7+ib3to/h9Pe+OIORyJJkiSVy0RJ9A8Mst8Zl/Loxs0jlj3xwNk2t5MkSdKkZ6I0xQ0P4LBhaOOIZfumb8U5V93DQWdeQf/AYBeikyRJksphH6Up7vSLV484gMNWAdMiGCpqnAY3DLFk+SoAa5ckSZI0KVmjNIX1DwyOWJMUwPbPms7GzfmU9UMbN7F0xZoORidJkiSVxxqlKWh4UtnBEUa5C+CEA2dzzlX31N3e6ih5kiRJ0kRjojTFtDqpbPU8ST+4dX3dpGrmjL5OhSlJkiSVyqZ3U0j/wCAfOe/GlpKkgY8fvqX/0aIFc+mbPu0pZfqmT2PRgrkdi1WSJEkqkzVKU8RwTdKmzBHL1s6TNJwwLV2xhnUbhpg5o49FC+Y6kIMkSZImLROlKaB/YJAPffMGRk6RKrVJ9RKghfNmmRhJkiRpyrDp3STXPzDIom/d2FKS1Dd92tNqkyRJkqSpyBqlSW7pijVPG9q7nlk2p5MkSZK2MFGaxPoHBkccAvyzb93P5EiSJEmqYaI0CfUPDHL6xatHnEy2UX8kSZIkaaozUZpkWp0nafq0sD+SJEmS1ICJ0gTWPzD4tCG7l65YM6rJZCVJkiQ9nYnSBNQ/MMgZ317Nbx99smnd4IahlmqSZs3o46eLX9PpECVJkqQJzURpghke7rveSHZDGzcxLaLhpLJ906exaMHcTocoSZIkTXjOozTBnH7x6qbDfW/KpG/6tKet32Gb6XzymH1sbidJkiS1wBqlCWakkexmVfVVqu67ZIIkSZIktc5EaQLpHxhsun24ad3CebNMjCRJkqRxsOndBLJ0xZqm221aJ0mdExG7R8QPIuKWiFgdER8o1u8YEZdFxG3F6w5lxypJGj9rlCaQdRuGGm6b0efksZLUYU8AH8nM6yNiO+C6iLgMeDvw/cw8MyIWA4uBj5UYp9RxcxZfUnYI3HXm68sOQZOcNUoTyMwZfQ23vWHf3boYiSRNPZl5X2ZeX7x/GLgFmAUcDZxdFDsbWFhKgJKktrJGqcdVTyo7Y5vpTN8q6o56d8F1g8x//o7WKklSF0TEHGAecDWwa2beB5VkKiJ2KTM2SVJ7WKPUw/oHBlmyfBWDG4ZI4LePbmw4NPjQxk0j9mGSJI1fRDwbuAD4YGY+NIr9To6IlRGxcv369Z0LUJLUFiZKPap/YJCPnHcjQxs3tbxPsz5MkqTxi4jpVJKkczJzebH6/ojYrdi+G/BAvX0zc1lmzs/M+TvvvHN3ApYkjZmJUg8arknalI0nlq2nWR8mSdL4REQAXwZuycxPV226GDipeH8ScFG3Y5MktZ99lHrQ6RevHlVNEjw5h5IkqWMOAv4EWBURNxTr/gY4EzgvIt4B3AMcW054kqR2MlHqMSd86edsGNo4qn1mzejbMtGsJKkzMvMnQDTYfGg3Y5EkdZ6JUg854Us/56e//M2o9pnRN52fLn5NhyKSJEmSpib7KPWIU/tXjTpJmr5VcPpRL+5QRJIkSdLUZY1SD+gfGORrV90zqn1sbidJkiR1jolSD/ib5TeNqrzN7SRJkqTOsuldD3h04+aWy9rcTpIkSeo8a5QmEJvbSZIkSd1holSy/oHBlsrZ3E6SJEnqnlISpYj4e+BoYDPwAPD2zFxXp9xdwMPAJuCJzJzfzTg7rX9gkA9984YRy9ncTpIkSequsvooLc3Ml2bmfsB3gI83KXtIZu432ZIkgI+cdwM5QplpESw9dl+b20mSJEldVEqilJkPVS1uCyPmC5NK/8Agey25hE0tXPX/fYtJkiRJktRtpfVRiohPAH8KPAgc0qBYApdGRAJfzMxl3YqvnfoHBjn94tVsGNo4qv0O2mtHkyRJkiSpBB2rUYqIyyPi5jo/RwNk5imZuTtwDvDeBoc5KDP3B14HvCciDm5yvpMjYmVErFy/fn3br2es+gcGWfStG8eUJJ3zrld0KCpJkiRJzXSsRikzD2ux6NeBS4DT6hxjXfH6QERcCBwAXNngfMuAZQDz58/vmaZ8S1esYePm0YVjkiRJkiSVq5Q+ShGxd9XiUcCtdcpsGxHbDb8HDgdu7k6E49c/MMhBZ17B4IahUe239y7bmiRJkiRJJSurj9KZETGXyvDgdwPvBoiImcBZmXkksCtwYUQMx/n1zPxeSfGOSv/AIEuWr2Jo46ZR7bf3Ltty2Ydf3ZmgJEmSJLWslEQpM/+4wfp1wJHF+zuAfbsZV7ssXbFm1EnS9K0wSZIkSZJ6RFnzKE1a/QODo25ut1XA0mP360xAkiRJkkattOHBJ6PhJnejsRXw6bfs5zDgkqQJY87iS8oOQZI6zkSpDcY6T9L2z5zGTWcc0aGoJEmSJI2VidI4Dc+TNNohwB24QZIkSepd9lEap7HOk2SSJEmSJPUuE6VxOLV/1agHbnAyWUmSJKn3mSiN0an9q/jaVfeMap8TD5xtkiRJkiRNACZKY9A/MDjqJCmAf1i4T2cCkiRJktRWJkqj1D8wyAe/ecOo9/vMW/dreyySJEmSOsNEaZQ+ct4No97ns291niRJkiRpIjFRGoXXfvqHbBrdAHcmSZIkSdIEZKLUohO+9HNue+CRUe2z9y7bmiRJkiRJE5CJUgtO+NLP+ekvfzPq/R59fHMHopEkSZLUaSZKIzi1f9WYkiSAdaOcY0mSJElSbzBRGsFohwGvNnNGXxsjkSRJktQtJkpNnNq/asz79k2fxqIFc9sYjSRJkqRuMVFqYCyTyg6b0TedTx6zjwM5SJIkSRPU1mUH0IvGOqls3/St+OQxLzVBkiRJkiY4E6U6PjzKJGn6VrD0WOdLkiRJkiYLE6Uap/avYjSDegdw2/9+fafCkSRJklQCE6UqL//EZdz/8OOj2seR7SRJkqTJx8EcCq/99A9HnSQ5sp0kSZI0OZkoFW574JFRlXdkO0mSJGnysundGJx44Gz+YeE+ZYchSZIkqUOsURqlg/ba0SRJkiRJmuRMlEbhxANnc867XlF2GJIkSZI6zKZ3LbCpnSSpl8xZfEnZIUjSpGeNUuGgvXasu37vXbY1SZIkSZKmGBOlwjnvesXTkqWD9tqRyz786nICkiRJklQam95Vsf+RJEmSJLBGSZIkSZKexkRJkiRJkmqYKEmSJElSDRMlSZIkSaphoiRJkiRJNUyUJEmSJKmGiZIkSZIk1TBRkiRJkqQaJkqSJI1TRBwREWsi4vaIWFx2PJKk8du67AAkSZrIImIa8DngtcBa4NqIuDgzf1FuZNLkNmfxJaWe/64zX1/q+ctW9u8fOn8PrFGSJGl8DgBuz8w7MvNx4BvA0SXHJEkaJxMlSZLGZxZwb9Xy2mKdJGkCm5RN76677rpfRcTdZccxCjsBvyo7iA6YrNcFXttE5bV11/PLDqBLos66fFqhiJOBk4vF30XEmlGepxfvcT0TIc6JECNMjDinbIzxqXYfcer+LseqyT1oNc6mz6lJmShl5s5lxzAaEbEyM+eXHUe7TdbrAq9tovLa1CFrgd2rlp8HrKstlJnLgGVjPclEuccTIc6JECNMjDiNsX0mQpwTIUZoX5w2vZMkaXyuBfaOiD0i4hnAccDFJcckSRqnSVmjJElSt2TmExHxXmAFMA34SmauLjksSdI4mSj1hjE3xehxk/W6wGubqLw2dURmfhf4bodPM1Hu8USIcyLECBMjTmNsn4kQ50SIEdoUZ2Q+rb+pJEmSJE1p9lGSJEmSpBomSiWIiL+PiJsi4oaIuDQiZjYod1dErCrKrex2nKM1ius6IiLWRMTtEbG423GORUQsjYhbi+u7MCJmNCg3oe4ZjOraJuJ9OzYiVkfE5ohoOPrNBL1vrV7bhLtvU1lE7BgRl0XEbcXrDg3KNbyvEfG+YtvqiPg/vRhjsf2jEZERsVO7Y2xHnK1+No4xtpF+NxER/1xsvyki9m9137JjjIjdI+IHEXFL8W/wA52KcTxxVm2fFhEDEfGdXowxImZExPnFv8VbIuIVPRrnh4r7fXNEnBsRzyopxhdGxM8j4rGI+Oho9q0rM/3p8g+wfdX79wNfaFDuLmCnsuNt53VR6ej8S2BP4BnAjcCLyo69hWs7HNi6eP8p4FOT4Z61em0T+L79ATAX+CEwv0m5iXjfRry2iXrfpvIP8H+AxcX7xaP9/wgcAlwOPLNY3qXXYiy2705l8Iu7O/V/rw2/y5Y+98cQ14j/L4Ejgf+kMkfXgcDVre7bAzHuBuxfvN8O+K9Ofe6MJ86q7R8Gvg58pxdjBM4G3lm8fwYwo9fipDLB9p1AX7F8HvD2kmLcBXgZ8Ango6PZt96PNUolyMyHqha3pc7EhBNRi9d1AHB7Zt6RmY8D3wCO7kZ845GZl2bmE8XiVVTmSZkUWry2iXrfbsnM0U7qOSG0eG0T8r5NcUdT+cOI4nVhnTLN7utfAmdm5mMAmflAD8YI8Bngr+ns829ccXbwc7+V/5dHA1/NiquAGRGxW4v7lhpjZt6XmdcDZObDwC1U/pDuhPH8LomI5wGvB87qUHzjijEitgcOBr4MkJmPZ+aGXouz2LY10BcRWwPbUGcuuW7EmJkPZOa1wMbR7luPiVJJIuITEXEvcALw8QbFErg0Iq6LyozuPa+F65oF3Fu1vJbOfYB2yp9T+Ualngl3z2o0urbJcN+amej3rZHJft8mo10z8z6A4nWXOmWa3dcXAH8UEVdHxI8i4mW9FmNEHAUMZuaNHYitbXHWaPa5P1qtnLNRmW79nx5PjFtExBxgHnB1+0NsLYYRynyWSsK+uUPxjXT+kcrsCawH/r1oHnhWRGzba3Fm5iDwj8A9wH3Ag5l5aUkxtnVfhwfvkIi4HHhunU2nZOZFmXkKcEpELAHeC5xWp+xBmbkuInYBLouIWzPzyg6GPaI2XFfU2bcnatRGuraizCnAE8A5DQ7Tc/cM2nJtE/q+tWDC3reRDlFnXU/ct6ms2X1t9RB11g3f162BHag0i3kZcF5E7JlF25OyY4yIbYpjHD6aeBqepLO/y+FzjPS5P1qt/L9sVKZb/6fHE2NlY8SzgQuAD9a0OGmnMccZEW8AHsjM6yLi1e0ObKTzt1hma2B/4H2ZeXVE/BOVZqR/294Qm8YwYpmo9P87GtgD2AB8KyJOzMyvtTfEcf37H9O+JkodkpmHtVj068Al1EmUMnNd8fpARFxIpdqw1D/e2nBda6m0TR/2PDpTPTtqI11bRJwEvAE4tNEfHb14z4p4xnttE/a+tXiMCXnfWtCz920qa3ZfI+L+4eZLRZOWek3nmt3XtcDy4v/xNRGxGdiJyrfSvRDjXlT+mLoxIobXXx8RB2Tmf48mxg7HOXyMET/3x6CV/5eNyjyjhX3LjpGImE4lSTonM5d3IL52xPlm4KiIOBJ4FrB9RHwtM0/soRgTWJuZwzVy51NJlDphPHEeBtyZmesBImI58Eqg3YnSeJ5pY9rXpncliIi9qxaPAm6tU2bbiNhu+D2Vb99u7k6EY9PKdQHXAntHxB4R8QzgOODibsQ3HhFxBPAx4KjMfLRBmQl3z6C1a2OC3rdWTNT71qJJe98msYuBk4r3JwH1ag6b3dd+4DUAEfECKn9Y/6pXYszMVZm5S2bOycw5VP542X8sSVIn44SWPxvHopX/lxcDfxoVB1JpynRfi/uWGmNUMuAvA7dk5qc7EFtb4szMJZn5vOLf4XHAFR1IksYb438D90bE3KLcocAvOhDjuOKk0uTuwIjYprj/h1Lpm1ZGjO3dNzswcoY/I47acQGVP8RuAr5NpX0nwEzgu8X7PamMyHEjsJpKU5vSYx/vdRXLR1IZBeeXE+G6iphvp9K29Ybi5wuT4Z61em0T+L69icofYo8B9wMrJtF9G/HaJup9m8o/wO8B3wduK153HM19pZIYfa34LL4eeE2vxVhzrLvo3Kh34/1d1v1sbFNsTzsn8G7g3cX7AD5XbF9F1ciW3fo/PdYYgVdRqQm5qep3d2SvxVlzjFfToVHv2nC/9wNWFr/PfmCHHo3zDCpfkN8M/D+KkTdLiPG5VJ6ND1FpBriWYlTmsfzfiWJHSZIkSVLBpneSJEmSVMNESZIkSZJqmChJkiRJUg0TJUmSJEmqYaIkSZIkSTVMlNQ2EfF7EXFD8fPfETFYtfyMNp3jhxGxpuq457fjuOMVEf8REXcWMV0fEa8Y5/G2johfRcQna9b/zfgibXi+t0fE+og4a4Ryd1bN5zC87rMR8dcNyn8vIma1GMPCiHhR61E3PVZfcS8ej4id2nFMSao1nudeRMyPiH9u4Rw/a1Osr46IB6viuyEixj1hd5PzbSrOMbNJmdPrPOf2i4i6c/BExPERcUqL558TEW8bXdRNj7e0uMcfbdcx1ftMlNQ2mfnrzNwvM/cDvgB8Zng5Mx+PiK3bdKoTqo775vEerJg4rR3/FxYV174Y+OIozj+tzurDgTXAW4rJ24Z1JFEqfDMz3zlCmW9QmaQNgOL39mbgm7UFI6KPyrwlgy2efyHQlkQpM4eKe9GJGeslCRjfcy8zV2bm+1s4xyvbGPKPq+LbLzMvr95Y+zxs9fnY4Dk2VJyj2efwucBba9YdB3y9QfkjgO+NFE9hDtC2RCkzF1G5x5pCTJTUUUVNy6cj4gfAp4pvjz5atf3miJhTvD8xIq4pvoH6YoMP3mbn+eeI+FlE3BERb67atigiro2ImyLijGLdnIi4JSL+jcqkjLtHxN9GxK0RcVlEnBsRH42IvSLi+qpj7R0R140QzpXA7ze7poj4XUT8XURcDdSrfToe+CeK2a6Lfc4EhmtKzinWfbj4Hd4cER+surZbI+KsYv05EXFYRPw0Im6LiANa+H1OK749G/69/UWx6VyqEiXgYOCuzLy7zmFeDfywzrHfVRz3xoi4ICozeb8SOApYWlzfXsW3ilcV578wInYo9v9hRHwmIq4s7uHLImJ5cW3/MNK1SVIn1XnuHVA8mwaK17lFuVdHxHeK96dHxFeKz7c7IuL9Vcf7XVX5H0bE+cVn/DnDX6RFxJHFup8Uz8LvjCLe2ufhH9V5Pi4tnierIuKtVfH8ICK+TmXy0ZHOc3hE/DwqrS6+FRHPzsw1wIaIeHlV0bdQ+VKudv+gMvnq9TXr50TEj4vjXl88TwDOLK7lhoj4UEQ8KyL+vbiGgYg4pNj/7RHRHxHfjkqrifcWz9aB4hm0Y6u/S00+JkrqhhcAh2XmRxoViIg/oPKt0kHFN3ObgBMaFD8nnmw2sLRq/W5UZgR/A5UPSCLicGBv4AAqH7B/GBEHF+XnAl/NzHnAzsAfA/OAY4D5AJn5S+DBiNiv2OfPgP8Y4XrfCKwa4Zq2BW7OzJdn5k9qfhd9wKHAd6gkJscXsSzmyW/oToiIPyzieTmVZOpdETGvOMzvU0m0Xgq8kMq3aq8CPkprtVLvAB7MzJcBLyuOvUdm3gRsjoh9i3LHFTHW8zrqf/O3PDNflpn7ArcA78jMnwEXU9TKFb/3rwIfy8yXUnkIn1Z1jMcz82Aq3+5dBLwHeAnw9oj4vRauT5I6qfq5dytwcPGs+Tjwvxvs80JgAZXn1WkRMb1OmXnAB6nUvu8JHBQRz6LSiuF1mfkqKs+zRv4ontr0bq9iffXz8O6a5flUnp/7AodR+UJrt2K/A4BTMrNpa4CoNIE+tfid7A+sBD5cbN7yBVxEHAj8OjNva3DtN2Zm1qx/AHhtcdy3AsPNGRfzZA3aZ6g8J8jMfag8V88ufndQeX68rbieTwCPFtf+c+BPm12bJrd2NYWSmvlWZm4aocyhwB8C1xZfkPVR+fCr54TMXFlnfX9mbgZ+ERG7FusOL34GiuVnU0mc7gHuzsyrivWvAi7KzCGAiPh21XHPAv4sIj5M5UO4UY3M0og4FVhPJdFodk2bgAsaHOcNwA8y89GIuAD424j4UJ3f4auACzPzkSLm5cAfUUk47szMVcX61cD3MzMjYhWV5ggjORx4aTxZM/ccKr+3OykeasVxj6by4K/nICqJWa2XFDU/M6jcjxW1BSLiOcCMzPxRseps4FtVRS4uXlcBqzPzvmK/O4DdgV+3cI2S1CnVz73nUPmjfG8ggXoJEMAlmfkY8FhEPADsCqytKXNNZq4FiIgbqHye/w64IzPvLMqcC5zc4Bw/zsw3VK+ISquO6uchPP35eG5xPfdHxI+ofIH2UBHPnYzsQCrJ3U+L5+EzqCQhUKk9+llEfITmX74dAfxnnfXTgX8tvtDcRCVJredVwL8AZOatEXF3VdkfZObDwMMR8SAw/DfAKipfOGqKMlFSNzxS9f4JnlqTOfxtTgBnZ+aScZznsar3UfX6ycx8Sp+h4sHwSJ3y9VxApTbjCuC6zGz0R/iizNwyuERRrd/omv6nSfJ4PJVvCe8qln8POAS4vKZcs5irfxebq5Y309r/+wDel5lPS2KoPMQuBX4E3JSZT0toI2JP4N7MfLzO/v8BLMzMGyPi7VSa6I1W9fXUXqufa5LKVv18+Xsqf4i/qXj2/LDBPtWfZZuo/1lWr0yzZ0GrHmmy3Oz4tfs1EsBlmXl87YbMvLd43v0vKi07Gg2GdHixvdaHgPup1HhtBfxPkxgaGe8zU5OUTe/UbXcB+wNExP7AHsX67wNvjohdim07RsTz23C+FcCfR8Szi+POGj5HjZ8AbyzaMD8beP3whsz8n+I4nwf+fRTnHvU1RcT2VL71mp2ZczJzDpXmAsMPl41VzTGuBBZGpY/PtsCbgB+PIr5mVgB/OXyuiHhBcY7h5oi/ptK8cbTN7gC2A+4rjl3dvPLhYhuZ+SDw24j4o2Lbn1BJzCRponkOMDyozds7cPxbgT2LJAyePjjCeF0JvDUqfVd3ptI39ZpRHuMqKl8ADvff3SYiqmt+zgU+A/xyuMasWtHKYOsGX1Q+B7ivaFHyJ8Bw/+Ytz5Sq6zihON4LgNlUBk2SGjJRUrddAOxYNBn4S+C/ADLzF1TaL18aETcBl1Hpc1RPdR+l2lqWp8jMS6mMnvPzotnZ+Tz1g3O43LVUmnPdCCyn0n76wepzUmkycWmL1znaaxp2DHBF0fxi2EXAURHxTGAZcFNEnJOZ11OpnbkGuBo4KzMHag84RmcBvwCuj4ibqbR/r/5W7Vwq7ekvbLB/s5GJ/pZKvJdRecAP+wawqOhAuxdwEpXmjDdRaR//d2O7FEkq1f8BPhkRP+XJP+Lbpmgy/lfA9yLiJ1RqVx5sULy2j1IrI8deCNxE5fl4BfDXmfnfo4xxPZUk8dziM/0qKs+QYd8CXkydQRwKr+XprSqG/RtwUkRcRaUp3XAt103AE1EZOOhDRblpxd8C3wTeXvOslZ4mnt4nTpqaojICz+8iYhsq3zydXCQjRGWkvudk5t+WGmSHFE3g5mfme9twrGcCP83M+eMObPyx3EXlun5VdiyS1ClVz68APgfcVgxgUGZMv8vMZ7fpWGdR+TLwqhELd1BEnA78LjP/scw41D3WKElPWlbUdF0PXFCVJF1IZdSbfyoxtk4bAl4XI0w424rMfKzsJCmKCWepdPLdXGYsktQF7yo+81ZTaYrW8lx+HfRQjDDhbKsy8509kCQtBU6k9X5ZmgSsUZIkSZKkGtYoSZIkSVINEyVJkiRJqmGiJEmSJEk1TJQkSZIkqYaJkiRJkiTVMFGSJEmSpBr/H2os9d2SqG52AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1008x504 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(14,7)) # Increase the size a bit\n",
    "plots.energy_scatter_histogram()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 21,
   "id": "92a3bc17-de4a-459d-8ccf-4b0e59283f80",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0YAAAGvCAYAAAB/8MV7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABLBklEQVR4nO3df5zcZXno/c/Fssj4c/UQlSxEOH04sWAqgRTx0D4vwbbBXyWiVny0emxfh2rxadU2p0mPFfDIgT5praUqFFuPUK1ANa5RoakVPVYqYmADMULatAJmwxEqLILZwmZzPX/Md8JkMrM7s5lfu/N5v17z2pn7e898r/1C8s01931fd2QmkiRJkjTIDut1AJIkSZLUayZGkiRJkgaeiZEkSZKkgWdiJEmSJGngmRhJkiRJGniH9zqAdjnqqKPyuOOO63UYkjTQbrvttn/LzCW9jqMfeZ+SpN6b7T61aBKj4447ji1btvQ6DEkaaBFxb69j6FfepySp92a7TzmVTpIkSdLAMzGSJEmSNPBMjCRJkiQNPBMjSdJAiYihiBiPiC8Vr58TEV+JiH8ufj67qu/6iNgZETsiYnVV+6kRsa04dnlERC9+F0lS+5gYSZIGzW8Dd1W9Xgd8NTNPAL5avCYiTgTOA04CzgY+FhFDxXuuAM4HTigeZ3cndElSp/QkMar9tq7mWBTfvu2MiDsj4pRexChJWnwi4hjgVcBfVDWfA1xdPL8aWFPVfm1mPp6Z3wd2AqdFxNHAMzPzW5mZwDVV75EkLVC9GjGq/bau2it48hu48yl/KydJUjt8GPhvwL6qtudl5v0Axc/nFu2jwA+q+u0q2kaL57XtkqQFrOuJUYNv66qdA1yTZbcAI8W3c5IkzVtEvBp4IDNva/YtddpylvZ65zw/IrZExJYHH3ywydNKknqhFyNGH+bgb+uqNfqGTpKkQ3EG8MsRcQ9wLXBWRHwK+GHlC7ji5wNF/13AsVXvPwbYXbQfU6f9IJl5VWauysxVS5bU3WhdktQnupoYNfltnd/ESZLaLjPXZ+YxmXkc5aIKN2XmW4BNwNuKbm8DvlA83wScFxFPiYjjKU/xvrWYbvdoRJxeVKN7a9V7JEkLVLdHjBp9W1et0Td0B/GbOElSG1wG/GJE/DPwi8VrMnM7cD3wPeBvgQsyc6Z4zzspTwnfCfwLcGO3g5Yktdfh3TxZZq4H1gNExMuA3y2+rau2CXhXRFwLvAR4pLIoVpKkdsjMrwNfL57/CHh5g36XAJfUad8CvKhzEUqSuq2riVEjEfEOgMy8ErgBeCXlb+H2AG/vYWiSJEmSBkDPEqOab+uurGpP4ILeRCVJg2lsfIINm3ewe3KKpSMl1q5ezpqV1r2RJA2OvhgxkiT1ztj4BOs3bmNqurx8ZmJyivUbtwGYHEmSBkavNniVJPWJDZt37E+KKqamZ9iweUePIpIkqfscMZKkAbd7cqqldkm9cdy6L/c6BO657FW9DkHqGEeMJGnALR0ptdQuSdJiZGIkSQNu7erllIaHDmgrDQ+xdvXyHkUkSVL3OZVOkgZcpcCCVekkSYPMxEiSxJqVoyZCkqSB5lQ6SZIkSQPPxEiSJEnSwDMxkiRJkjTwTIwkSZIkDTwTI0mSJEkDz8RIkiRJ0sAzMZIkSZI08EyMJEmSJA08N3iVpAVobHyCDZt3sHtyiqUjJdauXu4GrZIkHQITI0laYMbGJ1i/cRtT0zMATExOsX7jNgCTI0mS5smpdJK0wGzYvGN/UlQxNT3Dhs07ehSRJEkLn4mRJC0wuyenWmqXJElzMzGSpAVm6UippXZJkjQ3EyNJWmDWrl5OaXjogLbS8BBrVy/vUUSSJC18Fl+QpAWmUmDBqnSSJLWPiZEkLUBrVo6aCEmS1EZOpZMkSZI08EyMJEmSJA08EyNJkiRJA8/ESJIkSdLAMzGSJEmSNPBMjCRJkiQNPBMjSZIkSQPPxEiSJEnSwDMxkiRJkjTwTIwkSZIkDTwTI0mSJEkDz8RIkiRJ0sAzMZIkSZI08LqeGEXEkRFxa0TcERHbI+LiOn1eFhGPRMTW4vH+bscpSVpcGt1/IuKiiJiouue8suo96yNiZ0TsiIjVVe2nRsS24tjlERG9+J0kSe1zeA/O+ThwVmY+FhHDwDcj4sbMvKWm3z9k5qt7EJ8kaXGqe/8pjv1JZv5RdeeIOBE4DzgJWAr8fUT8p8ycAa4AzgduAW4AzgZuRJK0YHU9McrMBB4rXg4Xj+x2HJIG29j4BBs272D35BRLR0qsXb2cNStHex2WOmge959zgGsz83Hg+xGxEzgtIu4BnpmZ3wKIiGuANZgYSdKC1pM1RhExFBFbgQeAr2Tmt+t0e2kx3eHGiDipweecHxFbImLLgw8+2MmQJS0iY+MTrN+4jYnJKRKYmJxi/cZtjI1P9Do0ddgs9593RcSdEfGJiHh20TYK/KDq7buKttHieW17vfN5n5KkBaIniVFmzmTmycAxlL99e1FNl9uBF2Tmi4E/A8YafM5VmbkqM1ctWbKkkyFLWkQ2bN7B1PTMAW1T0zNs2LyjRxGpWxrcf64Afgo4Gbgf+OOie711QzlLe73zeZ+SpAWip1XpMnMS+DrludnV7T/OzMeK5zcAwxFxVNcDlLQo7Z6caqldi0/1/Sczf1gkTPuAjwOnFd12AcdWve0YYHfRfkyddknSAtaLqnRLImKkeF4CfgG4u6bP8ysVfiLitCLOH3U5VEmL1NKRUsP2sfEJzrjsJo5f92XOuOwmp9ctIo3uPxFxdFW31wLfLZ5vAs6LiKdExPHACcCtmXk/8GhEnF7cq94KfKFbv4ckqTN6UZXuaODqiBiinPBcn5lfioh3AGTmlcDrgXdGxF5gCjivWDQrSYds7erlrN+47YDpdKXhIc584ZID2itrjwALMywOje4/fxURJ1OeDncP8BsAmbk9Iq4HvgfsBS4oKtIBvBP4JFCiXHTBwguStMD1oirdncDKOu1XVj3/CPCRbsYlaXBUkpzaqnSzrT0yMVr4Zrn//Oos77kEuKRO+xagdn2sJGkB68WIkST13JqVowclO++5bmvdvq49kiRp8etp8QVJ6iezrT2SJEmLm4mRJBXWrl5OaXjogLbS8BBrVy/vUUSSJKlbnEonSYVGa49cXyRJ0uJnYiRJVeqtPZIkSYufU+kkSZIkDTwTI0mSJEkDz8RIkiRJ0sBzjZEkVRkbn7D4giRJA8jESJIKY+MTrN+4janpGQAmJqdYv3EbgMmRJEmLnFPpJKmwYfOO/UlRxdT0DBs27+hRRJIkqVtMjCSpsHtyqqV2SZK0eJgYSVJh6UippXZJkrR4mBhJUmHt6uWUhocOaCsND7F29fIeRSRJkrrF4guSVKgUWLAqnSRJg8fESJKqrFk5aiIkSdIAMjGSJNy/SJKkQWdiJGnguX+RJEmy+IKkgef+RZIkycRI0sBz/yJJkuRUOkl9r9Prf5aOlJiokwS5f5EkSYPDESNJfa2y/mdicorkyfU/Y+MTbTuH+xdJkiQTI0l9rRvrf9asHOXSc1cwOlIigNGREpeeu8LCC5IkDRCn0knqa91a/+P+RZIkDTYTI0l9ba71P+4/JEmS2sGpdJL62mzrf7qx/kiSJA0GEyNJfW229T/uPyRJktrFqXSS+l6j9T/uPyRJktrFESNJC1ajfYbcf0iSJLXKxEjSglVv/dHwYcGeJ/Zy/Lovc8ZlN7neSJIkNcWpdJIWrMr0ukpVumeVhvnJE3t5eM808GQxhuq+kiRJ9ThiJGlBW7NylJvXncX3L3sVT3vK4UzP5AHHLcYgSZKa4YiRpL7Wyj5FFmOQJEnz5YiRpL7V6j5FFmOQJEnzZWIkqW+1uk/RbJvBSpIkzabrU+ki4kjgG8BTivN/NjMvrOkTwJ8CrwT2AP8lM2/vdqySOm+2qXJzTY2r995Lz13R9NQ7SZKkil6sMXocOCszH4uIYeCbEXFjZt5S1ecVwAnF4yXAFcVPSYtIZapcZVRoYnKKd1+3lYu/uJ0LX3MSS0dKTNRJjpaOlOq+d/3GbVx67gpuXndWV38PSZK08HV9Kl2WPVa8HC4eWdPtHOCaou8twEhEHN3NOCV1Xr2pcgAP75lm/cZtnPnCJQ2nxrU6zU6SJGk2PVljFBFDEbEVeAD4SmZ+u6bLKPCDqte7irbazzk/IrZExJYHH3ywY/FK6ozZqsVNTc/wtbsf5NJzVzA6UiKA0ZESl567gjUrR61Ap5ZFxJERcWtE3BER2yPi4qL9ORHxlYj45+Lns6vesz4idkbEjohYXdV+akRsK45dXkwBlyQtYD1JjDJzJjNPBo4BTouIF9V0qXeDqR1VIjOvysxVmblqyZIlHYhUUifNVS1u9+TUAfsUVUaKjl/3ZQ5r8O9QK9BpFpWp3C8GTgbOjojTgXXAVzPzBOCrxWsi4kTgPOAk4GzgYxFRGcK8AjifJ6d9n93F30OS1AE9rUqXmZPA1zn4hrILOLbq9THA7u5EJalb6lWRq1ad5NSW7p7Jg74rsQKdZjXLVO5zgKuL9quBNcXzc4BrM/PxzPw+sJPyl3lHA8/MzG9lZgLXVL1HkrRAdT0xioglETFSPC8BvwDcXdNtE/DWKDsdeCQz7+9upJI6bc3KUS49dwUjpeGDjtUmOY3WIw1FHDTNTmqkwVTu51XuMcXP5xbdG03rHi2e17bXO59TviVpgehFVbqjgauL6QiHAddn5pci4h0AmXklcAPlUt07KZfrfnsP4pTUBWtWjrJm5eisZbuh8dqhfZl8/7JXdStcLXCZOQOcXHxB9/k6U7mrNZrW3dR07+J8VwFXAaxatapuH0lSf+h6YpSZdwIr67RfWfU8gQu6GZek3qokSI3MVrpbalVmTkbE1ylP5f5hRBydmfcX0+QeKLo1mta9q3he2y5JWsB6usZIkppVbz2Sa4rUilmmcm8C3lZ0exvwheL5JuC8iHhKRBxPucjCrcV0u0cj4vSiGt1bq94jSVqgejGVTpJaVhlNmm26nTSHRlO5vwVcHxG/DtwHvAEgM7dHxPXA94C9wAXFVDyAdwKfBErAjcVDkrSAmRhJ6iuzrTWaa7qdNJtZpnL/CHh5g/dcAlxSp30LMNv6JEnSAmNiJKlvVEpyV6rPTUxOsX7jNgATIkmS1FGuMZLUN+qV5J6anmHD5h09ikiSJA0KEyNJfaNRSe5G7ZIkSe1iYiSpbzQqvW1JbkmS1GkmRpL6hiW5JUlSr1h8QVLfsCS3JEnqFRMjSX3FktySJKkXnEonSZIkaeA5YiSpY2bbrHW2Y5IkSd1mYiSpI2bbrBVwI1dJktRXTIwktVVlJGiizt5D1Zu1NtrI1cRIkiT1gomRpLapHSWqZ7bNWt3IVZIk9YrFFyS1zYbNO2ZNiqC8WasbuUqSpH5jYiSpbeYa8als1upGrpIkqd84lU5S2ywdKdVdWwQwWqfynFXpJElSvzAxktQ2a1cvP2iNUWl4iEvPXQGUE6H3XLd1fyJ087qzehWqJEnSAUyMJLVNZcSndiQILM8tSZL6m2uMJLVNo01b6xVlqC7dLUmS1GuOGElqi3obur7nuq1sufehhkUZLM8tSZL6hSNGktqi3qhQAp++5T6eVRqu+x7Lc0uSpH5hYiSpLRqN/iTw43+fZviwOKDd8tySJKmfmBhJaovZRn/2JRAwUhomKJfuvvTcFRZekCRJfcM1RpLaYu3q5bznuq1kg+PTM8nTnnI4Wy/8pa7GJUmS1AxHjCS1xZqVo7z59GXELH0stiBJkvqViZGktvngmhX8yRtP5rAG2dHIU+sXYZAkSeo1EyNJbbVm5SjPPLJ+ApSN5tlJkiT1WNNrjCLiOU1025eZk/MPR9JC0mhD10empuv2b9QuSZLUa60UX9hdPGZbQjAELDukiCT1tUoyNDE5RcD+YgsTk1Os37gNKFeom6iznsh9iyRJUr9qJTG6KzNXztYhIsYPMR5JXdZo1KdR3/Ubt+3fyLV2ZtzU9AwbNu9g7erlB/QD9y2SJEn9rZXE6KVt6iOpT9QmOtWjPvWSow2bdxyQ7NSze3Jq/3ubTbgkSZJ6renEKDP/vdGxiBjJzMnZ+kjqP/USncqoT70kpply25XpcmtWjpoISZKkBWPOxCgiTgVeDVwOzAAnAidVPV4EPBV4dufClNQJjRKdRu2N1g5VOF1OkiQtVM2U6/5z4EvAfcDdwP8ATgZ2AiuAlZnZdFIUEcdGxNci4q6I2B4Rv12nz8si4pGI2Fo83t/s50tqXqNiCI3a165eTml46IC2SjWW0ZESl567wlEiSZK0IDUzle4fgbXA7ZRHhj6emdcDRMTazHygxXPuBX4nM2+PiGcAt0XEVzLzezX9/iEzX93iZ0tqQatFElw7JEmSFqs5E6PM/K2IeGpm7in2MnpfRLwH+AAHF6WaU2beD9xfPH80Iu4CRoHaxEhSh80n0XHtkCRJWoyaKr6QmXuKnw8B742I4yhPqXteRLwsM78+n5MXn7MS+Hadwy+NiDso7530u5m5vc77zwfOB1i2zO2TpPk4lESnlVLfkiRJ/ayZNUYARMRLIyIAMvOezPxV4AxgXUR8o9UTR8TTgc8B787MH9ccvh14QWa+GPgzYKzeZ2TmVZm5KjNXLVmypNUQpIE2Nj7BGZfdxPHrvswZl93E2PhEy+9fv3EbE5NTJE+W+m71cyRJkvpB04kR8DbK64GujYj/EhHPz8ytmXk2cGErJ42IYcpJ0aczc2Pt8cz8cWY+Vjy/ARiOiKNaOYekxtqR1MxW6lvqR42K/0TERRExUVXw55VV71kfETsjYkdErK5qPzUithXHLq98cShJWriaTowy8x2ZeQpwEeXS3J+MiG9FxP8EZiJiaNYPKBQ3j78E7srMDzXo8/zKTSYiTivi/FGzsUqaXTuSmlZLfUt9oFL856eB04ELIuLE4tifZObJxeMGgOLYeZS3pjgb+FjVve4KylO5TygeZ3fx95AkdUDTG7xWZObdlMt2/0lElIAzgTcAHwJWNfERZwC/CmyLiK1F2+8Dy4rPvxJ4PfDOiNgLTAHnZWbLhR4k1deOpKbRnkaNSn1LvTZL8Z9GzgGuzczHge9HxE7gtIi4B3hmZn4LICKuAdYAN3YwfElShzWdGEXER4DPZObNlbbMnAJuKB5Nycxv8uTWJ436fAT4SLOfKak1rSQ1jQostFrqW+onNcV/zgDeFRFvBbZQHlV6mHLSdEvV23YVbdPF89r2euexSJAkLRCtrDH6Z+CPIuKeiPjDiDi5QzFJ6rBGG7VOTE4dUIhhtrVIa1aOcum5KxgdKRG4wasWjjrFf64Afory5uX3A39c6Vrn7TlL+8GNFgmSpAWj6RGjzPxT4E8j4gWU51z/r4g4EvgM5akG/9ShGCW1WfX+RROTUwRP/quukvxUjjdai1Qp820ipIWkXvGfzPxh1fGPA18qXu4Cjq16+zGUt5DYVTyvbZckLWCtjBgBkJn3ZuYfZuZK4P8BXgvc1fbIJHXUmpWj3LzuLEZHSgd91V1JfiywoMWkUfGfiDi6qttrge8WzzcB50XEUyLieMpFFm4t1io9GhGnF5/5VuALXfklJEkd03LxheLbtrMpjxq9HPjfwMVtjktSlzRKciYmpxgpDTM5NX3QMQssaIFqVPznTcX08ATuAX4DIDO3R8T1wPcoV7S7IDMrQ6jvBD4JlCgXXbDwgiQtcK0UX/hF4E3Aq4BbgWuB8zPzJx2KTVIXNCrEAPCTJ/YyfFgwve/JMSULLGihmqX4T8MCQpl5CXBJnfYtwIvaF50kqddamUr3+8C3gJ/OzNdk5qdNiqSFr14hhorpmeTpRx5ugQVJkrTotVJ84Uwoz9GOiLcA/zEzPxARy4DnZ+atnQpSUudUkpx3X7e17vHJPdOMv/+XuhiRJElS97VcfAH4GPBSytPqAB4FPtq2iCR13ZqVo4w2WDfkeiJJkjQI5pMYvSQzLwD+HaDYBO+ItkYlqWlj4xOccdlNHL/uywfsQdSqelPqXE8kSZIGRctV6YDpiBii2PYkIpYA+9oalaSmVDZgrew1VNmDaMu9D/HlO+/n4T3linIjpWEu+uWTZl0bVL230e7JKZaOlFi7ernriSRJ0kCYT2J0OfB54LkRcQnweuB9bY1K0kHGxicOSloabcD6qVvuO6BtcmqatX9zB8CcyZGJkCRJGkQtJ0aZ+emIuI3yHkYBrMlMN3iVOqjRyFBtUjSb6X3Jhs07THwkSZLqmM+IEZl5N3B3m2OR1ECjkaGhCGYyG7zrYI02c62n3giVSZUkSVqsmi6+EBG3t6OPpNY1SmhmMhvuQVRPsxXmKiNUE5NTJE+OUM23sIMkSVK/a6Uq3U9HxJ2zPLYBR3UqUGmQNUpoKhuujpSG97fFLJ/TbIW5RiNUGzbvaOr9kiRJC00rU+le2ESf5hc8SGra2tXLD1pTVF1K+/G9TxaGnG1iXbNT4RqNULUyFU+SJGkhaToxysx7OxmIpMZmK6V9xmU3NVWEodEGrvUsHSkxUScJcrNXSZK0WM2r+IKk7mtUSruZUZwAznzhkqbPNdcIlSRJ0mLTyhojSX2omVGcBD5320TTxRPWrBzl0nNXMDpSInhyLZNV6SRJ0mLV8ohRRLwB+NvMfDQi3gecAnwwM61IJ/VAvdGd4OC1RpXiCc0mN272KkmSBsl8Roz+oEiKfg5YDVwNXNHesCQ1q97oTqMCDBZPkCRJqm8+a4wqX0u/CrgiM78QERe1LyRJraod3TnjspssniBJktSC+YwYTUTEnwO/AtwQEU+Z5+dI6pAzX7jkoP2MLJ4gSZLU2HxGjH4FOBv4o8ycjIijgbXtDUsaXGPjE3XLclfaJyanGIpgJpPRquPV7//cbRMHTKcL4HWnPjmq1OgckiRJg6rlxCgz9wAbq17fD9zfzqCkQTU2PnFAIYWJySnWb9zGlnsf4nO3Texvn8k84DgcuNdR7b5GCXzt7gdnPUf1Z0iSJA2alqfARdlbIuL9xetlEXFa+0OTBsvY+AS/c/0dByU1U9MzfObbP2i4iWul2lxFowILlfZ6iVPtZ0iSJA2a+awN+hjwUuBNxetHgY+2LSJpAFVGcSojQbUatVdUJ0ONCixU2udKnCRJkgbRfBKjl2TmBcC/A2Tmw8ARbY1KGjD1RnFaUZ0MrV29nNLw0AHHqwsvzJU4SZIkDaL5JEbTETFEsX9kRCwB9rU1KmnAHMpoTW21uXr7Gl167or964fmSpwkSZIG0Xyq0l0OfB54bkRcArwe+IO2RiUNmKUjpbr7DjUyW1U6OHhfo9pjgFXpJEmSqsynKt2nI+I24OWUqwCvycy72h6ZNEDWrl5+QKW42YyOlLh53VmHdL7ZEidJkqRBNJ+qdFcD/yczP5qZHwH+T0R8ov2hSYOjdvrbUNRuz1oW4JQ3SZKkDpjPGqOfyczJyoui+MLKtkUkDZix8QnOuOwm3nPdVgD+5I0ns69BFbrEvYYkSZI6YT6J0WER8ezKi4h4DvNbqyQNvEqZ7onJKZInN1t9Vmm4bv9RK8dJkiR1xHwSmj8G/jEiPkv5C+xfAS5pa1TSIjc2PsGGzTvqFlyYmp7hyOHDKA0PHbDmyMpxkiRJndPSiFFEBPA14HXAD4EHgXMz869a+IxjI+JrEXFXRGyPiN+ud56IuDwidkbEnRFxSitxSv2sepSokck907OW3JYkSVJ7tTRilJkZEWOZeSrwvXmecy/wO5l5e0Q8A7gtIr6SmdWf9wrghOLxEuCK4qe04DWzmWsC775uK6MjJf7kjSebEEmSJHXYfKbS3RIRP5uZ35nPCTPzfuD+4vmjEXEXMMqBidY5wDWZmcX5RiLi6OK90oJTmTq3u1hL1KzKmiOw6IIkSVInzaf4wpmUk5V/Kaa5bYuIO+dz8og4jnJFu2/XHBoFflD1elfRVvv+8yNiS0RsefDBB+cTgtRxtQUWWjU1PcOGzTvaHpckSZKeNJ8Ro1e048QR8XTgc8C7M/PHtYfrvOWgf1Nm5lXAVQCrVq2az785pY5rZurcXHYX65GqR56WjpRYu3q5I0mSJElt0HJilJn3RsSLgZ8vmv4hM+9o5TMiYphyUvTpzNxYp8su4Niq18cAu1uNVeoHu2cpstCspSOl/SNPlSTLaXaSJEnt0/JUuqKK3KeB5xaPT0XE/9vC+wP4S+CuzPxQg26bgLcW1elOBx5xfZEWqqWHuPdQpUx3vZEnp9lJkiS1x3zWGP068JLMfH9mvh84HfivLbz/DOBXgbMiYmvxeGVEvCMi3lH0uQH4V2An8HHgN+cRp9QX1q5eXnduaDOqy3Q3Gnlqx4iUJEnSoJvPGqMAqr+2nqH+mqC6MvObc/UvqtFdMI/YpL6zZuUo775ua0vvGR0pcfO6sw5oWzpSqrv30aGOSEmDIiKOBa4Bng/sA67KzD+NiOcA1wHHAfcAv5KZDxfvWU/5C8EZ4Lcyc3PRfirwSaBE+cu83y7uXVrEjlv35V6HIKmD5jNi9L+Ab0fERRFxEXAL5alxkhoYbSF5qUydq7V29XJKw0NN9ZVUV2UfvZ+mPNvhgog4EVgHfDUzTwC+WrymOHYecBJwNvCxiKj8IbwCOJ8n99w7u5u/iCSp/VpOjIp1Qb8GPAQ8DLw9Mz/c5rikRaVeUlPPUMT+qXO11qwc5dJzVzA6UiI4cJqdpLll5v2ZeXvx/FGgso/eOcDVRbergTXF83OAazPz8cz8PuXp3adFxNHAMzPzW8Uo0TVV75EkLVBNT6WLiGWZeR9AZt4G3NaxqKQFqFJKe2JyiqEIZjIZrSmpXTneyEzmrInOmpWjJkJSG9Tso/e8SoGfzLw/Ip5bdBulPCuiorKn3nTxvLa93nnOpzyyxLJly9r4G0iS2q2VNUZjwCkAEfG5zHxdRyKSFphyGe07mZret79tplhqUFtSe8u9D/GpW+5r+FlDMd8yDZKaVbuPXjT+c9doT72m9toD99uTpIWklcSo+kbwH9sdiLQQjY1PsPZv7mB6X+N/70xNz3DxF7fPOVoETyZUkjqjwT56P4yIo4vRoqOBB4r2Rnvq7Sqe17ZLkhawVtYYZYPn0sDasHnHrElRxcN7pudMiqC1Ig2SWjPLPnqbgLcVz98GfKGq/byIeEpEHE+5yMKtxbS7RyPi9OIz31r1HknSAtXKiNGLI+LHlEeOSsVziteZmc9se3RSn6msI9o9OdWwfPZ8DR8WVpiTOquyj962iNhatP0+cBlwfUT8OnAf8AaAzNweEdcD36Nc0e6CzKxsV/FOnizXfWPxkCQtYE0nRpk5d0ktaRErryXaxtR0+d9FE5NT5W8F2vT5G97wYgsrSB00xz56L2/wnkuAS+q0bwFe1L7oJEm9Np8NXqWBUDs6tOeJvfuToop2JUUBJkWSJEk9ZGIk1VFvdKiTlrq2SJIkqada3uBVGgQbNu84aHSok1xbJEmS1FsmRlIdu5scISoND1EaPrQ/RqXhw5xGJ0mS1GNNT6WLiPfOdrym9Km0oDWqODdSGuZpTzmcickphiKYmp7hUPdkPXLYuiaSJEm91spX3c8oHqsolykdLR7vAE5sf2hS76xdvZxSg4TlzBcuoTQ8tH8z1kPdk3Vyz/ShfYAkSZIOWSvlui8GiIi/A07JzEeL1xcBf9OR6KQeqUxtu/iL23m4KnGZnJrm07fc13I1utLwEEcOH3bAZ1VYeEGSJKn35rM4YhnwRNXrJ4Dj2hKN1EfWrBzlqUcc/N1Bq0nRUASvO3WUC19z0kGjUKXhIQsvSJIk9YH5JEZ/BdwaERdFxIXAt4Fr2huW1B+aLcJQq/oP1kwmn7ttAoBLz13B6EiJAEZHSlx67goLL0iSJPWBlvcxysxLIuJG4OeLprdn5nh7w5L6Q6MiDHPZV/N6anqGDZt3cPO6s0yEJEmS+lDLI0YREZSLLTwrM/8U+FFEnNb2yKQ+MFsRhlbNd/RJkiRJnTefqXQfA14KvKl4/Sjw0bZFJPWJsfGJ/Ru9HmpJbrDIgiRJUj+bT2L0ksy8APh3gMx8GDiirVFJPTY2PsH6jdv2T6M71JLcAHue2MvY+MShf5AkSZLabj6J0XREDFEU54qIJRy8pEJa0CojRYeidpDp4T3TrN+4zeRIkiSpD80nMboc+Dzw3Ii4BPgmcGlbo5J6aGx8Yl4FF2qVhg/+41UpwiBJkqT+Mp+qdJ+OiNuAl1P+UnxNZt7V9sikDqisG9o9OcXSkdL+PYQqbc8qDfPo43sP+TzDh8Ge6foDqRZhkCRJ6j8tJ0YR8YeZ+XvA3XXapL5VWTdUmSI3MTnF2s/eAQnT+8qLiCanpttyrgY5EWARBkmSpH40n6l0v1in7RWHGojUafXWDU3P5P6kqFsqo1SSJEnqH02PGEXEO4HfBH4qIu6sOvQM4B/bHZjUbt2cwnZYQL1869lPHXaDV0mSpD7UylS6vwZupFxoYV1V+6OZ+VBbo5I6YOlIqS1FFZpRLykqDQ9x4WtO6sr5JUmS1Jqmp9Jl5iOZeQ/wBPBIZt6bmfcCGRGf6FSAUrusXb2c0vBQV885FEEAoyMlLj13haNFkiRJfarl4gvAz2TmZOVFZj4cESvbF5LUGZWk5KJN2/cXWQiKDbk6ZF8m37/sVR08gyRJktphPsUXDouIZ1deRMRzmF+CJfXE43ufLBk3n6Ro+LDgsNrdWxuwAp0kSdLCMJ+E5o+Bf4yIz1L+d+WvAJe0NSqpDSp7Fk1MTjEUwUzm/p+H4ulHHs7De+Yu610aHrICnSRJ0gIxnw1eryk2eD2T8kykczPze22PTDoEtXsWVZKhQ02KRkdKs1a3qyReo8Xmsa4pkiRJWhjmNQUuM7cD29sci9Q29fYsOlRBuYBDZRSq1uhIiZvXndXWc0qSJKk7ml5jFBHfLH4+GhE/rno8GhE/7lyIUuvavWdRAG8+fRlrVo7WrW7ntDlJkqSFrekRo8z8ueLnMw7lhEVp71cDD2Tmi+ocfxnwBeD7RdPGzPzAoZxTg6cdexYNRbAvk6U10+IqPzds3sHuyamDjkuSJGnhaToxioj3znY8Mz/U5Ed9EvgIcM0sff4hM1/d5OdJB1m7ejnvvm7rvN9fGh6add+hNStHTYQkSZIWkVbKdT+jeKwC3gmMFo93ACc2+yGZ+Q3goRbOK7VszcpRnv3U4Xm//3WnmvhIkiQNkqYTo8y8ODMvBo4CTsnM38nM3wFOBY5pc1wvjYg7IuLGiDipUaeIOD8itkTElgcffLDNIWihu/A1JzE81OSGQzU+d9sEY+MTbY5IkiRJ/Wo+VemWAU9UvX4COK4t0ZTdDrwgMx+LiFcCY8AJ9Tpm5lXAVQCrVq06tDrMWvAq+xZV1v2c+cIl89vBFZianmHD5h2OGkmSJA2I+SRGfwXcGhGfp/zPztcy+3qhlmTmj6ue3xARH4uIozLz39p1Di0+b/74t7j5X56coTkxOcWnb7lvvnkR0P7KdpIkSepf89ng9ZKIuBH4+aLp7Zk53q6AIuL5wA8zMyPiNMrT/X7Urs/X4jE2PsHFX9zOw3um6x4/1CHEpSOlQ/wESZIkLRQtJ0YREZSLLTwrMz8QEcsi4rTMvLXJ938GeBlwVETsAi4EhgEy80rg9cA7I2IvMAWcl5lOk9MB3je2jU/dcl/bPi84MJGabV+i2il7luqWJEla+OYzle5jwD7gLOADwKPA54CfbebNmfmmOY5/hHI5b6musfEJPt3GpAjKSdHoSGnOZGdsfIL1G7cxNT0DlKfsrd+4DcDkSJIkaQGbT2L0ksw8JSLGATLz4Yg4os1xSQ1t2LzjkKfJ1RodKXHzurOaOnclKaqwUIMkSdLC18o+RhXTETFEMfMoIpZQHkGSOmJsfIIzLruJ49d9mTMuu4mJDhRFaDRtrlajggwWapAWhoj4REQ8EBHfrWq7KCImImJr8Xhl1bH1EbEzInZExOqq9lMjYltx7PJimrkkaQGbT2J0OfB54LkRcQnwTeB/tjUqqVCZujYxOUVCR5IiaH4aXKOCDBZqkBaMTwJn12n/k8w8uXjcABARJwLnAScV7/lY8cUgwBXA+ZS3kzihwWdKkhaQlhKj4huxbwD/DbgUuB9Yk5l/04HYpLpT1+ZyRIubug618EXv2tXLKQ0PHdA2W6EGSf0lM78BPDRnx7JzgGsz8/HM/D6wEzgtIo4GnpmZ3yqKA10DrOlIwJKkrmlpjVFRQnssM08F7u5QTNJ+85mi9sRMayuQ3vSSY5vuWxlZsiqdtOi8KyLeCmwBficzHwZGgVuq+uwq2qaL57XtB4mI8ymPLLFs2bIOhC1Japf5FF+4JSJ+NjO/0/ZoNJBmK3+9dKTUselzFZ++5T6+dveDTSc4a1aOmghJi8sVwP+gvHb2fwB/DPwa5Ur+tXKW9oMbM68CrgJYtWqVW09IUh+bT2J0JvCOiLgH+AnFFjCZ+TPtDEyDoVH56y33PsSX77y/4eat7VRZu2TZbWkwZeYPK88j4uPAl4qXu4DqIeVjgN1F+zF12iVJC9h8EqNXtD0KDaxG5a/buXlrsyy7LQ2miDg6M+8vXr4WqFSs2wT8dUR8CFhKucjCrZk5ExGPRsTpwLeBtwJ/1u24JUnt1XRiFBFHAu8A/i9gG/CXmbm3U4FpMPRbmet+i0dSe0XEZ4CXAUdFxC7gQuBlEXEy5QHke4DfAMjM7RFxPfA9YC9wQWZWvsl5J+UKdyXgxuIhSVrAWhkxuprygtN/oDxqdCLw250ISoOjG2uIWmHZbWlxy8w31Wn+y1n6XwJcUqd9C/CiNoYmSeqxVhKjEzNzBUBE/CVwa2dC0mIyW2EFKJe/fs91W+uvWu6gCDjy8KEDpvFZdluSJGlwtbKP0f5V8E6hUzPqbc66fuM2xsYn9h/fsHlH15MigDe/ZBmXnruC0ZESAYyOlLj03BWuL5IkSRpQrYwYvTgiflw8D6BUvK5UpXtm26PTgtaosMJ///w23nP9VrIHGVFEOSn64JoVgBXoJEmSVNZ0YpSZQ50MRItPo0IGP3lipm57JwXw/cte1fXzSpIkaWFoZSqd1JJnlYZ7HcJ+h0Xsn8InSZIk1TIxUkeMjU/wkyf6ZynaTOYB65skSZKkaiZG6ogNm3cwPdOLsgqNVTZwlSRJkmqZGKkj+nWj1H6NS5IkSb1lYqSO6NeNUvs1LkmSJPWWiZE6Yu3q5ZSG+6uQ4fBQuIGrJEmS6jIxUkesWTnK604dJXodSJWnHXG4+xZJkiSprlY2eJVmNTY+wYbNO9g9OcXSkRIP/eRx+qn8wiNT070OQZIkSX3KxEhtMTY+wfqN25iaLm/eOtGHRQ5cXyRJkqRGTIw0L7WjQ3ue2Ls/Keq1Zz91mH+f3ndAPKXhIdcXSZIkqSETI7Wsn0eHSsNDXPiakwAOSNzWrl7u+iJJkiQ1ZGKklm3YvKNvRocqAg5KgEyEJEmS1Cyr0qll/bZJ6lD0U+07SZIkLUQmRmpZvxUxmMkkKU/pW79xG2PjE70OSZIkSQuMiZFatnb1coYP689RmqnpGTZs3tHrMCRJkrTAmBipZWtWjvL0Izu/PO3DbzyZD7/xZEZHSgQwUhrm2U8dJoDRWUat+m2qnyRJkvqfxRc0Lw/v6exmqaMjpTmLKJxx2U11K+KNPHW4o7FJkiRp8XHESC3r9BqeZvccWrt6OcNDB0/pe+zf97rOSJIkSS0xMVJLxsYn+J3r7+joOS49d0VTpbbXrBzlaUccPOg5vS9dZyRJkqSWmBipaWPjE6z97B3MZHbsHEMRLe0/9MhU/Sl9rjOSJElSK0yM1LSLv7id6ZnOJUVAy0lXo9Lh/VZSXJIkSf2t64lRRHwiIh6IiO82OB4RcXlE7IyIOyPilG7HqIO9b2xbxwsuwOzV5upZu3o5peGhA9qaXaMkSZIkVfRixOiTwNmzHH8FcELxOB+4ogsxaRbvG9vGp265r+PnmU9Cs2blKJeeu2J/Se/RkVLTa5QkSZKkiq6X687Mb0TEcbN0OQe4JjMTuCUiRiLi6My8vzsRqtZnvv2DjnzuW05fxtfufpDdk1MsHSmxdvXyeSU0a1aOmghJkiTpkPTjPkajQPW/xHcVbQclRhFxPuVRJZYtW9aV4AZRp4otfHDNio58riRJktSqfiy+cPDGNFD3X+aZeVVmrsrMVUuWLOlwWINnbHyCE//gxo5+viRJktQP+nHEaBdwbNXrY4DdPYplII2NT/De67ayr8PnuWjT9oZT4MbGJ9iwecchT7OTJEmSmtGPI0abgLcW1elOBx5xfVH3jI1P8O4uJEUAkw32IBobn2D9xm1MTE6RwMTkFOs3bnOESZIkSR3T9RGjiPgM8DLgqIjYBVwIDANk5pXADcArgZ3AHuDt3Y5xkF20aXuvQ2DD5h1MTc8c0DY1PcOGzTtmHTVylEmSJEnz1YuqdG+a43gCF3QpnEWv1WSh0ShON+2enGqpHZ4cZaokVJVRJsDkSJIkSXPqx6l0apNWpqS9b2wbP7X+hq7GN1Iartu+tMEmr43aYfZRJkmSJGkuJkaLWLPJwps//i0+dct9HSvL3UhE/cp0a1cvpzQ8dEDbXJu/zmeUSZIkSaowMVrEmkkWxsYnuPlfHupWSAd4eM903RGsNStHufTcFYyOlAhgdKTEpeeumHVK3HxGmSRJkqSKfizXrTZZOlJiok5ytHSktH/tUb3j3dSoqMKalaMHtc22Xmrt6uUHrDGCuUeZJEmSpApHjBaxRlPSznzhkv1rj/pBM9Pd5lovNZ9RJkmDJyI+EREPRMR3q9qeExFfiYh/Ln4+u+rY+ojYGRE7ImJ1VfupEbGtOHZ5RNTbnFyStIA4YrSIVZKC2lGWi7+4/aC1R73UzHS3Zkp41xtlkqQanwQ+AlxT1bYO+GpmXhYR64rXvxcRJwLnAScBS4G/j4j/lJkzwBXA+cAtlLeZOBu4sWu/hSSp7UyMFrnqZGFsfIKLv7idh/f0viR3RbPT3SyuIKkdMvMbEXFcTfM5lPfXA7ga+Drwe0X7tZn5OPD9iNgJnBYR9wDPzMxvAUTENcAaTIwkaUFzKt2AqExF64ekaKiYcdLKdDeLK0jqoOdl5v0Axc/nFu2jwA+q+u0q2kaL57XtB4mI8yNiS0RsefDBB9seuCSpfRwxGhD1pqJ10mEBQ4cF0zNPlgAvDQ/Ne92PxRUk9UC9dUM5S/vBjZlXAVcBrFq1qrt7IkiSWmJiNCC6XWhhX8Izjzicpz3l8LpV5FrVaL2Ua4oktcEPI+LozLw/Io4GHijadwHHVvU7BthdtB9Tp12StICZGC1ylXVFvfDI1DRbL/yltn2exRUkdcgm4G3AZcXPL1S1/3VEfIhy8YUTgFszcyYiHo2I04FvA28F/qz7YUuS2snEaBGrrCvqVQU61/9I6jcR8RnKhRaOiohdwIWUE6LrI+LXgfuANwBk5vaIuB74HrAXuKCoSAfwTsoV7kqUiy5YeEGSFjgTo0Ws2+uKqrn+R1I/ysw3NTj08gb9LwEuqdO+BXhRG0OTJPWYidEiMjY+ccAanE6tK3rL6cu47tYfML3vwHXEh0V5bdGo638kSZK0wJgYLRK10+Y6WWzhy3fef1BSBHD0s0rcvO6sjp1XkiRJ6hQTo0Wim9PmGu2F1Giz1dqRLEeTJEmS1G9MjBaJRklJN9UrtlBvJGv9xm0AJkeSJEnqG4f1OgC1x7NKw10710hpmNLw0AFtjYot1BvJmpqeYcPmHR2NUZIkSWqFI0aLRNTbh70Dhg8LLvrlk4DmNlttNJLVDyNckiRJUoWJ0SLRaN1Pu73xtGP3J0DNTIVrVB3PPY4kSZLUT0yMFph6hQy66bpbf8CqFzyn6fVBa1cvP2iTWfc4kiRJUr8xMVpAxsYnWPs3d+wvlT0xOcV7r99KncrZHTO9L9mweUfTiVGln1XpJEmS1M9MjBaQizZtP2j/oG4mRRWtrg9as3LUREiSJEl9zap0C8jkVHfWEc3F9UGSJElabEyMFoix8YlehwCUq9K5PkiSJEmLjYnRAtHtfX+C8n5FTzviyf2KRkrDbHjDi50WJ0mSpEXHNUYLRDf3/RkdKXHzurO6dj5JkiSp10yM+tjY+AQXbdre1bVFltKWJEnSIDIx6lO1pbm75XWnWkFOkiRJg8c1Rn1qw+YdXU+KAL5294NdP6ckSZLUayZGfWhsfIKJLq4pqtbNtUySJElSv3AqXR/pxZqiWu5RJEmSpEFkYtQnxsYnWL9xG1PTMz2LwcILkiRJGlQmRn1iw+YdPU2KRkdKrF293MILkiRJGkgmRn2iV2uKoLyZq/sWSZIkaZD1pPhCRJwdETsiYmdErKtz/GUR8UhEbC0e7+9FnN0yNj7R0/O7rkiSJEmDrusjRhExBHwU+EVgF/CdiNiUmd+r6foPmfnqbsfXCxs27+jZueutKxobn2DD5h3snpxiqVPsJEmSNAB6MZXuNGBnZv4rQERcC5wD1CZGA6EXpbmfdsQQe56YqZv01BaBmJicYv3GbQAmR5IkSVq0epEYjQI/qHq9C3hJnX4vjYg7gN3A72bm9toOEXE+cD7AsmXLOhBqZ42NT/De67Z2/bwjTz2C7R+ov6aoXhGIqekZNmzeYWIkSZKkRasXiVHUacua17cDL8jMxyLilcAYcMJBb8q8CrgKYNWqVbWf0Vdqp6ed+cIlfOqW+3oSy2ybuDY65savkiRJWsx6UXxhF3Bs1etjKI8K7ZeZP87Mx4rnNwDDEXFU90Jsr8r0tInJKZLy9LReJUUwe7GFRscs0CBJkqTFrBeJ0XeAEyLi+Ig4AjgP2FTdISKeHxFRPD+Ncpw/6nqkbdLLPYpqh+fm2sR17erllIaHWnqPJEmStNB1fSpdZu6NiHcBm4Eh4BOZuT0i3lEcvxJ4PfDOiNgLTAHnZWZfT5WbTS+noSXlzVubrTBXOWZVOkmSJA2SnmzwWkyPu6Gm7cqq5x8BPtLtuDpl6UipZxu4jo6UWt68dc3KURMhSZIkDZSeJEaDZGx8gj1P7O34eQI4/LBget+TA2uVKXDuSyRJkiTNrhdrjAbG+8a28Z7rtvLwnumOnqc0PMSbT1/G0498Ms8dKQ1z6bkrAA4q/LB+4zbGxic6GpMkSZK0kDhi1AFj4xNc/MXtHU+IoDxV7swXLuFzt00cUODh8b37APclkiRJkpphYtRmldLcnaxCF8CbT1/GB9eUR4TOuOymhsmP+xJJkiRJczMxarNOl+YerbNGaLbkp1HhB/clkiRJkp7kGqM262T1uUqFudopcLNtyuq+RJIkSdLcTIzabChqt1Rtn0YjQ7MlP2tWjnLpuSsYHSkRlJOrS89d4foiSaoREfdExLaI2BoRW4q250TEVyLin4ufz67qvz4idkbEjohY3bvIJUnt4FS6Npvp4D60jUaG5tqU1X2JJKlpZ2bmv1W9Xgd8NTMvi4h1xevfi4gTgfOAk4ClwN9HxH/KzM7NpZYkdZSJURt1sgR2wKzT30x+JKkjzgFeVjy/Gvg68HtF+7WZ+Tjw/YjYCZwGfKsHMUqS2sDEaA6tbI66fuOdHYsjwcRHkjorgb+LiAT+PDOvAp6XmfcDZOb9EfHcou8ocEvVe3cVbQeIiPOB8wGWLVvWydglSYfIxGgWtaW3K5ujbrn3Ib5294MHJEtb7n2Iqel9PY5YknQIzsjM3UXy85WIuHuWvvUWlB40l7pIrq4CWLVqVefmWkuSDpmJ0SwabY76qVvu2/96YnKKtZ+9g+mZ7tzvWhnBkiQ1LzN3Fz8fiIjPU54a98OIOLoYLToaeKDovgs4turtxwC7uxqwJKmtrEo3i2Y3Qe1mUrR+4zYmJqdIyknZe67byvvGtnXl/JK0WEXE0yLiGZXnwC8B3wU2AW8rur0N+ELxfBNwXkQ8JSKOB04Abu1u1JKkdnLEaBaNNkfthdLwYXVHsBL49C33seoFz3HkSJLm73nA56O85cLhwF9n5t9GxHeA6yPi14H7gDcAZOb2iLge+B6wF7jAinSStLA5YjSLevsD9cJhwKXn/kzDEaykPO1PkjQ/mfmvmfni4nFSZl5StP8oM1+emScUPx+qes8lmflTmbk8M2/sXfSSpHYwMZpFvc1RS8OduWQnPPdpdZOwkdIwH3rjyaxZOdpwHyNoftqfJEmSpIM5lW4OtfsDjY1PsPZv7mB6X3vXFV1w5glA401aoTyC9Z7rth5c9ojGm79KkiRJmpuJ0Tw87SmHMzk13dbP3LB5BzevO2vWdUJrVo6y5d6H+PQt9x2QHJWGh2bd/FWSJEnS7EyMGqhXFhvoyGgRND8V7oNrVrDqBc+xZLckSZLURiZGdTTa2BWyI0kRwLNKw033rZ3eJ0mSJOnQmBjV0Whj1056Yq9VXiVJkqResSpdHb2o8LZnel/XzylJkiSpzMSoDiu8SZIkSYPFxKiOXmzs+uynNr/GSJIkSVJ7mRjVsWblKK87dZShiK6cb3gouPA1J3XlXJIkSZIOZmJUx9j4BJ+7bYKZ7EwFusOiPEIUwOhIiQ2vf7FV5iRJkqQesipdHfWq0rXTM48cZvz9v9Sxz5ckSZLUGkeM6pjocFW6R6amO/r5kiRJklrjiFGVn7nwb/nx453fT6iVzVwlSZIkdd7AJ0bHrfty18/ZpZoOkiRJkpo00FPpepEUAUzucSqdJEmS1E8GOjHqFTeQlSRJkvqLiVGXlYaHWLt6ea/DkCRJklTFxKiLhiK49NwV7lkkSZIk9RkToy4pDQ/xx7/iRq6SJElSP+pJYhQRZ0fEjojYGRHr6hyPiLi8OH5nRJzSizjbIYDRkZIjRZIkSVIf63q57ogYAj4K/CKwC/hORGzKzO9VdXsFcELxeAlwRfFzQRkdKXHzurN6HYYkSZKkOfRixOg0YGdm/mtmPgFcC5xT0+cc4JosuwUYiYijux1osw4DhocO3JzIIguSJEnSwtGLxGgU+EHV611FW6t9em6kNMyH33gy/3rZq9jw+hczOlJy6pwkSZK0AHV9Kh3lZTe1ch59iIjzgfMBli1bduiRNektpy/jg2tWHNC2ZuWoiZAkSZK0QPVixGgXcGzV62OA3fPoQ2ZelZmrMnPVkiVL2h5oPfWSIkmSJEkLWy8So+8AJ0TE8RFxBHAesKmmzybgrUV1utOBRzLz/m4HWi2AD7/xZJMiSZIkaRHq+lS6zNwbEe8CNgNDwCcyc3tEvKM4fiVwA/BKYCewB3h7J2K557JXcdy6L9dtlyRJkjQ4erHGiMy8gXLyU912ZdXzBC7oRiwmQZIkSZJ6khhJkiRp4ak306ab/EJbndSLNUaSJEmS1FdMjCRJkiQNPBMjSZIkSQPPxEiSJEnSwLP4giRJWhB6vfBf0uLmiJEkSZKkgWdiJEmSJGngmRhJkiRJGniuMZIkaR4i4mzgT4Eh4C8y87IehyQter1eZ+YGs4ubI0aSJLUoIoaAjwKvAE4E3hQRJ/Y2KknSoXDESJKk1p0G7MzMfwWIiGuBc4Dv9TSqDuv1t/VSr/XDnwFHrTpn0SRGt912279FxL2H8BFHAf/Wrng6pN9j7Pf4oP9j7Pf4oP9j7Pf4oP9jPJT4XtDOQPrYKPCDqte7gJfUdoqI84Hzi5ePRcSOLsS2UPT7n4N+5rWbvwV/7eIPe3bqBX/tCg3vU4smMcrMJYfy/ojYkpmr2hVPJ/R7jP0eH/R/jP0eH/R/jP0eH/R/jP0eX5+IOm15UEPmVcBVnQ9n4fH/s/nz2s2f127+BuHaucZIkqTW7QKOrXp9DLC7R7FIktrAxEiSpNZ9BzghIo6PiCOA84BNPY5JknQIFs1UujZYCFMd+j3Gfo8P+j/Gfo8P+j/Gfo8P+j/Gfo+v5zJzb0S8C9hMuVz3JzJze4/DWmj8/2z+vHbz57Wbv0V/7SLzoCnRkiRJkjRQnEonSZIkaeCZGEmSJEkaeAOXGEXE2RGxIyJ2RsS6OscjIi4vjt8ZEaf0WXwvi4hHImJr8Xh/l+P7REQ8EBHfbXC8p9evyRh7fQ2PjYivRcRdEbE9In67Tp+eXccm4+v1NTwyIm6NiDuKGC+u06eX17CZ+Hp6DaviGIqI8Yj4Up1jPf/zrMUjIp4TEV+JiH8ufj67Tp85//4ZFP3+75V+1sS1e3Nxze6MiH+MiBf3Is5+NNe1q+r3sxExExGv72Z8HZeZA/OgvED2X4D/CBwB3AGcWNPnlcCNlPeoOB34dp/F9zLgSz28hv83cArw3QbHe3b9Woix19fwaOCU4vkzgH/qs/8Pm4mv19cwgKcXz4eBbwOn99E1bCa+nl7DqjjeC/x1vVj64c+zj8XzAP4/YF3xfB3wh3X6zPn3zyA8+v3fK/38aPLa/Wfg2cXzV3jtmr92Vf1uAm4AXt/ruNv5GLQRo9OAnZn5r5n5BHAtcE5Nn3OAa7LsFmAkIo7uo/h6KjO/ATw0S5deXj+gqRh7KjPvz8zbi+ePAncBozXdenYdm4yvp4rr8ljxcrh41FaS6eU1bCa+nouIY4BXAX/RoEvP/zxrUTkHuLp4fjWwprbDQvj7p0v6/d8r/WzOa5eZ/5iZDxcvb6G8D5ma/3fo/wt8Dnigm8F1w6AlRqPAD6pe7+Lgv3Cb6dMpzZ77pcUUnRsj4qTuhNa0Xl6/VvTFNYyI44CVlEcUqvXFdZwlPujxNSymgG2l/BfzVzKzr65hE/FB7/8//DDw34B9DY73xf+HWjSel5n3QzkBAp47W+c5/v5Z7Pr93yv9rNXr8uuUR97UxLWLiFHgtcCVXYyrawZtH6Oo01b7LW4zfTqlmXPfDrwgMx+LiFcCY8AJnQ6sBb28fs3qi2sYEU+n/I3LuzPzx7WH67ylq9dxjvh6fg0zcwY4OSJGgM9HxIsys3pdWU+vYRPx9fQaRsSrgQcy87aIeFmjbnXa+u3Ps/pIRPw98Pw6h/57i58z298/g6Df/73Sz5q+LhFxJuXE6Oc6GtHC0cy1+zDwe5k5E1Gv+8I2aCNGu4Bjq14fA+yeR59OmfPcmfnjyhSdzLwBGI6Io7oUXzN6ef2a0g/XMCKGKd/0P52ZG+t06el1nCu+friGVbFMAl8Hzq451Bf/LzaKrw+u4RnAL0fEPZSnS5wVEZ+q6dMX11ALR2b+Qma+qM7jC8APK1O9ip91p+E08ffjIOj3f6/0s6auS0T8DOVpxOdk5o+6FFu/a+barQKuLe4drwc+FhFruhJdFwxaYvQd4ISIOD4ijgDOAzbV9NkEvLWo9nI68Ehl6L8f4ouI50eRokfEaZT/G/bTH+heXr+m9PoaFuf+S+CuzPxQg249u47NxNcH13BJMRJDRJSAXwDurunWy2s4Z3y9voaZuT4zj8nM4yj/XXNTZr6lplvf/3nWgrIJeFvx/G3AF2o7NPn34yDo93+v9LNm/i21DNgI/Gpm/lMPYuxXc167zDw+M48r7h2fBX4zM8e6HmmHDNRUuszcGxHvAjZTrqjxiczcHhHvKI5fSbnCxiuBncAe4O19Ft/rgXdGxF5gCjgvM7s2dB4Rn6FcTeuoiNgFXEh5YXnPr18LMfb0GlL+pv5XgW3FGhSA3weWVcXYy+vYTHy9voZHA1dHxBDlhOL6zPxSv/xZbjK+Xl/DuvroGmrxuQy4PiJ+HbgPeANARCwF/iIzX0mDv3+KUdWB0e//XulnTV679wP/gfJoB8DezFzVq5j7RZPXblGLPrgPS5IkSVJPDdpUOkmSJEk6iImRJEmSpIFnYiRJkiRp4JkYSZIkSRp4JkaSJEmSBp6JkSRJkqSBZ2IkSZIkaeCZGElqKCL+LCJuj4if7XUskiS1yvuYWmFiJKmuiHga8FzgN4BX9zgcSZJa4n1MrTIx0qIUEf8hIrYWj/8TERNVr49o87lmqj57a0Qc187Pn0c8x0XEVERsnaPf1yNidU3buyPiYwCZ+RPgaODrwOXF8VLxOz4REUd15BeQpEWkXfejiPjHdvRp4Xy197Z17frsOudqy32reP3nEXEGeB9T6w7vdQBSJ2Tmj4CTASLiIuCxzPyj2n4REUBk5r5DON1UZp7c6pvadO5G/qWJmD4DnAdsrmo7D1hbxPcfgKcCjwIzAJk5BZwcEfe0OV5JWpTadT/KzP/cxLnm7NOCWe9ttfE2e0+bpd8h37cKLwF+sziX9zG1xBEjDZzim6m7im+Ybgd+PiK+W3X8d4ubFxHxloi4tfh26c8jYqiF87w3Ir5bPN7d4NzHRsRbI+LOiLgjIv6q6v0HnTsinhYRXy76fjci3thEHI1+h88Cr46Ip1RiA5YC3yyOvw/4I2A7cGKzv7ckqTkN7gljEXFbRGyPiPOr+j5W856PF33+LiJKLfT5g4i4OyK+EhGfiYjfPYR4f75O/E3d+5o4V71716z3rYj4aeCfMnOm+BjvY2qJiZEG1XLgmsxcCdxbr0PxF+wbgTOKb7FmgDfX6VoZlt8aEZ8v3nsq8HbK31ydDvzXiFhZ59xPB/47cFZmvhj47TnOfTawOzNfnJkvAv52tl9ytt+h+Bbz1uIzofyt23WZmcXN5j8D1wF3ASfNdh5J0rztvydk5r3Ar2XmqcAq4LeKUY9aJwAfzcyTgEngdc30iYhVRd+VwLnFORqpvrdtrfoirvb+Wf36KJq49xW/Z0ON7l2z3beK16+guC96H9N8OJVOg+rezLxljj4vB04FvlMe+acEPFCnX73pBj8HfL6Y30xEbAR+HthUc+6zgM9m5r8BZOZDc5z7r4E/iog/BL6Umf9wiL9DZVrCF4qfv1a0fxD4QJEkeUORpM6pvR/9VkS8tnh+LOUE50c17/l+Zm4tnt8GHFfnc+v1OQr4QjGdjIj44ixxHXRvK5KN2nirXzd775vLbPeuRvctgNWUEzPwPqZ5MDHSoPpJ1fO9HDh6emTxM4CrM3P9PD4/mjx3AFmnT8NzF6NRrwQujYi/y8wPzBHHbL/DGPChiDgFKGXm7RFxMuVvEn8uIj5K+Xpsm+UckqT5239PiIiXAb8AvDQz90TE13nynlTt8arnM5QTh2b6zHZvatZPZnnd7L1vLrPdu8aouW8BRMRTgZHM3O19TPPlVDoJfgg8N8qVg57CkyU9vwq8PiKeCxARz4mIFzT5md8A1kTEU6NcLvS1QL3Rna8Cv1KZKhERz5nt3BGxFNiTmZ+iPG/6lDnimPV3yMzHKFfr+QTlb+EA/hB4TWYel5nHAS/Gb9okqRueBTxcJEUvpDwdrZ2+CbwmIo6MiKcDr2rz5zd775tLw3tXg/sWwJnA14rn3sc0L44YaeBl5nREfAD4NvB94O6i/XsR8T7g7yLiMGAauIAGa5JqPvP2iPgk5bnQAH+RmeNRU8o7M7dHxCXA/46IGWAc+C+znPtZwIaI2Fe0vXOOOJr5HT4DbATOi4izgKdl5lerPuOHUS768JyqqX6SpPb7W+AdEXEnsANodupZUzLzOxGxCbiD8n1gC/BIg+6lOLB89t8CV87x+U3d+5qIc6571/77VtXbXgF81vuYDkU8uV5N0mJQ3IC+VBRn6NQ57gFWVdZGSZIWhoh4emY+Vkw9+wZwfmU6Wg9jOo5DvG9FxO3ASzJzusn+9+B9TDWcSictPjPAs2KOjfLmI4qN8YBhoBP7L0mSOuuq4u/x24HP9TopKhzyfSszT2kmKfI+ptk4YiRJkiRp4DliJEmSJGngmRhJkiRJGngmRpIkSZIGnomRJEmSpIFnYiRJkiRp4JkYSZIkSRp4JkaSJEmSBt7/D4uPS0EKM6OlAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1008x504 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(14,7))\n",
    "plots.force_scatter_histogram()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 22,
   "id": "6bc97148-4858-4493-b527-e57037a9f7cb",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAGvCAYAAACUx354AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABH1klEQVR4nO3df5ikZXng++89baOFvxriaJiGCWyWDAEnMDIiWZKzgskOagwtiYqr0Y1ey8Y1m5hkZzOTsCu4chhP+yMxUTckumIkKpGhRVFbIrgejYBgj4wjdCRBkRqOkEgblA40Pff5o94aqnuquqt66ld3fT/XVVfX+9T7466enn77rud57icyE0mSJEkaVOt6HYAkSZIk9ZJJkSRJkqSBZlIkSZIkaaCZFEmSJEkaaCZFkiRJkgbaE3odQDs84xnPyOOPP77XYUjSQLvtttv+MTPX9zqOfuR9SpJ6b6n71JpIio4//nhuvfXWXochSQMtIr7T6xj6lfcpSeq9pe5TDp+TJEmSNNBMiiRJkiQNNJMiSZIkSQPNpEiSJEnSQDMpkiRJkjTQTIokSZIkDTSTIkmSJEkDzaRIkiRJ0kAzKZIkSZI00EyKJEkDIyKGImIqIj5VbB8dEddHxLeKr0fV7LszIu6KiOmI2FbTfnpE7C1ee3dERC/eiySpfUyKJEmD5LeBO2q2dwCfz8wTgc8X20TEycAFwCnAucB7I2KoOOZ9wIXAicXj3O6ELknqFJMiSdJAiIhjgRcDf1HTfB5wRfH8CmCspv2jmflIZt4N3AWcERHHAE/LzK9kZgIfqjlGkrRKmRRJkgbFHwH/DThQ0/aszLwPoPj6zKJ9FPhuzX73Fm2jxfPF7YeIiAsj4taIuPWBBx5oyxuQJHXGE3odgCSpcyamyoxPTrN/ZpYNIyW2b9vE2Ja6f8OvaRHxS8D9mXlbRDy/mUPqtOUS7Yc2Zl4OXA6wdevWuvtIkvqDSZEkrVETU2V27t7L7Nw8AOWZWXbu3gswiInRWcAvR8SLgCcBT4uIDwPfi4hjMvO+Ymjc/cX+9wLH1Rx/LLC/aD+2TrskaRXru+FzEXFcRNwYEXdExL6I+O1exyRJq9H45PTBhKhqdm6eSz65j7N23cAJO67jrF03MDFV7lGE3ZOZOzPz2Mw8nkoBhRsy89XAtcBri91eC3yieH4tcEFEPDEiTqBSUOGWYojdQxFxZlF17jU1x0iSVql+7Cl6DPi9zPxaRDwVuC0irs/Mb/Y6MElaTfbPzNZtf/DhOR58eA4Y+N4jgF3AVRHxeuAe4GUAmbkvIq4CvknlvvTGzKxmmG8APgiUgM8UD6mjjt9xXU+v/+1dL+7p9aVO67ukqPgUrjrp9aGIuIPKJFaTIklqwYaREuUGiVGt2bl5xienByYpyswvAF8onv8T8IIG+10KXFqn/Vbg2Z2LUJLUbX03fK5WRBwPbAFurvOaVX0kaQnbt22iNDy0/I407lWSJGkQ9G1SFBFPAa4G3pSZ/7z49cy8PDO3ZubW9evXdz9ASepzY1tGuez8zYyOlAhgdKTESGm47r5Pb9AuSdIg6LvhcwARMUwlIboyM3f3Oh5JWq3GtowuGBY3MVVm+19/nbkDCytE/+jRx5iYKg/MEDpJkmr1XU9RUc3n/cAdmfnOXscjSWvJ2JZRnvKkQz8Pm5tPxienexCRJEm913dJEZW1JH4NOCci9hSPF/U6KElaK2aKynOLOa9IkjSo+m74XGZ+iforhkuS2qBRVboNI6UeRCNJUu/1Y0+RJKmD6lWlKw0PsX3bph5FJElSb/VdT5EkqbOqxRTGJ6fZPzPLhpES27dtssiCJGlgmRRJ0gCqrUo3MVVmfHKa3/nYHhMkSdJAMimSpAE2MVVm5+69zM7NA1CemWXn7r0AJkaSpIHhnCJJGmDjk9MHE6Kq2bl5y3NLkgaKSZEkDbBGZbgtzy1JGiQmRZI0wBqV4bY8tyRpkJgUSdIAszy3JEkWWpCkgWZ5bkmSTIokaeDVlueWJGkQOXxOkiRJ0kAzKZIkSZI00EyKJEmSJA00kyJJkiRJA82kSJIkSdJAMymSJEmSNNAsyS1JHTAxVXbtH0mSVgmTIklqs4mpMjt372V2bh6A8swsO3fvBViQGJk4SZLUHxw+J0ltNj45fTAhqpqdm2d8cvrgdjVxKs/MkjyeOE1MlbscrSRJMimSpDbbPzO7bHsziZMkSeoOkyJJarMNI6Vl25tJnCRJUneYFElSm23ftonS8NCCttLwENu3bTq43UziJEmSusOkSJLabGzLKJedv5nRkRIBjI6UuOz8zQuKKDSTOEmSpO6w+pwkdcDYltElK8lVX2u2+pyV6iRJ6hyTIknqkeUSp6pmS3xLkqSVcficJPU5K9VJktRZJkWS1OesVCdJUmc5fE6SumSl84I2jJQo10mArFQnSVJ72FMkSV1QnRdUnpkleXxe0MRUedljrVQnSVJnmRRJUhcczrygZkp8S5KklXP4nCR1QaP5P+WZWc7adcOyQ+marVQnSZJaZ0+RJHXBUvN/WhlKp5WJiCdFxC0R8fWI2BcRlxTtF0dEOSL2FI8X1RyzMyLuiojpiNhW0356ROwtXnt3REQv3pMkqX1MiiSpC+rNC6plie2OewQ4JzNPBU4Dzo2IM4vX3pWZpxWPTwNExMnABcApwLnAeyOi+g/4PuBC4MTicW733oYkqRNMiiSpw6pV52bn5hlaolPBEtudkxU/LDaHi0cucch5wEcz85HMvBu4CzgjIo4BnpaZX8nMBD4EjHUwdElSF5gUSVIbTEyVOWvXDZyw4zrO2nXDwaFwtVXnAOYzaZQWWWK7syJiKCL2APcD12fmzcVLvxkRt0fEByLiqKJtFPhuzeH3Fm2jxfPF7fWud2FE3BoRtz7wwAPtfCuSpDYzKZKkw7RUue16VecSDkmMLLHdeZk5n5mnAcdS6fV5NpWhcD9JZUjdfcA7it3r5a71/umq7fWud3lmbs3MrevXrz/M6CVJnWT1OUlaoWrSU29h1eocoXqvQeWv6NGRUssLuerwZeZMRHwBODcz315tj4g/Bz5VbN4LHFdz2LHA/qL92DrtkqRVzKRIklag2ju0uBeoVqOECCoJ0Zd3nNOJ0FRHRKwH5oqEqAT8AvC2iDgmM+8rdnsp8I3i+bXAX0XEO4ENVAoq3JKZ8xHxUFGk4WbgNcCfdPXNSJLazqRIklag3rC4Vpx9ksOpuuwY4Iqigtw64KrM/FRE/GVEnEal8+7bwH8CyMx9EXEV8E3gMeCNmVn9B38D8EGgBHymeEiSVjGTIklagcOtFHfjnU6876bMvB3YUqf915Y45lLg0jrttwLPbmuAkqSestCCJK3A4VaKs/y2JEn9w6RIklag3mKspeEh/ugVpzHaRMJk+W1JkvqHw+ckaRnVKnP1KsU1al+qCIPltyVJ6i8mRZK0hMVV5qprEAGMbRmtW0Z7ccI0cuQwmfCD2TnLb0uS1IdMiiRpCfWqzFXXIFoqsWmUMEmSpP7jnCJJWkKjgggWSpAkae0wKZKkJTQqiGChBEmS1g6TIklawtknrScWtVkoQZKktcWkSJIauGhiL1fedA9Z0xbAr5zufCFJktYSCy1IUh0XTezlwzfdc0h7Ajfe+UD3A5IkSR1jT5EkLTIxVebKOglRVXlmlhN2XMdZu25gYqrcxcgkSVIn2FMkac1ZarHVZvYZn5xeMGSunqSSHL3pY3u45JP7ePNLTnFInSRJq5RJkaQ1ZbnFVpfbp7rdigcfnjvkGpIkafVw+JykNWWpxVaX2+fia/ctSI5asfgakiRp9bCnSNKa0sxiq432mZmdW/LcAUsOq3NBV0mSVid7iiStKc0stjpy5PCKzr3cPCMXdJUkaXUyKZK0pmzftonS8NCCtsWLreZy2c0KuKCrJEmrl8PnJK05T3zCuoNzho46cviQynA/WGaYXCsCGla4kyRJq4NJkaQ1Y3FVOYB/mTtwyH6l4XU8XKe9kUZziUZHSnx5xzkriFSSJPUTh89JWhMmpsr87lV7lq08NzFVbikhGorgVWduZHgoFrQPD4XD5SRJWiNMiiStehNTZbZ//OscaDBXqDwzy1m7bji4YGuzhtcF73j5qWz9iaMP6Sqam08u+eQ+JqbKhxG5JEnqBw6fk7TqjU9OMze/dPWE6gKti3uSlhQ156+TcbloqyRJa4M9RZJWvWbXB2opIaLSGzQ+Ob3k+V20VZKk1c+kSNKq18n1gfbPzC57fhdtlSRpdTMpkrTqbd+26ZBCCO1SLbe9eO2jxftIkqTVy6RI0qo3tmWUM44/qu3nrS7IOrZllMvO38xIabjhPpIkafUyKZK06k1Mlfny33+/reccHSlx2fmbDxZQGNsyyp43/zv+6BWnMTpSIursI0mSVierz0la9dpd6CCg4aKsY1tGTYIkSVpj+rKnKCI+EBH3R8Q3eh2LpP42MVWm3OZCB84RkiRpsPRlUgR8EDi310FI6m8TU+WD6wS1i3OEJEkaPH05fC4zvxgRx/c6Dkn9aWKqzPjkdNt6iIYiOJB5sNKcw+MkSRosfZkUSVI9E1NlLvnkPh58eK5t5ywND1ksQZKkAbdqk6KIuBC4EGDjxo09jkZSp1WHys3OzR/2uQJIKtXj7BmSJEmrNinKzMuBywG2bt2aPQ5H0mGqDonbPzNbdxjb+OR0WxIiqCREtWsQSZKkwbZqkyJJa8fEVJntH/86c/OVzzfKM7Ns//jXD77ezvlDVbNz84xPTpsUSZKk/kyKIuIjwPOBZ0TEvcCbM/P9vY1KUqdc8sl9BxOiqrn55A+v2cuBpG09RIvtb3OiJUmSVqe+TIoy85W9jkFS9zQqnPCjRzuTDFWti+CEHddZdU6SpAHXr+sUSVJbDK8LnnzEUN3X5jNJKsP1du7ey8RUubvBqWsi4kkRcUtEfD0i9kXEJUX70RFxfUR8q/h6VM0xOyPiroiYjohtNe2nR8Te4rV3R0T04j1JktrHpEhSz42Uhjty3tGREuMvO5V9bzmXP3rFaYyOlAgq6xItVp1jpDXrEeCczDwVOA04NyLOBHYAn8/ME4HPF9tExMnABcApVBYTf29EVLPr91Gpfnpi8XCxcUla5UyKJPXcxb98CsPr2vthewBf3nHOwSFxY1tG+fKOc7h714s5kPULVjrHaO3Kih8Wm8PFI4HzgCuK9iuAseL5ecBHM/ORzLwbuAs4IyKOAZ6WmV/JzAQ+VHOMJGmVMimS1HNjW0YZf9mpdXtwVmrDSKnl15Y6RqtfRAxFxB7gfuD6zLwZeFZm3gdQfH1msfso8N2aw+8t2kaL54vb613vwoi4NSJufeCBB9r6XiRJ7WVSJKkvjG0ZbdiD06qgMk/orF031J0ntH3bJkrDC+cZVdct0tqVmfOZeRpwLJVen2cvsXu9DD2XaK93vcszc2tmbl2/fn3L8UqSuqcvq89JGhy1i7aui2B+hYlR8PhfrNUzVAsoAAsqy1WfL7VYrNauzJyJiC9QmQv0vYg4JjPvK4bG3V/sdi9wXM1hxwL7i/Zj67RLklYxkyJJPTMxVWbn7r0H1yFaaUIE8K5XnFZ3kddGi7SObRk1CRogEbEemCsSohLwC8DbgGuB1wK7iq+fKA65FviriHgnsIFKQYVbMnM+Ih4qijTcDLwG+JPuvhtJUruZFEnqmfHJ6bYszDo6UmJsyyi/87E9dV9vpoBCbY+VPUdr0jHAFUUFuXXAVZn5qYj4CnBVRLweuAd4GUBm7ouIq4BvAo8Bb8zM6g/rG4APAiXgM8VDkrSKmRRJWpGVJhG1x7VnBhEH5wJtGCkd0lNUbV8uptoeq0bD7rR6ZebtwJY67f8EvKDBMZcCl9ZpvxVYaj6SJGmVsdCCpJZVk4hykdg0u/jp4uPa4agjhw8mListoFCvx8p1iyRJGhz2FElq2VJJxFI9K5d8cl9bhstVlYaHePNLTjm4vVwBhUa9W42G17lukSRJg8GkSFLLVpJETEyVefDhubbFcMRQcNn5m5suoLDUELmVDruTJElrg8PnJLVsJYuftnso2tx8awPwlurdct0iSZIGm0mRpJbVSyKG1wUPP/oYJ+y47pBFUy+a2Fu3J+ZwJK0lWkv1bo1tGeWy8zczOlIiqFSzq9cLJUmS1iaHz0lq2eK5O08vDfOjRx87ODyuOjTt1u98n9233cvDcwc6Ekcrc36WGyLnukWSJA0ue4okrcjYllG+vOMc7t71Yp78xCccMpxtdm6eK2+6p2MJEbQ258chcpIkqRF7iiQdtkY9Nu0qu11PqwnNcpXpJEnS4DIpknTYGg1Na7ehCA5krjihcYicJEmqx6RI0mHbvm0T2z/+9ZYrwrXqQCZ373pxR68hSZIGj3OKJLVHZ/MhwHWDJElSZ5gUSTps45PTzB3obFZkUQRJktQpDp+TdNhaKY3diqEI5jMZtSiCJEnqIJMiSS2bmCovqOI2cuTwwTWK2uXI4XV883++sK3nlCRJqsekSFLTJqbKXPLJfQsSoPLMLNGBaz1x0ZpCkiRJnWJSJKkpE1Nldu7ey+zc/CGvdWI20Uybe54kSZIasdCCpKaMT07XTYg6xUpzkiSpW0yKJDWlU8UU6rHSnCRJ6iaTIklN6WTPzUhpmNGREgGMjpS47PzNVpqTJEld45wiSU05/sdKlDvUW/SD2Tn2vPnfdeTckiRJy7GnSNKyJqbK/O3ff79j53f+kCRJ6iWTIknLGp+c7kiFOXD+kCRJ6r2mh89FxNFN7HYgM2dWHo6kfjMxVe7YsLnRkRLbt21y/pAkSeqpVuYU7S8eS63TOARsPKyIJPWN6tpEnfDqMzfy1rHNHTm3JElSK1pJiu7IzC1L7RARU4cZj6Q+8ge7b2d27kBHzn3jnQ8wMVW2l0iSJPVcK0nRz7ZpH0l97KKJvfzVzfdwoFOTiArlmdmDvVAmRpIkqZeaTooy818avRYRI5k5s9Q+kvrTxFSZ8clp9s/M8qThdR3rGapndm6e8clpkyJJktRTyyZFEXE68EvAu4F54GTglJrHs4EjgaM6F6akTqjOGZqdmwfoWEJUGh46eI3F9neoiIMkSVKzminJ/WfAp4B7gDuB/wmcBtwFbAa2ZKYJkbQKjU9ON0xW2mV0pMRl529mtMFaRK5RJEmSeq2Z4XN/C2wHvkalR+jPM/MqgIjYnpn3dzA+SR3UyV6a0vAQl52/ecHQuNpeqeo+rlEkSZJ6bdmkKDN/KyKOzMyHi7WKLoqI3wHeAh1bz1FSC6rzgsozswxFMJ/Z1BpApeF1PNyBIXNDEfzK6aMLrl19Xp2/tME1iiRJUp9oqtBCZj5cfP0+8LsRcTyVYXTPiojnZ+YXOhahpCUtnhc0n5XPKpar7jYxVe5IQlSN4erbymz9iaMPSYxMgiRJUr9pZk4RABHxsxERAJn57cz8NeAsYEdEfLFTAUpa2lLzgmbn5rn42n2ctesGTthxHWftuoGJqfLB4zqpWllOkiSp37WyTtFrgfdExN8BnwU+m5l7gHMj4uxOBCdpecvNC5qZnWNmdg5Y2HtU7kLVNyvLSZKk1aCVdYp+AyAiTgJeCHwwIp4O3Ah8NiKGMrOzZawkHWLDSKmlBGd2bp5LPrmvgxE9zspykiRpNWh6+FxVZt6Zme/KzHOBc4AvAS8Dbm53cJKWt33bJkrDQy0d8+DDcx2K5nFWlpMkSatFK3OK/jQizqpty8zZzPx0Zv6XzNza/vAkLWdsy+iCdYCGKlP/GB0pcdSRwx299qvP3LjgGsWlD65NZFEFSZK0GrQyp+hbwNsj4hjgY8BHijlFknpscVW3iakyF1+77+Bcok5569hm3jq2uaPXkNohIo4DPgT8OHAAuDwz/zgiLgb+I/BAsesfZOani2N2Aq8H5oHfyszJov104INACfg08NuZ6RIVkrSKtTKn6I+BP46InwAuAP53RDwJ+Ajw0cz8uw7FKKkFF03s5cM33dPx64yUOtsLJbXZY8DvZebXIuKpwG0RcX3x2rsy8+21O0fEyVTudacAG4C/iYifKubOvg+4ELiJSlJ0LvCZLr0PSVIHrGRO0Xcy822ZuQX498BLgTvaHpmklk1MlbmyCwkRVKra1Zb4lvpZZt6XmV8rnj9E5b611PjO86h84PdIZt4N3AWcUYyWeFpmfqXoHfoQMNbZ6CVJndbK8DkAImKYyqdiFwAvAP4PcEmb45LUwMRUmfHJafbPzLJhpMTZJ63nxjsfYP/MLOsi6PQYnoCD11hugVipHxULkG+hUiDoLOA3I+I1wK1UepMepJIw3VRz2L1F21zxfHF7vetcSKVHiY0bN7b3TUiS2qqVQgu/GBEfoHIDuJDKkIGfzMxXZOZEh+KTVGNiqszO3Xspz8ySVJKSD990z8Ht+Q5OaxheF4yUhg9JulykVatJRDwFuBp4U2b+M5WhcD8JnAbcB7yjumudw3OJ9kMbMy/PzK2ZuXX9+vWHG7okqYNa6Sn6A+CvgP+amd/vUDySljA+Oc3sXG+WA3vKk57ATINS3i7SqtWgGOlwNXBlZu4GyMzv1bz+58Cnis17geNqDj8W2F+0H1unXZK0ijXdU5SZZ2fmnwMPRsSrI+J/AETExog4o2MRSjqol8nHzMNzDRdjdZFW9buICOD9wB2Z+c6a9mNqdnsp8I3i+bXABRHxxIg4ATgRuCUz7wMeiogzi3O+BvhEV96EJKljWi60ALwX+FnglcX2Q8B72haRpIZ6mXxsGCmxfdsmhtctHD00vC5cpFWrwVnArwHnRMSe4vEi4P+JiL0RcTtwNvA7AJm5D7gK+CbwWeCNReU5gDcAf0Gl+MLfY+U5SVr1Wi60ADwvM58TEVMAmflgRBzR5rgk1bF92yZ27t7b9SF0w0M1ic/iGRX1ZlhIfSYzv0T9n9ZPL3HMpcClddpvBZ7dvugkSb22kqRoLiKGKCaWRsR6KgvhSeqAxdXmnrPx6dz0Dw8yn8lQBJnZ8f+ATz7iCYxtGeWsXTcwN79wTvncfDI+OW31OUmStGqtJCl6N3AN8MyIuBT4VeCitkYlCXi82ly1Z6g8M0u5Zl5RJ6vN1frBbKXAQqM5TRZakCRJq1nLSVFmXhkRt1FZoyiAscx08VapA3pZba5WdS7ThpHSgqRs8euSJEmr0UoKLZCZd2bmezLzT02IpM7phx6Y0vDQwflE27dtojQ81PB1SZKk1aiVxVu/1o59JDWvVz0woyMlovh62fmbD84XGtsyymXnb274uiRJ0mrUyvC5ny5KljYSwNMPMx5JNXpRbW50pMSXd5zT8PWxLaMmQZIkaU1pJSk6qYl9ej/5QVpDqslHtfrcyJHDPPjwXMeu51A4SZI0iJpOijLzO50MRFLF4hLc27dtYvu2TYxPTtctctAuo8W17AWSJEmDZiUluSV1SL0S3Ns//vVD1gbqhKWGzEmSJK1lK6o+J6kz6pXg7kZCNBTR8WtIkiT1q5Z7iiLiZcBnM/OhiLgIeA7w1sy08py0hHrD4hYPVetVCe5XPu+4nlxXkiSpH6ykp+i/FwnRzwHbgCuA97U3LGltqQ6LK8/MklSGxe3cvZeJqfKCfdb1qMfmrWObe3JdSZKkfrCSpKg6tufFwPsy8xPAEe0LSVp76g2Lm52bZ3xyGng8aZrPzg+VW2y0R2shSZIk9YuVJEXliPgz4OXApyPiiSs8jzQwGg2Lq7bXS5q6wRLckiRJK0tmXg5MAudm5gxwNLC9nUFFxLkRMR0Rd0XEjnaeW+qFDQ16Y6rtnSy1vVh1gN7oSInLzt9sCW5JkjTwWk6KMvPhzNydmd8qtu/LzM+1K6CIGALeA7wQOBl4ZUSc3K7zS72wfdsmSsNDC9qqvTQTU2W6OZMoqSREX95xjgmRJEkSK0iKouLVEfE/iu2NEXFGG2M6A7grM/8hMx8FPgqc18bzS103tmWUy87fzOhIiWBhL80f7L6dbs8k6lWVO0mSpH60ksVb3wscAM4B3gI8BFwNPLdNMY0C363Zvhd43uKdIuJC4EKAjRs3tunSUueMbRk9pGfmoom9PDx3oOuxNBrOJ0mSNIhWMqfoeZn5RuBfADLzQdpbfa7eSKJDPkjPzMszc2tmbl2/fn0bLy91z4dvuqfr17S4giRJ0kIrSYrmink/CRAR66n0HLXLvUDtSpLHAvvbeH6pL9SuUdQpw+uCV5+5se6wPUmSJFWsZPjcu4FrgGdGxKXArwL/vY0xfRU4MSJOAMrABcC/b+P5pZ67aGJvx3uJjjpymDe/5BQTIEmSpGW0nBRl5pURcRvwAipD3cYy8452BZSZj0XEb1Ip+z0EfCAz97Xr/FIvTUyV+YPdt3d0HtHoSInt2zaZDEmSJDWp5aQoIq4Afjsz31NsHxURH8jM17UrqMz8NPDpdp1P6ged7h0aXgff+r9f3LHzS5IkrVUrGT73M8WirUCl0EJEbGlfSNLaMTFVZnxyuiuLsz7W/SJ2kiRJa8JKkqJ1EXFUUXWOiDh6heeR1oxq8rN/ZpYNxfC1W7/zfa686Z6urUFkmW1JkqSVWUky8w7gbyPi41Qq0L0cuLStUUmryMRUmZ279zI7Nw9AeWaWN31sT1djsMy2JEnSyrWUFEVEADcCt1JZvDWA8zPzmx2ITVoVxienDyZEvWBhBUmSpMPTUlKUmRkRE5l5OmAipIFQb2hcbQKyvwvzhRYzEZIkSWqflSzeelNEPLftkUh9qDo0rjwzS1IZGrdz994FC692ey7PSGkYgN/52B7O2nVDVxaBlSRJWstWkhSdTSUx+vuIuD0i9kbE7e0OTOoH9YbGzc7NMz45fXB7+7ZNlIaHuhbTjx59bMkkTZIkSa1ZSaGFF7Y9CqlPNRoaV9teHcJ2ySf38eDDcx2NJ4C5+YX17KpJmkPpJEmSVqblnqLM/A4wArykeIwUbdKa02ho3OL2sS2jHHlE5yvTNyrv3Yt5TZIkSWtFy3/FRcRvA/8R2F00fTgiLs/MP2lrZFKP1BZWGDlymOF1wdyBx9ORAM4+af0h+3djgdZGXKNIkiRp5Vby0fbrgedl5o8AIuJtwFcAkyKteovXHHrw4TmG1sWCfRK4+rYyW3/iaIAF+3faSGmYRx47sOB6rlEkSZJ0eFaSFAVQ+xfgfNEmrXr1CivMHzh00Nrs3Dy/e9UeEshGY9raLICLf/kUgCVLhEuSJKk1K0mK/jdwc0RcU2yPAe9vW0RSD7UyN6dOrtQxAbzqzI0Hkx+TIEmSpPZZSaGFdwKvA74PPAj8emb+UZvjknqiH+fmjI6UeNcrTuOtY5t7HYq0akXEcRFxY0TcERH7ivmxRMTREXF9RHyr+HpUzTE7I+KuiJiOiG017acXy1HcFRHvjghHS0jSKtd0T1FEbMzMewAy8zbgto5FJXVJbVGFDSMlzj5pPVffVl4whG54KCBZUGyhWwL48o5zun5daQ16DPi9zPxaRDwVuC0irgf+A/D5zNwVETuAHcDvR8TJwAXAKcAG4G8i4qcycx54H3AhcBPwaeBc4DNdf0eSpLZppadoovokIq5ufyhSd1WLKtQuhHr1bWV+5fRRRkdKBJVemvFfPZXxl53ak4lz/dhzJa1GmXlfZn6teP4QcAcwCpwHXFHsdgWVIeEU7R/NzEcy827gLuCMiDgGeFpmfiUzE/hQzTGSpFWqlTlFtX8T/qt2ByJ1W72iCrNz89x45wN1e2f+8Jq9/OjR9leZWxf15ydZVU7qjIg4HtgC3Aw8KzPvg0riFBHPLHYbpdITVHVv0TZXPF/cXu86F1LpUWLjxo1tfAeSpHZrpacoGzyXVqVG6wrVK7YwMVXuSEIE8M6Xn8Zo0SM0VExNGB0pcdn5my2oILVZRDwFuBp4U2b+81K71mnLJdoPbcy8PDO3ZubW9evX19tFktQnWukpOjUi/pnKDaFUPKfYzsx8WtujkzpkYqpc+cGt81q9IWvjk9MdiWMogrEtoyY/UhdExDCVhOjKzKwuQP69iDim6CU6Bri/aL8XOK7m8GOB/UX7sXXaJUmrWNM9RZk5lJlPy8ynZuYTiufVbRMirSrjk9N1E6KABUPWJqbKnLXrhoa9SodrvluLHEkDrqgQ937gjqKKatW1wGuL568FPlHTfkFEPDEiTgBOBG4phto9FBFnFud8Tc0xkqRVaiXrFEmrXqP1iJLH1wCqFmJYPO+onUYtpCB1y1nArwF7I2JP0fYHwC7gqoh4PXAP8DKAzNwXEVcB36RSue6NReU5gDcAHwRKVKrOWXlOklY5kyINpA0jpbq9P7VJSr1CDO20uFdKUudk5peoPx8I4AUNjrkUuLRO+63As9sXnSSp10yKNDBq1yQaOXKY4XVxyNpDMw8/ygk7rmuYNLVLAK86c6NziSRJkvqASZEGwuKhcA8+PMfQukM/NK5WmOtEQjQUwXwmoyMltm/bZEIkSZLUJ5pOiiLid5d6fdHEVamv1BsKN19vcaAO+vvLXtTV60mSJKk5rfQUPbX4ugl4LpXKPAAvAb7YzqCkdmtUWKFbGk1kkCRJUu81nRRl5iUAEfE54DmZ+VCxfTHw1x2JTmqTTs8RWo6FtyVJkvrXSuYUbQQerdl+FDi+LdFIbVBbUGFDMX9n+7ZNh5TXHh4K5g8kXR5FJ0mSpD7T9OKtNf4SuCUiLo6INwM3Ax9qb1jSylQLKpRnZkkqBRN27t4LwGXnb2Z0pEQAI6VhnvLEJ3QtITrqyOHuXEiSJEkta7mnKDMvjYjPAD9fNP16Zk61NyxpZeoVVJidm2d8cpov7ziHsS2jTEyV2f7xrzM3352MaHgoePNLTunKtSRJnXH8jut6HYKkDmo5KYqIAE4Gnp6Zb4mIjRFxRmbe0v7wpNY0KqhQnpnlrF03sH9mlgi61kNk+W1JkqT+t5I5Re8FDgDnAG8BHgKuplKRTuqpRgUVgsfXHsouJESl4SEuO3+zyZAkSdIqsJI5Rc/LzDcC/wKQmQ8CR7Q1KmmFtm/bRGl4aEFb0N3qbyOlYRMiSZKkVWQlPUVzETFE8XdmRKyn0nMk9Vw1ERmfnKY8M8tQBPPd6BoChiJ4x8tPNRmSJElaZVbSU/Ru4BrgmRFxKfAl4LK2RiUdhrEtowd7jLqVEJWGh0yIJEmSVqmVVJ+7MiJuA15AZWTSWGbe0fbIpMNQrwpdpwxFOFxOkiRpFVtJ9bm3ZebvA3fWaZP6QqMqdJ1wINOESJIkaRVbyfC5X6zT9sLDDURqxcRUmbN23cAJO67jrF03MDFVXvD6hpFS12Lp5rUkSZLUfk0nRRHxhojYC5wUEbfXPO4G9nYuRGmhiakyO3fvpTwzS1Iptb1z994FidHZJ63vSiyl4SG2b9vUlWtJkiSpM1oZPvdXwGeoFFXYUdP+UGZ+v61RSUuoN19odm6e8cnpg8PYbrzzga7E4lwiSZKk1a/ppCgzfwD8ICIeBX6QmTMAEXFURHwgM1/XoRilgyamynUXZ4VKj9FZu25gf9GD1GmjIyUTIkmSpDVgJXOKfqaaEMHBxVu3tC0iqYHqsLmllLuUEDlsTpIkae1YSVK0LiKOqm5ExNGsbBFYqSXdLLO92JOPGGJ0pERQ6SFy2JwkSdLasZJk5h3A30bEx4EEXg5c2taopDq6WWZ7sYcfnWffW87p2fUlSZLUOStZvPVDxeKtZ1NZvPX8zPxm2yOTFtkwUmo4n6gb15YkSdLatKJhb5m5D9jX5likQ0xMlRmfnGb/zCxPLw0ztC6YP9CNWUOPc/6QJEnS2tZ0UhQRX8rMn4uIh2DBXPYAMjOf1vboNNCqhRWq84hmZue6du2hCA5ksmGkxPZtm5w/JEmStIa1UpL754qvT+1cONLjelVYoTQ8ZCEFSZKkAdJKT9HvLvV6Zr7z8MORHteLwgojpWEu/uVTTIgkSZIGSCtziqo9RJuA5wLXFtsvAb7YzqAk6G5hhQBedeZG3jq2uSvXkyRJUv9oZfjcJQAR8TngOZn5ULF9MfDXHYlOA237tk0L5hR10rtecZq9Q5IkSQNqJYu3bgQerdl+FDi+LdFINca2jHLZ+ZsPLpp61JHDHbnO6EjJhEiSJGmAraQk918Ct0TENVSq0L0U+FBbo5IKY1tGDyYsZ+26gQcfbm8FuuGhsNy2JEnSgFvJ4q2XRsRngJ8vmn49M6faG5YGQe0aRM2Uvm534YUnHzHEpS+1ypwkSdKgazkpiogATgaenplviYiNEXFGZt7S/vC0Vi1eg6g8M8vO3XsBFiQptYlTBGQb123t8hqwkiRJ6lMrmVP0XuBngVcW2w8B72lbRBoI9dYgmp2bZ3xy+uB2NXEqz8yStD+JWXw9SZIkDaaVzCl6XmY+JyKmADLzwYg4os1xaY1rNBSu2j4xVeb3rvo68+3sGmohDkmSJA2OlfQUzUXEEJUiC0TEeuBAW6PSmrdhpNSwvdpD1OmEaKk4JEmSNDhW0lP0buAa4JkRcSnwq8BFbY1Ka1Lt/KCRI4cZXhfMLRoT96NHHuOST+7rytpEpeEhK89JkiSptZ6iosjCF4H/BlwG3AeMZaaLt2pJi+cHPfjwHAQcObzwR3Bmdq7tZbehssbRq8/ceHDNo9GREpedb+U5aVBExAci4v6I+EZN28URUY6IPcXjRTWv7YyIuyJiOiK21bSfHhF7i9feXdwXJUmrXEs9RZmZETGRmacDd3YoJq1B9QorzM0nBzo88HK0iVLfkgbCB4E/5dB19d6VmW+vbYiIk4ELgFOADcDfRMRPZeY88D7gQuAm4NPAucBnOhu6JKnTVjJ87qaIeG5mfrXt0WjNalTQoJPzhkZKw3x5xzkdO7+k1SMzvxgRxze5+3nARzPzEeDuiLgLOCMivg08LTO/AhARHwLGMCmSpFVvJYUWzqaSGP19RNxeDCO4vd2BaW1ZSUGDwxmTMrwuuPiXTzmMM0gaEL9Z3Ms+EBFHFW2jwHdr9rm3aBstni9urysiLoyIWyPi1gceeKDdcUuS2mglSdELgX8FnAO8BPil4qvU0NknrW/5mMPpQxp/2akOmZO0nPcBPwmcRmWO7DuK9nqfyeQS7XVl5uWZuTUzt65f3/rvQElS9zQ9fC4ingT8BvCvgb3A+zPzsU4FprXlxju79ynp6EjJhEjSsjLze9XnEfHnwKeKzXuB42p2PRbYX7QfW6ddkrTKtdJTdAWwlUpC9EIe/0RNWla3Fkm1zLakZkXEMTWbLwWqlemuBS6IiCdGxAnAicAtmXkf8FBEnFlUnXsN8ImuBi1J6ohWCi2cnJmbASLi/cAtnQlJa9GGkRLlJRKj4aGA5JB1i1qxLrDMtqS6IuIjwPOBZ0TEvcCbgedHxGlUhsB9G/hPAJm5LyKuAr4JPAa8sag8B/AGKpXsSlQKLFhkQZLWgFaSooOLx2TmYy7NoFZs37aJnbv3LijLHVT+EqmWzQZ408f2rOj8w0PB+K86j0hSfZn5yjrN719i/0uBS+u03wo8u42hSZL6QCtJ0akR8c/F8wBKxXZQWcLoaYcbTES8DLgY+GngjOLmozWgmqyMT06zf2aWDXXWD5qYKjMU0XKZbtcikiRJ0uFoOinKzKFOBlL4BnA+8GdduJY6bGKqzPjkNOWZ2YPJzuhIiXe94rRDEpiJqTI7d+9tOSH6ozrnkiRJklqxksVbOyYz7wBwaN7qV01yqsPlqslOeWaWnbv3AixIZsYnpxcMrWvGq8/caEIkSZKkw7aSdYr6govi9bdLPrmvYZIzOzfP+OT0grZWq9MddeQwbx3bvOL4JEmSpKqu9xRFxN8AP17npT/MzKZLm2bm5cDlAFu3bj2cdT7VZhNTZR58eG7JfWqToIsm9ra0UGtpeIg3v+SUFUYnSZIkLdT1pCgzf6Hb11RnVecOVQsofP9Hjyx7zIaRElBJiD580z1NX2sowrLbkiRJaqu+mlOk1Wfx3KGl1iKqGh6KgyW4P3Lzd5fcb27+8T6k0vCQCZEkSZLarq/mFEXES4tF9X4WuC4iJnsdk5a2kgIJc/PJmz62h7N23bBktblXPPc4RkdKBJWy2yZEkiRJ6oS+6inKzGuAa3odh5rXaoGEWsv1Kt145wN8ecc5Kz6/JEmS1Iy+6inS6lOdG9QJh5NwSZIkSc0yKdJh2b5tE6Xhzqzr+/TScEfOK0mSJNUyKdJhGdsyymXnb14w9+fVZ27kqCObT2iefMQQw+sOXbD3R48+xsRUuY3RSpIkSYfqqzlFWp3GtowuKIAwMVXmxjsfWHatoqpHHzvAEU9Yx9yjCws2zM0n45PTFleQJElSR5kUqWUTU2UuvnYfM7OVpCcCMitrCM1nEtDSYqxzB/KQhKjKeUWSJEnqNJMitWRiqsz2v/46cwceT3uqVbWr5bVbSYiW08lCDpIkSRKYFGkZE1Nlxien2T8zy4aREg8/+tiChKhVrfQilYaHDi7yKkmSJHWKhRbU0MRUmZ2791KemSWprCvU7DyhekZHSrzqzI1L7hM1+7pYqyRJkrrBniI1ND45zexc/bk+K7X1J47mutvva5hcJZWEyEVbJUmS1C32FKmhdhc5KM/MsnP3Xl78M8csubaRxRUkSZLUTSZFamilRQ4OXXHocbNz89x45wNcdv5mhqL+nhZXkCRJUjeZFKmh7ds21V1UdTkJDRMeqPQEjW0Z5R0vP/WQHiOLK0iSJKnbnFOkpbWeEwGPl+eup9oTVC2iUFvdbvu2TRZXkCRJUleZFKmh8clp5ubbuerQoT1BY1tGTYIkSZLUUyZFOmjxmkTlNhc8GLUnSJIkSX3IpEjA42sSVUtwt5IQjRbD4ZY6JsAy25IkSepLFloQsPI1iarD4bZv27RkmW0rykmSJKlf2VMkYOm1gYYiOJDJhpESZ5+0nhvvfKBhYYSLr93HzOzChVmtKCdJkqR+ZlIkgCXnEB3I5O5dL172HNWiCYvnJjmPSJIkSf3MpGhALU5czj5pPVfedA/1as21OvTNinKSJElaTZxTNICqRRXKM7MklQIJV99W5t/85NGHLEvk0DdJkiStdSZFA6heUYXZuXm+/U+zvOrMjQxFJTUaiuBXTrfXR5IkSWubSdEAalRUodpjNJ+VQXTzmVx50z1cNLG3m+FJkiRJXWVSNIAazREaijikBymBK2+6h4mpchcikyRJkrrPpGgA1VtTqDQ8dLCHaLGkMuROkiRJWotMigbUE5/w+D/9UUcOc9n5mxldosrcUusYSZIkSauZSdGAqVaeq11g9V/mDgCVHqTF1eeqWi3LLUmSJK0WJkUDplHlufHJaca2jPKqMzdalluSJEkDxaRowDQaBldtf+vYZt71itMYHSkRwOhIicvO32xZbkmrWkR8ICLuj4hv1LQdHRHXR8S3iq9H1by2MyLuiojpiNhW0356ROwtXnt3RDTqYJckrSJP6HUA6q4NIyXKdRKj2uFxY1tcm0jSmvNB4E+BD9W07QA+n5m7ImJHsf37EXEycAFwCrAB+JuI+KnMnAfeB1wI3AR8GjgX+EzX3oUkqSPsKRowjSrPOTxO0lqWmV8Evr+o+TzgiuL5FcBYTftHM/ORzLwbuAs4IyKOAZ6WmV/JzKSSYI0hSVr17CkaMNUeoPHJafbPzLJhpMT2bZvsGZI0iJ6VmfcBZOZ9EfHMon2USk9Q1b1F21zxfHF7XRFxIZVeJTZu3NjGsCVJ7WZSNIBqh8dNTJUZn5zmdz62xwRJkirqzRPKJdrryszLgcsBtm7d2nA/SVLvmRQNsGp57mo1uvLMLDt37wUwMZI0CL4XEccUvUTHAPcX7fcCx9Xsdyywv2g/tk67JGmVc07RAFuqPLckDYBrgdcWz18LfKKm/YKIeGJEnACcCNxSDLV7KCLOLKrOvabmGEnSKmZP0QBbrjy3JK0VEfER4PnAMyLiXuDNwC7gqoh4PXAP8DKAzNwXEVcB3wQeA95YVJ4DeAOVSnYlKlXnrDwnSWuASdEAa6Y8tyStBZn5ygYvvaDB/pcCl9ZpvxV4dhtDkyT1AYfPDTDLc0uSJEn2FK16F03s5SM3f5f5TIYieOXzjuOtY5ubOnZxee6nl4aJgN/52B7GJ6etRCdJkqSBYFK0ClXLaC8e+jafyYdvugeg5cTo4mv3MTM7d7DdSnSSJEkaFA6fW2WqZbTrzQWq+sjN3235fLUJUZWV6CRJkjQITIpWmXpltBebz+bXCFzufFaikyRJ0lrn8Lk+VR0it39mlg0jpYPze5pJUoai3qLr9S13PivRSZIkaa0zKepD1SFt1R6c2vk9jcpo13rl845b8vVaS53PSnSSJEkaBA6f60P1hrRV5/ecfdJ6GvUDDUXw6jM3Nl1kAeqX5QY46shhLjt/s0UWJEmStObZU9SHGg1pK8/McvVtZWpnDAXwqhYToVqLy3LXDtWTJEmSBoFJUR9qNKRtKOKQHqQEbrzzgcO63tiWUZMgSZIkDSyHz/WhekPaSsNDDavKWSFOkiRJWjl7ivpQ7ZC28szswR6ioYi6iZEV4iRJkqSVs6eoT41tGT3YY1RNhOolRFaIkyRJkg6PPUV9rNHCqkMRHMi0KIIkSZLUBiZFfazR+kHzmXx714u7HI0kSZK0Njl8ro8NRf0ViRq1S5IkSWqdSVEfa1RtrlG7JEmSpNaZFPWx0QZV5Rq1S5IkSWqdSVEfa7RekdXmJEmSpPax0EIfq12vaP/MrNXmJEmSpA4wKepzY1tGTYIkSZKkDnL4nCRJkqSBZlIkSZIkaaCZFEmSJEkaaCZFkiRJkgaaSZEkSZKkgWZSJEmSJGmgmRRJkiRJGmgmRZIkSZIGmkmRJEmSpIH2hF4HIJiYKjM+Oc3+mVk2jJTYvm0TY1tGex2WJEmSNBD6qqcoIsYj4s6IuD0iromIkV7H1GkTU2V27t5LeWaWBMozs+zcvZeJqXKvQ5MkSZIGQl8lRcD1wLMz82eAvwN29jiejhufnGZ2bn5B2+zcPOOT0z2KSJIkSRosfZUUZebnMvOxYvMm4NhextMN+2dmW2qXJEmS1F59lRQt8jrgM41ejIgLI+LWiLj1gQce6GJY7bVhpNRSuyRJkqT26npSFBF/ExHfqPM4r2afPwQeA65sdJ7MvDwzt2bm1vXr13cj9I7Yvm0TpeGhBW2l4SG2b9vUo4gkSZKkwdL16nOZ+QtLvR4RrwV+CXhBZmZ3ouqdapU5q89JkiRJvdFXJbkj4lzg94F/m5kP9zqebhnbMmoSJEk9FBHfBh4C5oHHMnNrRBwNfAw4Hvg28PLMfLDYfyfw+mL/38rMyR6ELUlqk36bU/SnwFOB6yNiT0T8r14HJEkaGGdn5mmZubXY3gF8PjNPBD5fbBMRJwMXAKcA5wLvjYiheieUJK0OfdVTlJn/utcxSJJUOA94fvH8CuALVEYznAd8NDMfAe6OiLuAM4Cv9CBGSVIb9FtPkSRJvZDA5yLitoi4sGh7VmbeB1B8fWbRPgp8t+bYe4u2BdZKlVRJGgR91VMkSVKPnJWZ+yPimVSGcN+5xL5Rp+2QwkCZeTlwOcDWrVvXfOEgSVrN7CmSJA28zNxffL0fuIbKcLjvRcQxAMXX+4vd7wWOqzn8WGB/96KVJLWbSZEkaaBFxJMj4qnV58C/A74BXAu8ttjttcAniufXAhdExBMj4gTgROCW7kYtSWonh89Jkgbds4BrIgIq98W/yszPRsRXgasi4vXAPcDLADJzX0RcBXyTykLjb8zM+d6ELklqB5MiSdJAy8x/AE6t0/5PwAsaHHMpcGmHQ5MkdYnD5yRJkiQNNJMiSZIkSQPNpEiSJEnSQDMpkiRJkjTQTIokSZIkDTSTIkmSJEkDzaRIkiRJ0kAzKZIkSZI00EyKJEmSJA00kyJJkiRJA82kSJIkSdJAMymSJEmSNNBMiiRJkiQNNJMiSZIkSQPNpEiSJEnSQDMpkiRJkjTQTIokSZIkDTSTIkmSJEkDzaRIkiRJ0kAzKZIkSZI00J7Q6wB6aWKqzPjkNPtnZtkwUmL7tk2MbRntdViSJEmSumhgk6KJqTI7d+9ldm4egPLMLDt37wUwMZIkSZIGyMAOnxufnD6YEFXNzs0zPjndo4gkSZIk9cLA9hTtn5ltqV2SJGlQHb/jul6HwLd3vbjXIWgNG9ieog0jpZbaJUmSJK1NA5sUbd+2idLw0IK20vAQ27dt6lFEkiRJknphYIfPVYspWH1OkiRJGmwDmxRBJTEyCZIkSZIG28AOn5MkSZIkMCmSJEmSNOAGevicJElaHfqhJLSktcueIkmSJEkDzaRIkiRJ0kAzKZIkSZI00EyKJEmSJA00kyJJkiRJA82kSJIkSdJAsyS3JEktiohzgT8GhoC/yMxdPQ5JWvN6XZb927te3NPrq7NMiiRJakFEDAHvAX4RuBf4akRcm5nf7G1kndPrP0YlqdNMiiRJas0ZwF2Z+Q8AEfFR4DygY0mRSYnUe73+f2hPVWetiaTotttu+8eI+E6v41jCM4B/7HUQfc7vUXP8PjXH71Nz2v19+ok2nqufjQLfrdm+F3je4p0i4kLgwmLzhxEx3eB8q/nn1dh7w9i7r+dxx9tWfGjPYz8MXbtPrYmkKDPX9zqGpUTErZm5tddx9DO/R83x+9Qcv0/N8fu0YlGnLQ9pyLwcuHzZk63ifwdj7w1j777VGjcYe7OsPidJUmvuBY6r2T4W2N+jWCRJbWBSJElSa74KnBgRJ0TEEcAFwLU9jkmSdBjWxPC5VWDZ4RPye9Qkv0/N8fvUHL9PK5CZj0XEbwKTVEpyfyAz9x3GKVfzv4Ox94axd99qjRuMvSmRecgwaEmSJEkaGA6fkyRJkjTQTIokSZIkDTSToi6IiPGIuDMibo+IayJipNcx9aOIeFlE7IuIAxGxKktHdlJEnBsR0xFxV0Ts6HU8/SgiPhAR90fEN3odS7+KiOMi4saIuKP4//bbvY5p0ETE0RFxfUR8q/h6VJ19nhQRt0TE14t/p0t6EetiTcbelz9jzcRe7NcXv0eW+50fFe8uXr89Ip7TizjraSL2kyLiKxHxSET8117E2EgTsb+q+H7fHhF/GxGn9iLOepqI/bwi7j0RcWtE/Fwv4qyn2b9xIuK5ETEfEb/a7hhMirrjeuDZmfkzwN8BO3scT7/6BnA+8MVeB9JvImIIeA/wQuBk4JURcXJvo+pLHwTO7XUQfe4x4Pcy86eBM4E3+rPUdTuAz2fmicDni+3FHgHOycxTgdOAcyPizO6F2FAzsffrz1gzsUMf/B5p8nf+C4ETi8eFwPu6GmQDTcb+feC3gLd3ObwlNRn73cC/Lf6m+5/0SRGDJmP/PHBqZp4GvA74i64G2UCzf+MU+72NSpGbtjMp6oLM/FxmPlZs3kRlTQstkpl3ZGajFd8H3RnAXZn5D5n5KPBR4Lwex9R3MvOLVG62aiAz78vMrxXPHwLuAEZ7G9XAOQ+4onh+BTC2eIes+GGxOVw8+qEyUjOx9+vP2LKxQ9/8Hmnmd/55wIeKn5WbgJGIOKbbgdaxbOyZeX9mfhWY60WAS2gm9r/NzAeLzX76m66Z2H+Yj1dYezL98TsFmv8b578AVwP3dyIIk6Luex3wmV4HoVVnFPhuzfa99McfGVrFIuJ4YAtwc49DGTTPysz7oJJAAM+st1NEDEXEHip/AFyfmf3w79RU7FV99jPWUuw91szv/H69L/RrXM1oNfbX0z9/0zUVe0S8NCLuBK6j8jdpP1g29ogYBV4K/K9OBeE6RW0SEX8D/Hidl/4wMz9R7POHVIYVXNnN2PpJM98n1RV12vrlEx6tQhHxFCqfuL0pM/+51/GsNUv9rmv2HJk5D5xWzEO9JiKenZkdn+fSjtiL83T9Z6xdsfeBZn7n9+t9oV/jakbTsUfE2VSSon6Zl9NU7Jl5DZXfJ/8XleF/v9DpwJrQTOx/BPx+Zs5H1Nv98JkUtUlmLvlDFRGvBX4JeEFN1+XAWe77pIbuBY6r2T4W2N+jWLTKRcQwlT9Wr8zM3b2OZy1a6nddRHwvIo7JzPuK4U5LDgXJzJmI+AKVeS4dT4raEXuvfsba+X3vsWZ+5/frfaFf42pGU7FHxM9QmY/zwsz8py7FtpyWvu+Z+cWI+MmIeEZm/mPHo1taM7FvBT5aJETPAF4UEY9l5kS7gnD4XBdExLnA7wO/nJkP9zoerUpfBU6MiBMi4gjgAuDaHsekVSgqd5T3A3dk5jt7Hc+AuhZ4bfH8tcAhveQRsb7oISIiSlQ+zb2zWwEuoZnY+/VnbNnY+0gzv/OvBV5TVKE7E/hBdXhgj63m+9WysUfERmA38GuZ+Xc9iLGRZmL/18X/T4pqhUcA/ZDULRt7Zp6Qmcdn5vHAx4H/3M6ECEyKuuVPgacC1xdlEDs2HnI1K8a53gv8LHBdRHSkushqVBTq+E0qFVfuAK7KzH29jar/RMRHgK8AmyLi3oh4fa9j6kNnAb8GnFP8PtoTES/qdVADZhfwixHxLeAXi20iYkNEfLrY5xjgxoi4ncofDNdn5qd6Eu1CzcTerz9jzcTeF79HGv3Oj4jfiIjfKHb7NPAPwF3AnwP/udtx1tNM7BHx48X9/neBi4rv89N6F3VFk9/3/wH8GPDe4mf71h6Fu0CTsf8K8I1iruJ7gFf0w+ilJmPvuOiD74UkSZIk9Yw9RZIkSZIGmkmRJEmSpIFmUiRJkiRpoJkUSZIkSRpoJkWSJEmSBppJkSRJkqSBZlIkSZIkaaCZFEmqKyL+JCK+FhHP7XUskiS1wnuYWmVSJOkQEfFk4JnAfwJ+qcfhSJLUNO9hWgmTIq05EfFjEbGnePx/EVGu2T6izdearzn3nog4vp3nX0E8x0fEbETsWWa/L0TEtkVtb4qI9wJk5o+AY4AvAO8uXi8V7/HRiHhGR96AJK0R7boXRcTftmOfFq63+L62o13nrnOtttyziu0/i4izwHuYVuYJvQ5AarfM/CfgNICIuBj4YWa+ffF+ERFAZOaBw7jcbGae1upBbbp2I3/fREwfAS4AJmvaLgC2F/H9GHAk8BAwD5CZs8BpEfHtNscrSWtOu+5FmflvmrjWsvu0YMn72uJ4m72fLbHfYd+zCs8D/nNxLe9hapk9RRooxadSdxSfLn0N+PmI+EbN6/+1uHkREa+OiFuKT5b+LCKGWrjO70bEN4rHmxpc+7iIeE1E3B4RX4+Iv6w5/pBrR8STI+K6Yt9vRMQrmoij0Xv4OPBLEfHEamzABuBLxesXAW8H9gEnN/u+JUnLa3A/mIiI2yJiX0RcWLPvDxcd8+fFPp+LiFIL+/z3iLgzIq6PiI9ExH89jHh/vk78Td33mrhWvfvWkvesiPhp4O8yc744jfcwtcykSINoE/ChzNwCfKfeDsUv2FcAZxWfYM0Dr6qza7U7fk9EXFMcezrw61Q+tToT+I8RsaXOtZ8C/CFwTmaeCvz2Mtc+F9ifmadm5rOBzy71Jpd6D8UnmLcU54TKJ24fy8wsbjb/BvgYcAdwylLXkSStyMH7QWZ+B3hdZp4ObAV+q+jtWOxE4D2ZeQowA/xKM/tExNZi3y3A+cU1Gqm9r+2p+QBu8b2zdvsZNHHfK95nQ43uW0vds4rtF1LcE72HaaUcPqdB9J3MvGmZfV4AnA58tdLjTwm4v85+9YYZ/BxwTTGmmYjYDfw8cO2ia58DfDwz/xEgM7+/zLX/Cnh7RLwN+FRm/r+H+R6qwxE+UXx9XdH+VuAtRYLkDUWSOmPxvei3IuKlxfPjqCQ3/7TomLszc0/x/Dbg+DrnrbfPM4BPFEPIiIhPLhHXIfe1ItFYHG/tdrP3veUsdd9qdM8C2EYlKQPvYVohkyINoh/VPH+MhT2mTyq+BnBFZu5cwfmjyWsHkHX2aXjtohfqRcBlEfG5zHzLMnEs9R4mgHdGxHOAUmZ+LSJOo/Ip4s9FxHuofD/2LnENSdLKHLwfRMTzgV8AfjYzH46IL/D4/ajWIzXP56kkDc3ss9R9qVk/WmK72fvecpa6b02w6J4FEBFHAiOZud97mA6Hw+c06L4HPDMqVYKeyOOlOz8P/GpEPBMgIo6OiJ9o8pxfBMYi4siolAV9KVCvV+fzwMurQyQi4uilrh0RG4CHM/PDVMZKP2eZOJZ8D5n5QyqVeT5A5RM4gLcBL8nM4zPzeOBU/JRNkjrt6cCDRUJ0EpUhaO30JeAlEfGkiHgK8OI2n7/Z+95yGt63GtyzAM4Gbiyeew/TitlTpIGWmXMR8RbgZuBu4M6i/ZsRcRHwuYhYB8wBb6TBHKRF5/xaRHyQyvhngL/IzKlYVK47M/dFxKXA/4mIeWAK+A9LXPvpwHhEHCja3rBMHM28h48Au4ELIuIc4MmZ+fmac3wvKgUejq4Z3idJaq/PAr8REbcD00Czw82akplfjYhrga9TuQfcCvygwe6lWFgi+7PA/1rm/E3d95qIc7n71sF7Vs1hLwQ+7j1Mhysen6MmabUrbkCfKgoxdOoa3wa2VudCSZL6X0Q8JTN/WAw3+yJwYXUIWg9jOp7DvGdFxNeA52XmXJP7fxvvYarD4XPS2jIPPD2WWQhvJaJY+A4YBjqxvpIkqXMuL36Hfw24utcJUeGw71mZ+ZxmEiLvYVqOPUWSJEmSBpo9RZIkSZIGmkmRJEmSpIFmUiRJkiRpoJkUSZIkSRpoJkWSJEmSBppJkSRJkqSBZlIkSZIkaaD9/9xMEWB4OpI8AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1008x504 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(14,7))\n",
    "plots.force_scatter_histogram(axis=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "42b4825a-9f46-4cf2-9ab6-3ab2da665eba",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Short Test"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 23,
   "id": "e233952f-ff1d-42d9-bb61-ea94c4461368",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The job Al was saved and received the ID: 8398\n"
     ]
    }
   ],
   "source": [
    "lmp = pr.create.job.Lammps(\"Al\", delete_existing_job=True)\n",
    "lmp.structure = pr.create.structure.ase.bulk(\"Al\", cubic=True)\n",
    "lmp.potential = job.lammps_potential\n",
    "lmp.calc_minimize(pressure=0)\n",
    "lmp.run()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 24,
   "id": "822bae18-b13c-4de6-949b-beb34ffe60b8",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Al: [0. 0. 0.]\n",
       "Al: [0.         2.01251371 2.01251371]\n",
       "Al: [2.01251371e+00 1.23230924e-16 2.01251371e+00]\n",
       "Al: [2.01251371e+00 2.01251371e+00 2.46461847e-16]\n",
       "pbc: [ True  True  True]\n",
       "cell: \n",
       "Cell([[4.025027419886359, 2.46461847312208e-16, 2.46461847312208e-16], [0.0, 4.025027419886359, 2.46461847312208e-16], [0.0, 0.0, 4.025027419886359]])"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lmp.get_structure()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 25,
   "id": "a1eb8451-356b-4768-b903-fc4843db40d5",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The job AlMurn was saved and received the ID: 8399\n",
      "The job AlMurn_0_9 was saved and received the ID: 8400\n",
      "The job AlMurn_0_92 was saved and received the ID: 8401\n",
      "The job AlMurn_0_94 was saved and received the ID: 8402\n",
      "The job AlMurn_0_96 was saved and received the ID: 8403\n",
      "The job AlMurn_0_98 was saved and received the ID: 8404\n",
      "The job AlMurn_1_0 was saved and received the ID: 8405\n",
      "The job AlMurn_1_02 was saved and received the ID: 8406\n",
      "The job AlMurn_1_04 was saved and received the ID: 8407\n",
      "The job AlMurn_1_06 was saved and received the ID: 8408\n",
      "The job AlMurn_1_08 was saved and received the ID: 8409\n",
      "The job AlMurn_1_1 was saved and received the ID: 8410\n"
     ]
    }
   ],
   "source": [
    "ref = pr.create.job.Lammps(\"AlRef\")\n",
    "ref.structure = lmp.get_structure()\n",
    "ref.potential = job.lammps_potential\n",
    "\n",
    "murn = pr.create.job.Murnaghan(\"AlMurn\", delete_existing_job=True)\n",
    "murn.ref_job = ref\n",
    "murn.run()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 26,
   "id": "bce8a797-d906-4c0b-b674-eeb7f09169d3",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEbCAYAAAAWFMmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABAnElEQVR4nO3dd5hTVfrA8e9L70V6dbBgQYoCoigqymJHRVFBFFFRbKvYUH7Kylp2Zd0FXWVtiKigYq+I0uwuDAoIKFioUhYBkd7m/f1xbsidkGSSTGZuMvN+nuc+3H7fhEnenHPPPUdUFWOMMSadygQdgDHGmJLHkosxxpi0s+RijDEm7Sy5GGOMSTtLLsYYY9LOkosxxpi0s+Ri0kJE7hWRF4OOwxiTGSy5ZCARWSIiO0WkbsT62SKiIpITUGgmQSJSVkTuF5GVIrJJRL4VkVox9p0vIpt9024Rede3/WQR+UZE/hCRX0Tk6ojjB4nIahHZKCLPikhF37bNEdMeEfm3b/tVIvKTt+1DEWns2zYx4tidIvKdb3tnEZnhvb65InK8b1tXEflORH4XkXUi8qaINImIu5v3uraIyHIRudBb3yVK3Coi53vbxXtvf/Ve83QRaRVx7otF5Hvv3D+LSBdvfY53Lv+57/EdJyLykBfzOhEZLiISce6bRGSxd+7vRaRljD+DuAq6loi0E5HPvNe4QkSGpnKdwKiqTRk2AUuAhcCNvnWtvXUK5KRwznJFHPO9wItBv3fJvg+AAGWSOD6h/YH7ganA/t4xRwCVEjz/L8Bl3nJ5YCNwjbetI7AZaOttPxVYA7QCagPTgb/HOHdV79gTvOUTgf95x1YA/gN8Eie26cBQb34/4DegF1AW6AtsAGp72xsAjb35isBw4B3fuQ73rn06UA6oAxwY47onAZuAqt7yhcBK4ADv2n8DvvHt/ydgKXAM7gd0E6CJty3H+wxF/Tx47/NCoKl33AJgoG/7VcBcL34BDgT2S/FvsaBrLQAe8F7jgcAqoEfQn6GEX1/QAdgU5T/FJZe7gZm+dQ8D/4cvuXgf9qt8+1wOfO5bVuB64EdgsfchXQHc6n2wVwH9ffufCXwL/AEsB+6NiOsy70O7DrjHi7Obt+1eYALwvPdFMB/o4Dv2TuBnb9sC4LzIuL3XuMGL9fQk3q/GwOvAWu/YP/u23Qu8Brzova6rvPftAeALYBtwENAZmIn7Ip8JdPadY5/9C4inNu5LPOqXZQHHnugdG/oibeD9P1bx7TMT6O3Njwce9G07BVgd49z9cIlLfH9Tj0e8jxotbtyX8h6ghbd8FjA/Yp9FwJVRjq2ISwALfOvGA/cl+J6MAcb4lgcDE3zLrYDtvuUvo8Xhex3xksuXwNW+5SuBr735MrjPxSlxYr0C+N77O54E7B9n35jX8pa3Aof7ll8F7kr2byqoyarFMtfXQA0ROUxEygIX4b4gk3Uu0An3SwugIVAT90vpSuBxEantbduCSyC1cInmWhE5F0BEDgdGAZcAjXzn8OsBvOwd/w7wmG/bz0AX77hhwIsi0si3vRPuV1xd3K/c0aEqAhG5U0Tei/biRKQM8C4wx4vnFOBmETnVt9s5uARTCxjnrbsUuBqojkt47wOP4n5B/wt4X0Tq+M7h33+piLwnIndGiwlXytwNXOBVVy0Sketj7BupH/Caqm4BUNU1wEtAf3FVbcfiSkOfe/u38l57yBygQUTs/nM/r943Fe6Xt7/KJzR/RJRjLwM+U9XFMY4Nrdt7rIg0F5HfcQn5Ntz/a8gx3j7ficgqEXlRRPaLvKiIVAEuAMb6Vr8MHCQiLUWkvPe6PvT2Lwt0AOp51X0rROQxEakcceql3rYxkr/6Odr7Gapya+pNR3jVeItFZJj3N4j3WRkC9ATqAZ/h/u9iiXctgJHAZSJSXkQOAY4FJsc5X2YJOrvZtO+EVyLAlV7+BpwGfIyrPki25HKyb/kk3Ae9nG/d/4BjYsQxEhjhzQ8FXvJtqwLsJH/JZbJv++HAtjivcTZwji/unyLOrUDDBN6rTsCyiHV34f3S9eL6NGL7dOCvvuVLgRkR+3wFXB5t/wRi6uPFPxqoDLTBlar+VMBxVXClq5Mi1p+Nq/ra7U0DfNt+Bk7zLZcnStUp0BxfycNbdwquaquNF+eTQB5eqSji+J9C74e3XAf4HejtXbOfd+yTUY7dD1faOMa3bifu77wlUA1X8hwX5dhLcaVR8a2rADzivc7d3vZQiSpU+srF/QiqiytxPuBtr4ZLPuVwpcLXgEm+c+8BDvUtH+ydT3ClW8X9EKmFKwUtCv1/ABPxlZhwJZ2txCi9xLuWt9zZe993e+uHJfo3mAmTlVwy2wu4L6rLcdVNqVgesbxOVXf7lrfiPnCISCcRmSYia0VkIzAQ9+EE96Hdey5V3YqrHvNbHXHeSiJSzjv3ZeIaJPzu/Zo9wnfufMd65yYUVwH2BxqHzuudewjuiyMk8j2IXNcYV93nt5T8JbNo54hlm/fvX1V1m6rOxf3aPqOA43oC64FPQitE5FDgFVzJoQLul+0dInKmt8tmoIbvHKH5TRHnvgz3wyNU8kBVpwB/wX2xL8V92W/CVZ3uJe5GfUPcF3Ho2HW4EuEtuMR3Gu5Xdb5jvX3X40oeb4f+HnDv0RhVXaSqm4EHif7+RJa28GLuCDQDKuFKwlO9Uk7ovf+3qq5S1d9wJdEzvFg2q2ququ5WVyq8AeguIqH3Ldr7udm7fujcw1X1d1VdgkvIobj3Bx7x/R2uxyWlJiIyxNeA4ImCruWV4j4E/uq9xmbAqSJyXZT3KCNZcslgqroU96vsDOCNKLtswf3aDWkY7TRJXHI8rjqrmarWBJ4gXPWxClclAIBXzRCt6mUfIrI/8DTug1xHVWsB89i3WiUVy4HFqlrLN1VXVf8XVbT3wL9uJe6Lwa858GsB54hlbgrHQPQv0iOAhao6SVXzVHUh7pfz6d72+UBb3/5tgTXel7/fZeSvWnIBqj6uqgeran1ckimH+7+JjOsNLwn4j/1EVTuq6n64EsYhwIwYr60cUJ/wl+lcCnh/RKQZrrQd+cOqLfCKqq7wksRzuPtch6vqBlyCS/S991cRQvT3c743vxBX4op17uXANRF/i5VV9UtVfVBVq3nTwASudQCwR1Wf917jChL7gZIxLLlkvitxVVtbomybDfQUkSoicpC3b2FUB9ar6nYRORpXagp5DThbXPPTCrhfi4kmh6q4D+RaABHpT/R6/VTMAP4QkcEiUtm7L3GEiHRM4hwfAC1FpI+IlBORi3DVelHv8xREVX/G1bf/n4hUFJHDcPfMYp5PRJoCXdk3AXwLHCyuObKIyIG4m+mhuvrngStF5HDv3tndwHMR5+6MK4W9GrG+kvdeiYg0B54CHvG+oEP7VMa1CMt3Tm/bkd79gBq4xgErVHWSt62niBwiImVEpB6u9PCtV4oBd5O+v4gc4JU4Bkd5fy4FvvTeT7+ZQC8RaeCd/1Jc1dxPvnPfKCL1vffk5tC5vdJ5KK46uPts01V1o+/9vEVEmohrln1r6LV7JepXcCXH6t7/2QBf3E8Ad4nXLFpEaopIr8j3zSfmtXDVbeL9TZYRkYa4v6E50U+VgYKul7Np3wlfK6yI9ZH3XOoCH+GqMr7A3V+IvOdykG/5JNwXQNRr4W6cLvXO9x7uhvyLvn0vB5YRbi32K9DF23ZvxL45+Frl4FpbrcfV8f8LV/Vzle+8n0fEtTd2XDXXxDjvV2PcjdPVuFY6X5P/XtCLEftPx3evylt3PDAL11psFnB8AftPBIbEiakJrlpjM66F1jW+bZewb0uru3A3zKOd60JcaSJUZfUQvubQhKum/sB9sVaMOP5J4IUo562FK0Fs8d67vwFlI/bp7f1NSJTjX/Ler424L936vm034krdoXO/TMS9B9wPlLXe9AJeM2bf9h+I3vqsEvA4rjT9B/AN+953GoW7J7Qal0Aq+V5PKK5VuC/4hr5jBdfwYL03DSf//Z4a3mvZhCupDI3YfinwHeEWl8/G+Rsp6FonE27BuBpX+q8S63yZNoVuHBmTFBGphvvwHqy+enxjjAGrFjNJEJGzvSq4qrhqkO9wJR9jjMnHkotJxjm4m98rcc0mL1Yr+hpjorBqMWOMMWlnJRdjjDFpV67gXUq+unXrak5Ozj7rV6+GqlWhevXCX2PTJtiyBRpGexLFGGOy0KxZs35T1XrRtllyAXJycsjNzd1n/bRpcOGF8MQT0LVr6ucPnWfChMKdxxhjMomIRPZssZdVi8XRtatLCBde6BJEKiyxGGNKI0suBShMgrHEYowprSy5JCCVBGOJxRhTmtk9lwT5E0xBCcMSizHFY9euXaxYsYLt27cHHUqJVqlSJZo2bUr58uUTPsaSSxISSTCWWIwpPitWrKB69erk5OQg+Ye6N2miqqxbt44VK1bQokWLhI+zarEkxasis8RiTPHavn07derUscRShESEOnXqJF06tJJLCvwJZuRIOOgg2LrVEosxQbDEUvRSeY8tuaSoYUNo0AD69oVGjWDXLkssxhgTYtViKWrYEH780c2vWgW9elliMcYU7KSTTor60HZx6Ny5c4H7VKuWyOjiBbPkkqLataFTp/Dy2LGpP2hpjDHF4csvvyy2a1lySdG0aTDHN+Bo9eqFe5LfGJOdlixZwqGHHkq/fv1o06YNF1xwAVu3bmXKlCkceeSRtG7dmiuuuIIdO3bkO2706NEMGjRo7/LTTz/NLbfcwpIlSzjssMMYMGAArVq1onv37mzbtg2A2bNnc8wxx9CmTRvOO+88NmxwI1KfdNJJDBo0iBNOOIHDDjuMmTNn0rNnTw4++GDuvvvuvdcIlUo2b97MKaecwlFHHUXr1q15++230//GBD0UZiZM7du312RMnapat67qhx+q1qqlCm565BG3furUpE5njEnRggUL9s6HPodFMcWzePFiBfTzzz9XVdX+/fvrfffdp02bNtWFCxeqquqll16qI0aMUFXVE088UWfOnKmbN2/WAw44QHfu3Kmqqscee6zOnTtXFy9erGXLltVvv/1WVVV79eqlL7zwgqqqtm7dWqdPn66qqvfcc4/edNNNe895xx13qKrqyJEjtVGjRrpy5Urdvn27NmnSRH/77TdVVa1ataqqqu7atUs3btyoqqpr167VAw88UPPy8vLtE++9Dr/n5GqM71UruSTJ39z41FPdfMiCBYXvi8wYk32aNWvGcccdB0Dfvn2ZMmUKLVq0oGXLlgD069ePTz/9NN8xVatW5eSTT+a9997jhx9+YNeuXbRu3RqAFi1a0K5dOwDat2/PkiVL2LhxI7///jsnnnhi1HP26NEDgNatW9OqVSsaNWpExYoVOeCAA1i+fHm+a6sqQ4YMoU2bNnTr1o1ff/2VNWvWpPU9seSShGjPsVx6aXj7hAnQubMlGGNKm1SbQ1911VU899xzjBkzhv79++9dX7Fixb3zZcuWZffu3QWeK3RMmTJl8h1fpkyZfY4fN24ca9euZdasWcyePZsGDRqkvZcDSy4JivWAZOfOEBoKZsMGmDgxPb0pG2OSU5QVYwVZtmwZX331FQAvvfQS3bp1Y8mSJfz0008AvPDCC3tLHH6dOnVi+fLljB8/nt69e8e9Rs2aNalduzafffZZ3HMmYuPGjdSvX5/y5cszbdo0li6N2XN+yiy5JCDek/dlysAll4SXX3jB/WsJxpjS47DDDmPs2LG0adOG9evXM2jQIMaMGUOvXr1o3bo1ZcqUYeDAgVGPvfDCCznuuOOoXbt2gdcZO3Yst99+O23atGH27NkMHTo0pXgvueQScnNz6dChA+PGjePQQw9N6TxxxboZU5qmeDf0Qzfv492kX7Ag/BunQgXV9euTO94Yk5poN5mL2+LFi7VVq1YpH3/mmWfq5MmT0xhR0bAb+mmUaF9hhx0G7du7+Z074ZVXwtusBGOMieb333+nZcuWVK5cmVNOOSXocNLOkkscM2cm3qXLZZeF559/Pv+2UIKZOTO98RljgpeTk8O8efOSPq5WrVosWrSIV199tQiiCp4llzjuuCPxLl1694ZyXk9tX30Fixbl3961qzufMSa9NJE77qZQUnmPLbmkSb16cMYZ4eXQjX1jTNGpVKkS69atswRThFTdeC6VKlVK6jix/xTo0KGDpqMjuTfegPPPd/PNm8Pixa41mTGmaNhIlMUj1kiUIjJLVTtEO8a63E+jM8+E/faD9eth2TL49FM46aSgozKm5CpfvnxSoyOa4mO/q9OoYkW4+OLw8tixwcVijDFBCiS5iEgvEZkvInkisk+RSkSai8hmEbktxvHtRORrEZktIrkicrRv210i8pOILBSRU4vydUTTr194/rXXYMuW4o7AGGOCF1TJZR7QE/g0xvYRwMQ4xw8HhqlqO2Cot4yIHA5cDLQCTgNGiUjZNMWckI4d4ZBD3PzmzfD668V5dWOMyQyBJBdV/V5VF0bbJiLnAr8A8+OdAqjhzdcEVnrz5wAvq+oOVV0M/AQcHeX4IiMCl18eXh4zpjivbowxmSGj7rmISFVgMDCsgF1vBv4hIsuBh4G7vPVNAH/f0iu8ddGudbVXpZa7du3aQsUd6bLLwq3Epk+HX35J6+mNMSbjFVlyEZHJIjIvynROnMOGASNUdXMBp78WGKSqzYBBwOjQZaPsG7Wttao+paodVLVDvXr1Cno5SWnc2I31EmI39o0xpU2RJRdV7aaqR0SZ4o2n2QkYLiJLcKWTISJyQ5T9+gFvePOvEq76WgE08+3XlHCVWbHyDc3A2LGQlxdEFMYYE4yMqhZT1S6qmqOqOcBI4EFVfSzKriuB0EAGJwM/evPvABeLSEURaQEcDMwo2qij69HDPfMCsHSpdVppjCldgmqKfJ6IrACOBd4XkUkJHPOMr9nyAOCfIjIHeBC4GkBV5wMTgAXAh8D1qrqnKF5DQSpWzD/Oi93YN8aUJtb9C+nr/iXSt9/CUUe5+UqVYPVqqFkz7ZcxxphAxOv+JaOqxUqaI4+Etm3d/Pbt8PLLwcZjjDHFxZJLEbvyyvD8M88EF4cxxhQnSy5F7JJL3P0XgNxcmDMn2HiMMaY4WHIpYvvtBz17hpdHj469rzHGlBSWXIqBv2rsxRfd/RdjjCnJLLkUg65dITTkxIYN8OabwcZjjDFFzZJLMShTBq64IrxsVWPGmJLOkksxufzycGeWU6ZYZ5bGmJLNkksxadoUTjstvGylF2NMSWbJpRgNGBCef/ZZ2LUruFiMMaYoWXIpRmedBY0aufnVq+Hdd4ONxxhjiooll2JUrlz+ZslPPRVcLMYYU5QsuRSzK690QyEDfPQRLF4cbDzGGFMULLkUs5yc8CiVqtbfmDGmZLLkEoBrrgnP2419Y0xJZMklAGeemf/G/jvvBBuPMcakmyWXAJQvn/+J/SeeCC4WY4wpCpZcAnL11eEn9idPhkWLgo3HGGPSyZJLQJo3d9VjIVZ6McaUJJZcAnTtteH5556DbdsCC8UYY9LKkkuATj01f1f8r7wSbDzGGJMullwCVKYMDBwYXv7Pf4KLxRhj0smSS8D694cKFdz8jBkwa1aw8RhjTDpYcglYvXrQq1d4edSo4GIxxph0seSSAa6/Pjw/fjysWxdcLMYYkw6WXDLAMcfAUUe5+e3bXZcwxhiTzSy5ZAARuOGG8PKoUbBnT3DxGGNMYVlyyRAXXwz77efmlyyBDz4INBxjjCkUSy4ZonJluOqq8PJjjwUXizHGFJYllwxy7bX5BxJbuDDYeIwxJlWWXDJITg6cfXZ4+fHHAwvFGGMKxZJLhvHf2B8zBjZuDC4WY4xJlSWXDNOtGxx+uJvfvNklGGOMSdbw4TBtWnrONW2aO18yAkkuItJLROaLSJ6IdIiyvbmIbBaR22Ic305EvhaR2SKSKyJHe+tzRGSbt362iGRdR/YicNNN4eVHH7VmycaY5HXsCBdeWPgEM22aO0/HjskdF1TJZR7QE/g0xvYRwMQ4xw8HhqlqO2Cotxzys6q286aBUY/OcH37hpslL14M770XbDzGmOzTtStMmFC4BBNKLBMmuPMlI5Dkoqrfq2rUtlAici7wCzA/3imAGt58TWBlWgMMWJUqMGBAePmRR4KLxRiTvQqTYAqTWCDD7rmISFVgMDCsgF1vBv4hIsuBh4G7fNtaiMi3IvKJiHSJc62rvSq13LVr1xY29LS7/nooW9bNT5sGc+cGG48xJjulkmAKm1igCJOLiEwWkXlRpnPiHDYMGKGqmws4/bXAIFVtBgwCRnvrVwHNVfVI4BZgvIjUiHYCVX1KVTuoaod69eol9+KKQbNm0LNneHnkyMBCMcZkuWQSTDoSC4CoaupHF5KITAduU9Vcb/kzoJm3uRaQBwxV1ccijtsI1FJVFREBNqrqPkkk8vyxdOjQQXNz4+4SiC+/hOOOc/MVKsDSpdCwYbAxGWOyV0GJI9nEIiKzVHWfRlmQYdViqtpFVXNUNQcYCTwYmVg8K4ETvfmTgR8BRKSeiJT15g8ADsbdv8lKxx4LnTq5+Z07bawXY0zhxCvBpKvEEhJUU+TzRGQFcCzwvohMSuCYZ3zNlgcA/xSROcCDwNXe+hOAud7614CBqro+/a+geIjArbeGl0eNgq1bg4vHGJP9/AnmySchLy/9iQUCrhbLFJlWLTZ8uGtT3rUr7N4NBx3kqsQAnngCrrkm8XNNmwYzZ8IddxRNrMaY7DRmDFxxBTRv7h7Yfu215BNL1lSLGcf/8FO5cnDzzeFt//qX+6WRiFQffjLGlGy7d8N//uPmly2DatXSV2IJseSSgSLrRa+4Amp4zRUWLUpsrJeiKOYaY0qG4cNdjQZAmTKwaVP6uooJseSSofwJZtYsuPrq8LZ//CP+sZZYjDGxfPcdDB0aXn7gAXj99fR0FeNnySWD+RNMhw6uigzg009hxozox1hiMcbEsmuXe34u1F/h0UfDbbelp6uYSJZcMlzoP/2GG/Ini2ilF0ssxph4BgyAn35y8xUrwnPPhX+0pjvBxE0uInKsiDwuInNFZK2ILBORD0TkehGpWfjLm0SE/tP9Ddpefz38RwKWWIwx8T35JIwdG15+4AE47LD8+6QzwcRMLiIyEbgKmAScBjQCDgfuBioBb4tIj8Jd3iSqa1eXUMqXd8uq8M9/unlLLMaYeCZNcv0Vhhx3XP5WqH7pSjAxn3MRkbqq+lvcgxPYJxtk2nMu8YwYAbfc4uYrVoRx42DgQEssxpjopk2DM8+EbdvccpUqMGeOe36uoOMK+tGa6nMu94pI53gXLwmJJdvcfDMccoib37EDLrvMEosxJrpp09wN/FBiAXe/tqDEAoUvwcRLLj/iulhZIiIPiUi75E9v0k0E7r8/vLxnD7RvH1w8xpjMNG0a9OrlSioh3bq5mo5EFSbBxEwuqvqIqh6L6yByPTBGRL4XkaEi0jK5y5h0qlUrPNbLjh1w++2BhmOMyUAzZ7rOb1d6QynWqAGjR7uHJpMRSjChhy4TVeBlVHWpqj7kjZHSBzgP+D65y5h0mTYNeveGQYPC655+2t2wM8aYkNat8w+R/thjrh+xVHTtmnz/hAUmFxEpLyJni8g43Lj2i4DzU4rQFIr/BtsDD0CTJm69KlxwQfq7bzDGZKd161y3USE9e0LfvsUbQ7ymyH8SkWeBFbgu7T8ADlTVi1T1rWKKz3giW25UqOCerA2pVi393TcYY7KPKlx7Laxe7ZYbNHC9qYsUbxzxSi5DgK+Aw1T1bFUdp6pbiiku4xOrSeCAAVCnjptfvdr1P2YJxpjSbdw4ePXV8PLTT0MQI7nHu6HfVVWfVtX1InK8iPSHvaM9tii+EEu3eG3Nq1aFm24KL7/1Frz8siUYY0qrpUvzPyx51VVw9tnBxJLIPZe/AIOBu7xV5YEXizIo4yTyENMNN0D16m5+wQL4/ff0d0BnjMl8e/ZAv37wxx9u+cAD3UPXQUmkUdp5QA9gC4CqrgSqF2VQJvEuXWrXdgkm5L774KSTLMEYU9qMGAGffOLmy5SBF15w92KDkkhy2amujxgFEJGqRRuSSbavsEGDwg9KzZkD775bNF1oG2My0+zZMGRIeHnIEPeMS5ASSS4TRORJoJaIDAAmA08XbVil28yZyXXpUq+eax0Sct99rsVIqg8/GWOyx7Zt0KePG6sF3NhP/sHAghKz48p8O4n8CegOCDBJVT8u6sCKUzZ1XBnL6tXQogVs3+6WJ06E004LNiZjTNG78Ub3gCS4Goxvv4WWxdSHSkodV4qEW0Wr6seqeruq3uZPLP59TLAaNsw/FPKwYa70YowpuSZODCcWgJEjiy+xFCRetdg0EblRRPJ1GCAiFUTkZBEZC/Qr2vBMMu64wz1cCfD11/DRR8HGY4wpOv/7H/TvH14+5xzX9DhTxEsupwF7gJdEZKWILBCRxbjeknsDI1T1uWKI0SSoSRP3YGXI0KFWejGmJFJ1iWXNGrfcsCE880zxP4UfT7yHKLer6ihVPQ7YHzgFOFJV91fVAao6u7iCNIm76y43iBjAjBmu2GyMKVkeeww++CC8PHYs1K0bXDzRJNT5sqruUtVVqvp7EcdjCqlJE7jmmvDyX/5ipRdjSpLvvss/zMatt0L37sHFE0uSPfubbHDnnVCpkpvPzc3f7bYxJntt3eqG3Nixwy0feaTrIT0TWXIpgRo1yj/anJVejCkZbr0V5s9385Urw/jx4WrwTJNI32I3iEjt4gjGpM/gwe6PD1y79zfeCDYeY0zhvP666zo/5JFH4NBDg4unIImUXBoCM0VkgoicZs+2ZIeGDfP3OXb33a5jO2NM9lm6NH8z4169MqvZcTSJDHN8N3AwMBq4HPhRRB4UkQOLODZTSIMHh3tM/uEHeNH6sjYm6+zeDZdc4no8B9h/f3jqqcxqdhxNoq3FFFjtTbuB2sBrIjK8CGMzhVSnTv7RKu+9F3buDCwcY0wK7r0XvvjCzZct6+6z1KoVZESJSeSey59FZBYwHPgCaK2q1wLtgfOLOD5TSDffHB6tcskS96CVMSY7TJ4MDz4YXv7rX6Fz5+DiSUYiJZe6QE9VPVVVX1XVXQCqmgecVaTRmUKrUcM9WBly332wxQarNibjrVkDffuGW3p26+YeM8gWiSSXkcAmEdnPN5UHUNXvU7moiPQSkfkikici+/SoKSLNRWSziNwW4/i2IvKViHwnIu+KSA3ftrtE5CcRWSgip6YSX0lz3XXQuLGbX73atTIxxhS94cNTG08pLw8uvTTcvUv9+u7xgocfTm98RSmR5PINsBZYhOtXbC2wWES+EZH2KV53HtAT+DTG9hFAvI5LngHuVNXWwJvA7QAicjhwMdAK1zfaKBEpm2KMJUblyq7eNuShh+C33wILx5hSo2PH1Abs+9vf4GOv/3kRd+904EB3vmyRSHL5EDhDVeuqah3gdGACcB0wKpWLqur3qrow2jYRORf4BZgf5xSHEE5MHxO+93MO8LKq7lDVxcBPwNGpxFjS9O8Phxzi5v/4I3Of6jWmJEllRNhPPsk/2Ffv3q4ElMwAgpkgkeTSQVUnhRZU9SPgBFX9Gkjrs6HeEMqDgWEF7DoP6OHN9wKaefNNgOW+/VZ466Jd62oRyRWR3LVr16YedJYoV879Ggp5/HFYvDi4eIwpLZJJMGvWuGSSl+eWW7d2Q2dkW2KBxJLLehEZLCL7e9MdwAavuikv1kEiMllE5kWZzolzrWG4rvw3FxDTFcD1Xiu26kCogW20lt9ROz5R1adUtYOqdqhXr14BlysZzj03PK72rl2ZMRSqMaVBIglmzx53n2XVKrdcowb8+mt2JhZILLn0AZoCb3lTM29dWeDCWAepajdVPSLK9Haca3UChovIEuBmYIiI3BC5k6r+oKrdVbU98BLws7dpBeFSDF7cKxN4jaWCiLvfEjJuHHzzTXDxGFOaFJRgHnggfJ8F3Of1tdeyM7FAAcnFK52MVNUbVfVIb7pRVdeq6k5V/SmdwahqF1XNUdUcXCu1B1X1scj9RKS+928Z4G4g1OPOO8DFIlJRRFrgehaYkc4Ys12XLnD22W5e1d0otE4tjSkesRLMxx/nb3RTuTK8+Wb2JhYoILmo6h6gnohUSOdFReQ8EVkBHAu8LyKTEjjmGV+z5d4isgj4AVcyGePFOx/X2GABriHC9d5rMD7Dh7snfcH9gVuX/MYUn8gEs2IF9OkT/pFXvjy88052JxYA0QJ+torIk8BRuFLB3sfvVPVfRRta8enQoYPm5uYGHUaxuv56GOW19TvkEDcAUfnywcZkTGkybZpLMA0ahLvRF4FXX4Xzs6TvExGZpar7PKsIid1zWQm85+1b3TeZLHbvve6GIcDCha4jPGNM8enaFU48MZxYAP71r+xJLAUpsOSyd0eRqqpaIjsOKY0lF3A390PdSdStCz/+mB0d4hlTEkyYABddFF4++WSYMiW4eFJRqJKLiBwrIguA773ltiKS0sOTJrPcdJPrvhvcE/v33RdsPMaUFgsWwBVXhJdbtoS5c1PrKiZTJdq32KnAOgBVnQOcUIQxmWJSqZK7uR/y6KOuiswYU3Q2bXJVX6EOZBs3hhkzkn+SP9MlOp7L8ohV1gKrhOjVyzVPBjco0S23BBuPMSWZKlx+uRu8D6BCBZg4EWrWTK2rmEyWSHJZLiKdARWRCl5PxSn1hmwyj4jrJTk0qt0HH7jJGJN+w4fDG2+El0ePhjZtwsslKcEkklwGAtfj+uhaAbTzlk0JceSR+cfjHjTIRqw0Jt0+/jj/2Eo33ujGa4lUUhJMgclFVX9T1UtUtYGq1lfVvqq6rjiCM8Xn/vvDTZMXLbIxX4xJpyVL4IILwg9KHn88/POfsfcvCQkmkdZi9URkiIg8JSLPhqbiCM4Un/r183c/MWyYe3LYGFM4W7e6UST/+MMtN2rkHpQs6KHlbE8wiVSLvQ3UBCYD7/smU8LccAO0auXmt2xx/Y4ZY1KnCmedBT97XeuWLw+vvw4NGyZ2fDYnmESSSxVVHayqE1T19dBU5JGZYle+PDzm6yb0lVdg6tTg4jEm2w0cmD8pjBoVHvYiUdmaYBJJLu+JyBlFHonJCCed5AYrCrnhBru5b0wqPvwwf7dK116bv+FMMkIJZubM9MRWHBLpuHITUBU3INdO3IBcqqo1ij684lFau3+JNHy4G6P7kEPctNkbsu3vf4fBg5M717Rp7oNwxx3pj9OYTLdwIXTqBBs3uuUuXWDyZPdcS0lSqO5fVLW6qpZR1UqqWsNbLjGJxYR17OiK3gsXuhv6IcOGJTckcqi3144d0x+jMZluwwbo0SOcWJo1czfwS1piKUgircVERPqKyD3ecjMRObroQzPFzV+326YNtG3r1m/b5qrHEunjNJRYsnVoVmMKY/duuPhi15wf3KBfb7/tutUvbRK55zIKN6hXH295M/B4kUVkAhVKML17w9VX539y//UCmnFYYjGl3W23wUcfhZfHjnUPKZdGiSSXTqp6PbAdQFU3AKWsgFe6hBLMX/4SHhIZXC/Kobb6kSyxmNLuySfzP3w8dKjru6+0SiS57BKRsoCCe6gSyCvSqEzgQgnmiy+gdm23buXK/N1XhFhiMaXd1Kmu6jjk/PPdj7PSLJHk8ijwJlBfRB4APgceLNKoTEbo2tXdiNy9O7xu1Cj47LPwsiUWU9otWuS6dgl9To46ylWHlUmoz/mSK5HWYuOAO4C/AauAc1X11aIOzGSGrl3hrbfyt3S56irYvt0SizHr1sGZZ7oWYuC6dnnnHahaNdi4MkG5RHZS1R+AH4o4FpOhTj4ZXnjBtYJRdb/UrrzS3bi0xGJKqx074Nxz4aef3HLlyi6xNGkSaFgZo5QX3EyiLrzQ3dAPGT8eHnjAEospnVTdD6zPP3fLIvDii9Ah6uOEpZMlF5Owf/4TmjcPLz/+uHUNY0qnYcNg3Ljw8kMPQc+ewcWTiSy5mIR98okb/7tsWbc8d64rvRhTmowZk78HiwEDrAfxaCy5mISEbt6//jo8/HB4/f33wzffBBeXMcXpo4/cw8Uh3bu7EnzoYWMTZsnFFCiyVdif/+w64gPIy3Nt+nfsCDZGY4ranDn5mxy3bZvYoF+llSUXE1e05sZlysCzz0KVKm55yRK4/PKgIjSm6C1bBmec4aqFAZo2hfffDw8NbvZlycXEFO85loMOcjcxQ15+GUaOLNbwjEnY8OGpD7S1bh2ceqrroQLcj6oLLrAmxwWx5GKiSuQByeuug1NOCS/feiu8+27xxGdMMkLDSSSbYLZtc93n/+A95VeunKsG69Ej/TGWNJZczD4SffK+TBl47jmoVcst5+W5jvqyaShWUzqkMlRwqPv8L78Mr6tcGd58057vSoQlF5NPsl26NG0KTzwRXt6xA845xxKMyTzJJBhV18T4nXfC66pWdWOzWGJJjCUXs1eqfYVddBFcckl4OS/P1UlbgjGZJtEEc8cdrlQeUrmyq/K1xJI4Sy5mr5kzU+8r7LHHYP/93fyWLa4Dv//+N73xGZMOBSWY4cPzP8tVqRK8954llmQFklxEpJeIzBeRPBHZpzceEWkuIptFJOpzryLSVkS+EpHvRORdEanhrc8RkW0iMtubnoh2vInujjtS/wDVquX6Gws9vT9/PmzdmrbQjEmrWAnmySdh8ODwcoUKrsRy8snFH2O2C6rkMg/oCXwaY/sIYGKc458B7lTV1rixZm73bftZVdt508C0RGsS0rlz/m4x7r8fpk8PLBxj4opMMC+9BNdeG95evry759KtW3AxZrNAkouqfq+qC6NtE5FzgV+A+XFOcQjhxPQxcH5aAzQpu/POcOlHFfr0gTVrgo3JmFhCCebcc6FvX/c3C67J8RtvuOdbTGoy6p6LiFQFBgPDCth1HhBqad4LaObb1kJEvhWRT0SkS5xrXS0iuSKSu3bt2kLFbcLKlnVdj9et65ZXrXIJZs+eYOMyJpbdu10Vbp43eHvZsq5bl7POCjaubFdkyUVEJovIvCjTOXEOGwaMUNXNBZz+CuB6EZkFVAdCHb+vApqr6pHALcD40P2YSKr6lKp2UNUO9erVS+7FmbgaN3bdkYc685s6Fe69N9CQjInqk09c03n/UN433uhKMqZwiiy5qGo3VT0iyvR2nMM6AcNFZAlwMzBERG6Icu4fVLW7qrYHXgJ+9tbvUNV13vwsb33L9L4yk4ju3eGee8LL998PH34YXDzGRPrqKzdE8bZtbrlMGZdYXnzRmtGnQ0ZVi6lqF1XNUdUcYCTwoKo+FrmfiNT3/i0D3A084S3XE5Gy3vwBwMG4+zcmAEOH5r8Z2qcP/GL/GyYDzJgBp53mms2DSyxjx8Kjjyb/JL+JLqimyOeJyArgWOB9EZmUwDHP+Jot9xaRRcAPwEpgjLf+BGCuiMwBXgMGqur69L8Ck4iyZV31WOPGbnnDBjdanzVRNkGaOdOVrP/4wy2LwOjR7oY+pNZVjNmXaKh5RCnWoUMHzc3NDTqMEuvrr+GEE2DXLrfcp4+rerABlkxxy811pemNG92yCDz1FFx11b77ptpjRWkiIrNUdZ9nFSHDqsVMyXTMMW60vpDx42HEiODiMaXTzJnwpz8llljASjCFZcnFFIsBA9wUcvvtMDHeY7LGpNFXX7kSy++/u2UR9zR+rMQSYgkmdZZcTLH5979dKQbcMwUXXwzffx9sTKbk++yzfe+xPPFE/h878ViCSY0lF1NsKlZ0Y2E08x55/eMPOPtsN9KfMUVh8mTXKmyz9+ScCDz9NFx9dXLnsQSTPEsuplg1bOj6a6pSxS3//LNrQbZjR7BxmZLn7bfdcyyh1omhVmFXXpna+SzBJMeSiyl27dq5Jsohn34K/fuHu98wprBeegnOPx92en131Kzpxmfp379w5w0lmJkzCx1iiWfJxQTi3HPhoYfCyy+9BHffHVg4pgT5z3/c4HWh/uwOPBDmzIHLLkvP+bt2dcNTmPgsuZjA3H47DPQNivC3v7kWPMakQhX++le47rpw78atWrkb+qGB7EzxseRiAiPiWpCdeWZ43XXXua7OC2PaNDeaoCk98vLgppvgL38Jrzv6aNcxZaNGwcVVmllyMYEqVw5efhlaet2L5uVB796p3zANPVXdsWP6YjSZbft29zfz73+H13XvDlOmQJ06wcVV2llyMYGrVs1VXTRp4pZ37nTdoH/zTXLnse46Sp8NG9yAXhMmhNdddJEbmrhateDiMpZcTIaoXx8+/zz8S3PTJvelsWBBYsdbYil9li2DLl1ca8OQP//ZtUSsUCG4uIxjycVkjJwcmD49/Ivzt9/glFPgxx/jH2eJJXsMH56eZ0Ryc12T9vm+wdCHD4eRI11v3CZ4llxMRjniCPj4Y6hUyS2vXg0nnwyLF0ff3xJLdunYsfAPIb75Jhx3nKsSAyhf3vWyffvt1tN2JrHkYjLOMcfApEnhqo0VK1yCWbIk/36WWLJPYZ5yV3XPRvXsGX44snZt92PkkkvSH6spHEsuJiOdcAK8/777VQousZx4YngkS0ss2SuVBLN9u3sI8s47w+sOPND1dnziiUUTpykcSy4mY3Xr5vqHCiWYZctc0nnhBUss2S6ZBLNyJZx0kqv6CunSxQ1Cd8ghRRqmKQRLLiajnX46vPdeOMH8+itcfrmrHrHEkt0SSTBffAHt28N//xted9VVrrfjunWLJ06TGksuJuN17w4ffugeuAT3oOVtt7lfria7xUowqjBqlCuxrF7t1onAI4+40SOtqXHms+RisoIIVK0a/lLZsME1U/7oo2DjMoUXmWC2bHGl0+uvh9273T41argb93/+s7UIyxaWXEzGC928f/NNdwO3Zk23futWOOus/HXxJjuFEsz557vm6M8/H9528MEwd677MWGyhyUXk9EiW4UddRTMmOGe6AfYtQsuvRTuuy/cE67JTitXwrZt+Zucn3qq6y7fejXOPpZcTMaK1dy4ZUuYNcs90R8ydKi70Rt6/sFkj02boF8/6NvXNTkOOftsd6+tcuXgYjOps+RiMlJBz7E0bQqzZ7uSTMizz7rmy2vXFluYppBmzXKtwfzVYGXLujHuv/rKhhPOZpZcTMZJ9AHJmjXdF1D37uF1n33muhiZM6fo4zSp270b7r/f9cbg7zuuYkX3bNOTT9p49dnOkovJKMk+eV+hgqs6GTAgvG7pUujcGcaPL7o4Tep+/NE9BHnPPeHWYJUqQfXqMHFiePC4wnQVY4JnycVkjFS7dBFxzz488EC4merWra6/qeuvhx07iiZek5w9e2DECGjbNv8zSq1aufsqb7+97/+7JZjsZcnFZIR09BU2ZAiMHp2/y/VRo9yv5FCfZCYYP/zg/h9uucW1CAP3UOyVV8KaNfD667H/3y3BZCdLLiYjzJyZnr7C+veHt96C1q3zn7tdO3seJgjbt8O997rSyldfhde3bQuPP+5KK4n8v1uCyUKqWuqn9u3bqylZ8vJUR45ULVdO1T0B46Y+fVQ3bAjv99BDqlOnpueaU6e682W64nrNU6aotmyZ//0vV0512DDVSZNU69ZNPo6pU1M7zhQNIFdjfK9aycWUSCJw003w5ZfuCe+Q8eNdHf/777vldAxeBeFqvY4dC3ee4lDUr3nZMrf+lFNg0aLw+k6dXNPjLl3c/bBUSqpWgskisbJOaZqs5FKybdqkesUV+X9Bg+pll6muW1f4X8PZ+Gu6KF7zli2q992nWqVK/ve5Rg3Vxx9X3b07fe9VNr7nJRFxSi6Bf7FnwmTJpXR44w3VBg3yf/HVras6Zoyrwilt1TSpxh553O7d7j1s0mTfBN6nj+qvv4aPLY3VkCVZxiUXoBcwH8gDOvjW5wDbgNne9ESM4/cDPgZ+9P6t7dt2F/ATsBA4NZF4LLmUHr/95r7wIr8Ejz9e9emnk/uyzebEEpLsa/Dvn5en+vbbqm3a7Pt+tm2r+umnRRq6yQCZmFwOAw4BpkdJLvMSOH44cKc3fyfwkDd/ODAHqAi0AH4GyhZ0Pksupc8776g2b57/C1FE9fTTVffbr+Av25KQWEISfS2h/aZMUf3oI9VOnfZNKg0aqD71lOquXcUTuwlWxiWXvRdPPbksBBp5842Ahd78XcBdvv0mAccWdD5LLqXT5s2qgwfv26KsUiV33+Cdd6IfV5ISS0hBrym0/f77VY8+et+kUqWK6tCh7v6WKT3iJZdMbC3WQkS+FZFPRKRLjH0aqOoqAO9frwN2mgDLffut8NbtQ0SuFpFcEcldaz0dlkpVq8Lf/+7GCjnjjPD67dvdE/7nnANXXAF//BHelo6HPUOGD09fi6dp09z5UhWvFdakSdCjh+ue5e673ZAHIRUrws03u4dUhw2DatVSj8GUMLGyTmEnYDIwL8p0jm+f6eQvuVQE6njz7XGJokaUc/8esbzB+/dxoK9v/Wjg/IJitZKLUXXPXrRuve+v8qpVVe+6S/W119JbYsnEllP+c61cqXr55a66MPI9qVhR9dprVZctK/w1TfYiW6rFEt2OVYuZIrJ7t+q4caoHH7zvFyqonnaaam5u+q6Xac2g9+xR/cc/VCtUiJ5UqlRRvfVWl3iMiZdcMqpaTETqiUhZb/4A4GAgWq9Q7wD9vPl+wNu+9ReLSEURaeEdPyPK8cZEVbYs9OkDCxa48WFatsy//cMPoUMH90DgM8/Axo2Fu15hHgpMZxXdDz+4vtlycuD2292ga+73mdO4satCXL4cHn4YGjUq3PVMKRAr6xTlBJyHux+yA1gDTPLWn49rojwH+AY423fMM3ilGKAOMAXXFHkKsJ9vv//DtRJbCJyeSDxWcjGxfPyxewiwcePoJZlKlVQvvtjd/N+2LfXrFKZJcCry8lTnz3ddsUSrCvR31zJkiOqOHaldx5RsZGq1WKZMllxMNJHPdDz2mLvXENm6zH9vplcv1eefV121qnDXS8d+kTZtUn3/fdUbblA94IDYCUVE9bzzVOfNK5kt40z6WHKx5GKSFOtLdepU1Tp13M3sdu1if0GHHiQcNEj11VfzP6WeynUT3e63YoXqm2+65tbHHKNatmzsWCtWVO3SxZXSJk1K/ZqmdImXXMRtL906dOigubm5QYdhMkRB9zL82+vUgZdecuOR+IfrjaZJE2jTxk2HHw4HHuimBg3Cg5zFu3609bt3w6+/wpIl8PPPMH++m+bOhVWr4sdTrRqceir06uXmL788sddc2Ps7puQQkVmq2iHqNksullxMWKJfopH7qbpGAG+/DR99BF98ER7CtyAVKrgE06CBS1bVqsGmTfDpp/CnP0HTpu5G+scfux6IK1aEtWvd9L//uREeE9Wmjeut+MwzXe/EFSqk/pqNseRSAEsuBpL/8oy3fyg5fPmlm/773/AIjMWlalXXsq1jRzjuOJdM6tTJv086X7MpfSy5FMCSi0n1SzPR43bvdtVmc+e66ccfXTXWzz8Xvjlzw4auCXFODhx6qBuvplUr14zaP+RzqrGn6zhT8lhyKYAll9KtsF+WhT1+yxZXvbVmDaxf75Y3b4Y5c2D0aFfi+OwzuOEGVxKpVg3q1QtPlSoVf8yWYAzETy6Bt9TKhMlai5VemdgFS7TzFVUXL5lwHpO9yJYn9I0pbjNnpufXd+hJ+5kzCx9TtFJBOof3zcTXbEoeqxbDqsVM5kimGbRVR5mgxasWs5KLMRkikcSRzhKMMUXJkosxGSCZEoklGJMNLLkYE7BUqroswZhMZ8nFmAAV5h6KJRiTySy5GBOQdNyctwRjMpW1FgNEZC2wNOg4UlAX+C3oIFJksdO4AWzZChs3Ff5cNatD1Sqwck2cnew9D0a2xp5I3Purar1oGyy5ZDERyY3VDDDTWezFL1vjBos9CIWN26rFjDHGpJ0lF2OMMWlnySW7PRV0AIVgsRe/bI0bLPYgFCpuu+dijDEm7azkYowxJu0suRhjjEk7Sy5ZRERqichrIvKDiHwvIseKyH4i8rGI/Oj9WzvoOCPFiPsf3vJcEXlTRGoFHWc00WL3bbtNRFRE6gYZYyyxYheRG0VkoYjMF5HhQccZKcbfSzsR+VpEZotIrogcHXSckUTkEC++0PSHiNycJZ/RWLGn/jmNNdCLTZk3AWOBq7z5CkAtYDhwp7fuTuChoONMMO7uQDlv3UOZGHes2L35ZsAk3MO3dYOOM4n3vSswGajora8fdJwJxv0RcLq37gxgetBxFvAaygKrgf2z4TMaJ/aUP6eBvxCbEv4PrwEsxmuE4Vu/EGjkzTcCFgYdayJxR+xzHjAu6FiTiR14DWgLLMnE5BLn72UC0C3o+FKIexJwkTffGxgfdKwFvI7uwBfefEZ/RuPFHrE+qc+pVYtljwOAtcAYEflWRJ4RkapAA1VdBeD9Wz/IIKOIFbffFcDE4g+tQFFjF5EewK+qOifg+OKJ9b63BLqIyH9F5BMR6RhsmPuIFffNwD9EZDnwMHBXgDEm4mLgJW8+0z+jkfyx+yX1ObXkkj3KAUcB/1HVI4EtuCJ2posbt4j8H7AbGBdMeHFFi/1e4P+AoQHGlYhY73s5oDZwDHA7MEFEJLAo9xUr7muBQaraDBgEjA4uxPhEpALQA3g16FiSFSv2VD6nllyyxwpghar+11t+DfchXCMijQC8f/8XUHyxxIobEekHnAVcol65O8PEir0FMEdElgBNgW9EpGEwIcYUK/YVwBvqzADycB0UZopYcfcD3vDWvQpk3A19n9OBb1Q11Ilopn9G/SJjT/lzasklS6jqamC5iBzirToFWAC8g/vg4f37dgDhxRQrbhE5DRgM9FDVrYEFGEeM2L9R1fqqmqOqObgvw6O8fTNGnL+Xt4CTAUSkJe6Gecb02Bsn7pXAid66k4EfAwgvUb3JX62U0Z/RCPliL8zn1J7QzyIi0g54BveF8AvQH/cDYQLQHFgG9FLV9UHFGE2MuGcCFYF13m5fq+rAQAKMI1rsqrrBt30J0EFVM+YLOiTG+74FeBZoB+wEblPVqQGFGFWMuFsBj+CqzbYD16nqrKBijEVEqgDLgQNUdaO3rg4Z/hmFmLH/RIqfU0suxhhj0s6qxYwxxqSdJRdjjDFpZ8nFGGNM2llyMcYYk3aWXIwxxqSdJRdjjDFpZ8nFGGNM2llyMaYUEJF/i8g3oY4qReQwEXnCGzfl2qDjMyWPJRdjSjivV+H6wDW4PqJQ1e+9J60vBDoEGJ4poSy5GJMAEZkuIqdGrLtZREbFOWZz0Ue2zzUre13plw2tU9UtuHFEpgOP+vbtAXwOTPGWK4jIpyJSrnijNiWRJRdjEvMSbpwLv1jjXgTpClyvx3tCK7y+raoAm4C961X1HVXtDFziLe/EJZqLijViUyJZcjEmMa8BZ4lIRQARyQEaA5+LyC0iMs+bbo48UERyRGSeb/k2EbnXt+0Hb1CseSIyTkS6icgX3pjrR3v79RWRGd745k/6SyYRLmHfXnfvxg2wNR843DvfSSLyqIg8CXzg2/ct7xzGFIolF2MSoKrrgBnAad6qi4FXcGON9Ac64QbgGiAiRyZ5+oNwPf62AQ4F+gDHA7cBQ0TkMFxp4jhVbYcrfeyTALyBng5Q1SW+dTlAZy/W73G9C6Oq01X1z6p6jao+7jvNPCDTRqc0WciSizGJ81eNharEjgfeVNUtqroZN6BVlyTPu1hVv1PVPFzpYoo3KNN3QA5uTJP2wEwRme0tHxDlPHWB3yPW3Q/81Tvf3uQSi1edtlNEqif5GozJx27cGZO4t4B/ichRQGVV/UZETkjguN3k/yFXKWL7Dt98nm85D/cZFWCsqhY0bvw2/7m9cVF6AseLyOPetu8SiLcibswUY1JmJRdjEuSVTKbjBtsK3cj/FDhXRKp4TX7PAz6LOHQNUF9E6nj3bM5K8tJTgAtEpD6AiOwnIvtHiW8DUFZEQgnmIeBs36iZbSmg5OLd/F+rqruSjNGYfKzkYkxyXsJVfV0M4JVensPdjwF4RlW/9R+gqrtE5K/Af4HFwA/JXFBVF4jI3cBHIlIG2AVcDyyNsvtHuJJKHlBVVaf4zrNGRKqKyH5xRkLsSv4b/MakxEaiNKYE8RoT3KKql6Z4/BvAXaq6ML2RmdLGqsWMKUG8UtO0OE2VY/Jam71licWkg5VcjDHGpJ2VXIwxxqSdJRdjjDFpZ8nFGGNM2llyMcYYk3aWXIwxxqSdJRdjjDFp9/9llY/XcQrqtAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:title={'center':'Murnaghan: error: 6.780797936786506e-08'}, xlabel='Volume ($\\\\AA^3$)', ylabel='energy (eV)'>"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "murn.plot()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "execution_count": 27,
   "id": "f82f8b1e-bc91-4c16-a508-784f6ba1a5be",
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'poly_fit': array([-1.41856181e-04,  3.23017523e-02, -2.40317251e+00,  4.36775219e+01]),\n",
       " 'fit_type': 'polynomial',\n",
       " 'fit_order': 3,\n",
       " 'volume_eq': 65.21460020822731,\n",
       " 'energy_eq': -15.011252302643427,\n",
       " 'bulkmodul_eq': 95.04965590231002,\n",
       " 'b_prime_eq': 5.101674448018664,\n",
       " 'least_square_error': 6.780797936786506e-08}"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "murn.fit_polynomial()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "af0bb904-c780-4aeb-a975-a4b800c10c2b",
   "metadata": {},
   "source": [
    "### Improving the potential:\n",
    "- try with different starting parameters / global optimization\n",
    "- change weights of structures and fit properties\n",
    "- change functions used"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1c654e1d-8c92-4b43-a78a-b0222b5f6128",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}