Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
"cells": [
{
"cell_type": "markdown",
"id": "f2adfe85-18c8-4430-b370-1b4d6f1b05b3",
"metadata": {},
"source": [
"# Interatomic potentials\n",
"\n",
"In general interatomic potentials can be written as a sum of functional terms depending on the positions of the atoms in a structure. Then the energy $U$ of the system is\n",
"\n",
"$U = \\sum_{i=1}^N U_1(\\vec{r_i}) + \\sum_{i,j=1}^N U_2(\\vec{r_i}, \\vec{r_j}) + \\sum_{i,j,k=1}^N U_2(\\vec{r_i}, \\vec{r_j}, \\vec{r_k}) +...$\n",
"\n",
"The one body term only matter when the system is within an external field. Most classic interatomic potentials don't use 4th and higher order body terms, pair potentials only use the 2 body term. As a general rule potentials that include higher order body terms can be more accurate but are slower.\n",
"\n",
"There are many different forms for $U_i$, which cover a wide range of different run time and accuracy necessities.\n",
"\n",
"Simple pair potentials (f.e Lennard-Jones, Morse, Buckingham) only contain very few parameters, typically less than 10. In many body potentials (f.e. EAM, MEAM, Tersoff) the typical number of parameters is 10-50 and for machine learning potentials the number of parameters can reach several thousands.\n",
"\n",
"# Fitting\n",
"\n",
"In the fit process the parameters of the chosen functions for $U_i$ are optimized. For this purpose an objective or cost function is defined and minimized. In general the objective function is defined as\n",
"\n",
"$\\chi^2 = \\sum_i w_i r_i$\n",
"\n",
"where $w_i$ is a weight and $r_i$ is a residual that describes the difference to target values. This residual can be defined in different ways, so it is not possible to simply compare the residual for different fitting processes or codes. A more in depth explanation and some examples can be found on https://atomicrex.org/overview.html#objective-function.\n",
"\n",
"The minimization can be done with local or global optimization algorithms.\n",
"Generally local optimization algorithms should all be able to find the local minimum coming from some initial parameter set, so the \"best\" local algorithm is the one finding the minimum in the shortest time. Typically used local algorithms are f.e. (L)BFGS or Nelder-Mead.\n",
"Examples for global algorithms are evolutionary algorithms or simulated annealing. For most problems it is impossible to tell a priori which global algorithm will give the best results, so using global algorithms typically involves testing many of them.\n",
"\n",
"# EAM potentials\n",
"\n",
"EAM potentials are pair functionals. \n",
"In a generalised form they are equal to Finnis-Sinclair, effective medium theory or glue potentials. Their total energy can be written as\n",
"\n",
"$E = \\frac{1}{2}\\sum_{ij}V(r_{ij}) + \\sum_i F(\\rho_i)$\n",
"\n",
"with\n",
"\n",
"$\\rho_i = \\sum_j \\rho(r_{ij})$\n",
"\n",
"The original functions for V, $\\rho$ and F were derived from different theories, but they can be chosen freely.\n",
"\n",
"# Fitting code\n",
"\n",
"Fitting is done using the pyiron interface to the atomicrex code https://atomicrex.org. It can be used to fit different types of classic interatomic potentials:\n",
"- pair potentials\n",
"- EAM\n",
"- MEAM\n",
"- Tersoff\n",
"- ABOP\n",
"- ADP (in development)\n",
"\n",
"It allows to fit different properties (energies, forces, lattice constants, elastic properties, etc.) and implements the LBFGS minimizer. Additionally it offers an interface to the nlopt library which implements several global and local optimization algorithms and the ability to apply arbitrary constraints to parameters."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f4075857-362a-400f-b043-2fc5ad54a407",
"metadata": {},
"outputs": [],
"source": [
"from pyiron import Project, ase_to_pyiron\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d70cf5ae-8e25-444c-b24f-2d676ef8d2f4",
"metadata": {},
"outputs": [],
"source": [
"pr = Project(\".\")"
]
},
{
"cell_type": "markdown",
"id": "6d83afb5-b99d-4081-9883-ce67c3557f5d",
"metadata": {},
"source": [
"### Get the training data\n",
"Load a job that contains structures with energies and forces from DFT"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ea3fcb75-1d69-4f9e-901d-ba001c6dab2e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job TrainData was saved and received the ID: 738901\n"
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
]
}
],
"source": [
"tc = pr.create.job.TrainingContainer(\"TrainData\", delete_existing_job=True)\n",
"df = pd.read_pickle(\"Al_3PreFinal.pckl.gz\")\n",
"for r in df.itertuples():\n",
" s = ase_to_pyiron(r.ase_atoms)\n",
" if r.energy_corrected > 0:\n",
" continue\n",
" vol = s.get_volume()\n",
" natoms = len(s)\n",
" if vol/natoms > 120:\n",
" continue\n",
" tc.add_structure(structure=s, energy=r.energy_corrected, forces=r.forces, name=f\"ID{r.Index}\")\n",
"tc.run()"
]
},
{
"cell_type": "markdown",
"id": "57cc1f71-1255-4d15-9c31-e598098fe1e4",
"metadata": {},
"source": [
"### Have a look at the training data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "25b99c5a-e8a2-42de-aaf0-2794d675385b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>V</th>\n",
" <th>E</th>\n",
" <th>space_group</th>\n",
" <th>crystal_system</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>16.484415</td>\n",
" <td>-3.482751</td>\n",
" <td>225</td>\n",
" <td>cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>14.835973</td>\n",
" <td>-3.433909</td>\n",
" <td>225</td>\n",
" <td>cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>15.165661</td>\n",
" <td>-3.452735</td>\n",
" <td>225</td>\n",
" <td>cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>15.495350</td>\n",
" <td>-3.466526</td>\n",
" <td>225</td>\n",
" <td>cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>15.825038</td>\n",
" <td>-3.475815</td>\n",
" <td>225</td>\n",
" <td>cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>303</th>\n",
" <td>28.793489</td>\n",
" <td>-2.746083</td>\n",
" <td>1</td>\n",
" <td>triclinic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>304</th>\n",
" <td>29.358067</td>\n",
" <td>-2.708848</td>\n",
" <td>1</td>\n",
" <td>triclinic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>305</th>\n",
" <td>29.922645</td>\n",
" <td>-2.672118</td>\n",
" <td>1</td>\n",
" <td>triclinic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>306</th>\n",
" <td>30.487223</td>\n",
" <td>-2.635916</td>\n",
" <td>1</td>\n",
" <td>triclinic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>307</th>\n",
" <td>31.051801</td>\n",
" <td>-2.600260</td>\n",
" <td>1</td>\n",
" <td>triclinic</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>308 rows × 4 columns</p>\n",
"</div>"
],
"text/plain": [
" V E space_group crystal_system\n",
"0 16.484415 -3.482751 225 cubic\n",
"1 14.835973 -3.433909 225 cubic\n",
"2 15.165661 -3.452735 225 cubic\n",
"3 15.495350 -3.466526 225 cubic\n",
"4 15.825038 -3.475815 225 cubic\n",
".. ... ... ... ...\n",
"303 28.793489 -2.746083 1 triclinic\n",
"304 29.358067 -2.708848 1 triclinic\n",
"305 29.922645 -2.672118 1 triclinic\n",
"306 30.487223 -2.635916 1 triclinic\n",
"307 31.051801 -2.600260 1 triclinic\n",
"\n",
"[308 rows x 4 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAENCAYAAAD34uk0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9iklEQVR4nO3deXxU5dXA8d8hBBKQPSIJCGilCCJ7BRdeQCpU6oIgEtQKKIIbqFgQXBBbFSqKVBEwUkFfFBAFXFBBEJTa1r4sImoEUVkSQNkSEMKWnPePe2dIhpnJTDLJTML5fj7zubn7uUHn5LnPvecRVcUYY4wJR4VoB2CMMabsseRhjDEmbJY8jDHGhM2ShzHGmLBZ8jDGGBM2Sx7GGGPCVjHaAZSGpKQkbdy4cbTDMMaYMmXNmjV7VPVMf+tOi+TRuHFjVq9eHe0wjDGmTBGRrYHW2W0rY4wxYbPkYYwxJmxRTx4ikiQi80Rkpoi8KyJPiEhcgG3V5zOltOM1xhgTG30e04CuqpokIm2AtUAGMN3Ptu8Dj+eb/6WoJz1+/DgZGRkcOXKkqIcwJSwhIYEGDRoQHx8f7VCMMT6imjzcFkYvYJO7KNOd3oD/5FHH3b4p8AMwsajnzsjIoFq1ajRu3BgRKephTAlRVfbu3UtGRgbnnHNOtMMxpuz56k1Y/hfIzoAaDaDbWGh5Q8QOXyrJQ0QygPp+Vo1xYzjuznumyQEO9aSqLhaRZOBHoAvQMcA5hwBDABo2bHjK+iNHjljiiGEiQp06ddi9e3e0QzGmzFi0LpOJSzbS/sDHTKj0DxI56qzI3g7vDXd+jlACKa0+j47AOX4+04ATgOe+hGe6099BVHWxO90JbAE6iEjtANumqWp7VW1/5pl+H1O2xBHj7N/HmNAtWpfJmAUbyMzKYWTFN08mDo/jOU5LJEJKJXmoaoaqbvHzyQYWAfXcTVPc6ZsAIjJSRKa6P18sIne6P1fGaZ3sBPaXxjVE29q1a2nRogUiwpYtW05ZP3LkSJo0acKhQ4dKPzhjTNRNXLKRnOO5AKTIHv8bZWdE7Hyx0GF+F/CiiMzE6dN4EnjZXdcWaO72jWQB14nIuUAb4GtghJbSaFae5uCOrBxSaiYyskdTerXxdyeuZLRt25b27dvzzTff+F3fqlUrsrKyqFy5cqnFZIyJHTuyck7+rEk08JdAajSI2Pmi/qiuqu5W1RtUdZCqXqOqj6hqrruuv6q2UtVcVU1X1e6qOlJVf6+ql6nqf0sjxvzNQQUys3IYs2ADi9ZlFrpvIHl5eYwZM4aWLVsyevRo+vbty4svvoiI0KVLF/bt20fHjh0REVauXFlg36effpr27dvTunVr1q1bx/r163nqqaeYMWMGGRnOXxbPPfcczZs354EHHuBPf/oTr7zySjF+A8aYWJdSM9H789MnbuCwViq4QXyi02keIVFPHmVB/uagR87xXCYu2VjkY86cOZMJEyZw6623MmHCBJ566qkCHfu1a9fmD3/4g999+/fvz8cff8xXX33F7bffTqtWrbjooou865cvX86IESPo3r07zz77LFOm2OswxpR3I3s0JTHeeUXu3bzLGH18MJmahCJQ42y4+vmy97RVWZe/ORjK8lCsW7cOgPr1nVtfTZo0oUmTJiHt26BBA2rVqkWVKlX49ttvCz12jRo1uPXWW4scqzEm9nluo3tur6+pfgX/1+OeEru9bskjBCk1E8n0kyjyNxPD1aZNGwDvbab169ezbds2qlev7n1xMdBjqvv27aNevXrk5OTQtm3bQo+dmZnJ0qVLGTRoUJHjNcbEvl5t6pdaX6wljxCM7NGUMQs2FLh1lRgfx8geTYt8zEGDBrF582ZmzpzJjh07OHDgAE888QQPPfQQEydO5KmnnmLbtm0ApKWlUb16dW9l4Dlz5rBlyxYuvPBC0tLS2LBhg3fdiy++yMSJE3nuuedIS0vj/vvv59ChQ4wcObIYvwFjjClISulhpahq3769+pZkT09Pp1mzZiEfI9pPW52uwv13MsZEjoisUdX2/tZZyyNEpdkcNMaYWGdPWxljjAmbJQ9jjDFhs+RhjDEmbNbnYYwpl+whl5JlycMYU+54Sgp5Hq/3lBQCLIFEiN22ipI5c+ZQo0YNGjduHO1QIuahhx5CRBg4cGC0QzGnuZIoKWQKsuQRqq/ehOdawLiazvSrN4t1uP79+1OrVq3IxBYjhgwZEu0QjAFKpqSQKciSRyi+etMZhSt7O6AnR+UqZgIBOHr0KA8++CANGzakc+fOHD58mI8++ojf/e53jBgxgrZt2/Lxxx+zfft2OnXqhIhw2WWXsWzZMpo2bcrChQuZM2cOV111FaNGjaJZs2Y88cQT3uP/7W9/Izk5mVtuuYUePXogInTu3BmAt956i4suuohRo0Zx8cUXM3XqVAAee+wxRIQWLVowcuRIGjRowPXXX4/nhdIuXbpw//33c80119CpUyc2brS/5kxsCVQ6qDglhYwPVS33n3bt2qmvb7/99pRlAU26QPWx6qd+Jl0Q+jH8aNSokVapUkVzcnL0hRdeUEAXLFigVatW1S5duqiqapcuXbRWrVp68OBBzcrK0nPOOUdr1aqlQ4cO1f/7v/9TVdWVK1fqjh07VFX1vvvuU0C/++47Xb9+vQLat29fVVUdPHiwArpixQrdtGmTVqxYUfv376+qqmPGjFFAP/nkE1VVBbRJkyaqqjpq1CgFdO3ataqq+sYbb6iqalZWlgKampqqqqo//fSTAjpgwIBi/V7yC+vfyZRt6+e5/6/VcKbr5xX5UAvXZuj5j3yojR583/s5/5EPdeHajMjFexoAVmuA71XrMA9FoNG3IjAq15lnnklCQgJnnHEGAJs3b+bQoUP89NNP3HHHHcTFxXHuueeSmZlJ06ZNmTRpEtdddx2bNm2ifXunakCVKlUYNWoUcXFxbN68GYBdu3bx888/A3DWWWcBkJKS4j3v+vXrOXHiBHXq1AGcEvDgjFjYtWvXAtsnJjp/rWVnZ3PixAl++uknevXqxXnnnec9lzFFtWhdJl8uTmPU8alUkWPOwmKOue1bYdaetoo8u20VikCjb0VwVC6PihUrUqVKFerVq8f06dNZtmwZgwcP5txzz+XEiRMsWrSIO++8kxUrVvCPf/wDgNtvv52FCxcyY8YMOnXqBDgtSk9NqMxMZ9AqT5VdcEYerFixInv2OKON7d27F4B27doFje/999/n4YcfpmPHjjz11FPecxlTFJ6nogYfm30ycXgUc8ztXm3q8/noy/lpwh/5fPTlljgizJJHKLqNdUbhyq+Yo3LNnz+f/fv3s3//fpYuXcq8efMAWLp0KdOnT+fQoUPcdtttDB8+nLy8PLZt20bv3r05fvw4V155JRUrVmT48OE8//zz9OnTB1Vl7NixpKenAzBt2jQuvPBCJkyYwOeff07fvn29VXpFhCZNmjBnzhy+//57RowYwSeffMKLL75Ily5dSEtLA+CHH35g6dKlLF261HvMdu3a0bRpU+bPn8/MmTMLbOfZb/Xq1fgWojTGH89TUaUx5raJLKuqG6qv3nT+CsrOcFoc3cZGdFSukrJgwQJ69+4NwNChQ5kxYwZbt26lQYPIt5pKglXVLd/OGb0YBf5ZaTgNKvgbc/tsuP/rUo/LOKyqbiS0vKFMJAtfM2fOZOXKlcTFxbF27Vpmz55dZhKHKf88A609feIGJsTPKHjrKsJjbpvIsuRRzr333nvRDsGYgDwDrb17/DI4DqMqvkmK7OVIlXpUufIvZfIPttOFJQ9jTNTkfyrqvazLWFPlCnsqqoyw5GGMiSobaK1ssqetjDHGhM2ShzHGmLBFPXmISGURGSki+0Uk6HPDIpIqIp+IyN9FZKWItCqtOMu7tWvX0qJFC0SELVu2ANChQwf69esX0v79+vWjY8eOJRihMSaWRD15AB2AfwHZwTYSkQuB14GFqnqvu/27IlK55EOExT8upvtb3Wn5aku6v9WdxT8uLo3Tlpq2bdt6y514dO7cmQ4dOoS0f4cOHbwFF40x5V/Uk4eqfqaqn4ewaW+ceD2FlDKBhjjJp0Qt/nEx4/41jp2HdqIoOw/tZNy/xhUrgUycOJGEhASSk5MZNWoUdevWpX///kydOpWLL76Yc889ly+//JKtW7dy9dVX86c//Yk+ffpw8803s2/fPj799FMaNmyIiDBmzBg6d+7Meeedx9dfOy9UBdoP4I033uCCCy7g7rvvZsiQITz55JOnxPf2228zffp0nn/+eSB4pd0VK1YwadIknn76aQDy8vIYM2YMLVu2ZPTo0fTt25cPPvigyL8rY0wMClQxMZIfIANQP5+B+bbZ4oQT8BjT3X16ufN/d+f7Bdh+CLAaWN2wYcNTqkWGU631ivlXaItZLU75XDH/ipCP4U+jRo20WrVqmpOToyNGjFBAZ8+erRs2bFBAhw0bpv/zP/+jFSpU0JycHN24cWOBqrUDBgxQQD///HP99ttvFdDhw4erqgbc77vvvtO4uDi99tprVVU1NzdXJ0+eXOB4P/30kze+Ro0aeeMlSKXdzp07q/vvpzNmzFBAn3vuOVVV3bRpk7777rtF+h1ZVV1joocYqKrbEf+PBQcoaOPXTnca7zPd6WdbVDUNSAOnPEkY5znFrkP+q8YGWh6O2rVrk5CQQLVq1QCoX7++t8LugQMHWLNmDVWqVCEhIcFb+XbNmjUFjpG/Wm52drZ3G3/7bdiwgdzcXOrXdx6NrFChAvfee2/I8fqrtOtr3bp13msBaNKkCU2aNAn5HMaY2Fcqt61UNUNVt/j5/BpsP7cjfao7uwDIA+q58ynANuCLkovcUa9qvbCWR1L79u05fPgwOTk5IVe+DbZfy5YtiYuL81bYPXLkCM8880xEY27Tpg1wsorv+vXr7U13Y8qZqL8kKCKNgXuAWu78M8BcVV0NtAWai0icqm4QkZuBISJyHlATuEZVj5Z0jPe2vZdx/xrHkdwj3mUJcQnc2zb0v9h9earqAixatMhbuXb+/Pnecc1Xr17NrFmzePzxx7n11lvJycnhxhtvZNKkSaxdu9ZbudZTkdezj2e/YcOGnbJf7dq1ee2113jqqae48847ARgwYECB402bNo2LL77YG9+cOXM4ePAg4L/Srojwww8/APDiiy9y5513snnzZmbOnMmOHTs4cOBAgdENjTFln1XVDdHiHxfz97V/Z9ehXdSrWo97297LH8/9Y6RDNT6sqq4x0VOkqroicksY5/hVVReEHVkZ8sdz/2jJwhhjXMFuW83CeZopFFtx+iSMMcacBoIlj2zgyxCPc1bxQzHGhGLRukwbm9tEXbDk8aWqdg3lICKyIkLxGGOC8Iz5nXM8F4DMrBzGLNgAYAnElKpgj+qG/HhMqEnGGFM8njG/88s5nsvEJRujFJE5XQVLHrNEpL+IJJZaNMaYoHZk5YS13JiSEix57MapHbVcRF4TkR4iEvVaWKercePGMWvWLMCpHdWvXz9EhHHjxkU1Lo/ly5dz9tlnIyJ+11vV3chIqen/b7lAy40pKcGSwSBV/ZuqXgI8A1wO/FdEJovI70onvNiR/d57fH95N9KbNef7y7uRXcpvTD/++OPe5FGhQgXvC36xolu3bvzmN78JuN6q7kbGyB5NSYyPK7AsMT6OkT2aRikic7oKmDxUdX2+n79S1Qfdl0X+C3wkIptEZGxpBBlt2e+9x85Hx3Jixw5Q5cSOHex8dGyxEoiq8thjj9G5c2dGjBhBx44d+fDDD2ndujUiQp8+fejXrx+JiYnet7M3b97MfffdR2Zmpvc469at48Ybb6RGjRreMiP+jr1y5UpycnL8Hn///v1+twenpImIcM0113DNNdeQnJzM1KlTGT58OMnJyVx77bXk5eUVuLZRo0bRvHlzOnXqxJYtW6zqbgT1alOf8b0vpH7NRASoXzOR8b0vtM5yU/oCVUzUghVqqwODgI+B40AuTp2p3FD2j/anXbt2p1SLDKda66aul+u3Tc8/5bOp6+UhH8PXK6+8ooC+9NJLqqp68cUXa/Xq1XXRokUKaPfu3VVVdeHChZqTk6OAdu7c2bv/ihUrFNBBgwapqmq7du20evXqQY+dlZXl3S//8adOnVro9oMHD1ZV1dq1a3srAT/wwAMK6Jo1a1T1ZGXdbdu26bp16xTQPn36FFinGl7VXauqa0z0UJSquiLyLjATuAnoCVQGPDe09wNvAbMjl8Zi14mdfgv3BlweCk9l3Dp16gBOdd0DBw6wefNmAC666CIAevXqFfQ4DRs2BOCMM87gwIEDIR3b9/j33HNPodt7KuR6qv8mJCQUqP6bX4MGDbxVd7/99ttTYj7dq+563tNof+BjxlSaz1nsQWo0gG5joeUN0Q7PmJAE6/O4CidBXAckAMdw3iLvDdRT1aGquqrkQ4y+isnJYS0PhWfUvj17nKr0e/fupXr16t4v0bi4gve14+LiUFWys7O9Az4V9di+xw9l+3Ds27fPO/DUBRdccMr607nqruc9jXYHPmZ8/AzqsRtBIXs7vDccvnoz2iEaE5JQqup+htPCeEtVgw4VW17Vvf8+dj46Fj1ysqquJCRQ9/77inzMAQMG8NNPPzF79my++eYb8vLyWLRoES+//DIAS5cupVu3bnTq1AmA1NRUli1bxrBhw7jpppt49dVXvdtdcskl3qq206ZN44477vB77OrVq5OWlnbK8QPF4rt969atvZV233777QKVdXNzc70xTJ8+nU8//ZTLLruMiRMn8umnn1rVXZfnPY1Rld6kihwruPJ4Diz/i7U+TJkQsKquiHwN9FDVTL8blCGRqKqb/d57/PLcZE7s3EnF5GTq3n8fNa6+OtKhGh/lraruOaMXo8CPlW+kgt+nmgXGZZVuUMYEUKSqukBv38QhIjWBZOA7DZR1yqkaV19tycIUW0rNRDKzctihSTQQPwNp1mhQ+kEZUwTBHtXd5PlZRGqIyJs4w8a+DzQRka9F5PTp5TQmAjzvaTx94gYOa6WCK+MTnU5zY8qAUN8Yfx643t1e3MSSCjxdUoEZUx553tNYU/0KxhwfzC7ORBGocTZc/bz1d5gyI9RhaNsD3YB0YB6Aqn4tIlVLKjBjyqtebeq7L/VdDoyPdjjGFEmoLY+jwDZV3YXzgiAi8nvgtyUVmDHGmNgVasvjB2CTiJwAKojIcZzE806JRWaMMSZmhdryuB/4GogH4tzPd+5yU0T5K+VGYrtYMH/+fGrUqEHjxo2jHYoxpgQFfM/jlA2dcuwXAWcDGcD/qeqJEowtYiLxnsemL3bx73d+4Nd9RzmjdmUuvvY3/LZDvWLFJSJ07tzZW4SwuNvFCk/i2LJlS7GPVd7e8zCmLAn2nkfAloeItMw/r6p5qvofVZ2vqv/Onzh8ty1vNn2xixWvf8ev+44C8Ou+o6x4/Ts2fbGryMecMmUKcLJS7qeffkr37t0ZPHgwl1xyCc8++6zf7TIzM/1Wxv3iiy/o3Lkzo0ePpmPHjvTv35+cHGeAoCVLltCkSRN69OjBrbfeiohw/vnnk56ezvr16+natSt33nknV155Jffccw9Hjx5l/vz5JCUlISKMHz+eNm3a0Lp1a3a69bxGjBjBwIEDueOOO2jevDnvvvtukX8XxpgyKFDFROCTQOuKs200PsWtqjtrzD91ytDlp3xmjflnyMfwh3yVci+55BKtWLGiHj9+XMeNG6eA/vOf/zxlO1X1Wxl327Zt3u09lXmnT5+uubm5mpSUpHXr1tW8vDydPXu2AvrYY4+pqmqjRo00OTlZVVWXLFlSYJ2nEm5mZqZ+8MEHCuikSZNUVXXOnDneeFq3bq316tXzzjdq1EgbNWpUrN+Nh1XVNSZ6KEpVXaCLiOQGWZ/f1qKlrrLB0+IIdXlRfPnll4gI99xzDz///DPt2rVj69atXHrppQH3yV8Z9+eff2bu3LlMnjyZ+Ph4AHbt2sWePXvYs2cPLVq0QERISUnx7r9nzx62bt1KixYtAKeaLpysyuuRkpLCpk3OO6PZ2U55MxGhd+/epKSksHfvXnbtKnorzBhT9hT2tJX/MUVPM2fUruw3UZxRu3Kxjpu/Um6lSpU4cuQIzz77LFWrVuXDDz8sUGHXs9327dsL7O8xfvx4pkyZwr///W+ys7OZM2cOqkpSUhJJSUns2rWLvLw8byVbgKSkJBo1alSgmi44A0AFk5WVRWpqKj169GDKlCmsWbOmQFzGmPIv2NNW54Tx6VTUAESksoiMFJH9IhK0915E1OczpajnDcfF1/6GipUK/qoqVqrAxdcGHnY1FKmpqWzcuJFhw4Yxbtw4OnfuzA033MADDzzA8uXLadSo0SnbZWZmFqh0u2qVUxW/R48enHnmmTz77LMsW7bMu95TLbdmzZp06dKFjz/+GMA71vg777xD06ZNGTx4MM888wx33303Y8aMYfny5d5KuPPmzWPevHneY+7du5crr7yS9evX8/e//92bfKZNm8b8+fPZv38/+/fv9+5jjCl/Qn7aqsQCEPkfnBcPXwcaqWrA1o6IvAc8nm/RL6q6rbBzxOrTVqXlnXfe4eqrr6ZChQrMmTOHG2+8kTfeeIP+/ftHO7RC2dNWxkRPUavqlgpV/QxO/iVciDpAL6ApzouLE0ssMB+/7VCvzCQLX+vXr2fevHk0bNiQzz77jIceeoh+/fpFOyxjTBlWKslDRDKA+n5WDVLVWWEc6klVXSwiycCPQBegY4BzDgGGwMmhWk9XY8dapVZjTGSVVsujY4Bz+RnQIDBVXexOd4rIFqCDiNRW1X1+tk0D0sC5bRV2xMYYYwIKKXmIyFBVfamoJ1HVjMK38nvekcA5qnqXiFwMtFbVaSJSGWdQqp3A/qLGZYwxpmhCbXmMF5GGwBuq+k0kAxCRxsA9QC13/hlgrqquBtoCzUUkDsgCrhORc4E2OLW2Rmi0e/yNMeY0FGrymAt8ANwtIk2BJcAcVS32w/2qugX4s/vxXZf/caB0oHtxz2eMMab4Qqqqq6p3qernqnoXcANwKfCTiKwUkaEiUqtEoyynCquW++uvv9KkSRNGjRoV9DgPPfQQIsLAgQMBePvtt0lOTuY///lPoTH8+9//Jjk5mQULFoQTujHmNBdS8hCRp0XkchH5X2AbcJW7bzvgEuANERlRcmFGX/qqFaTdPYhnU68m7e5BpK9aUexjPv7440GTR0JCAl26dKFVq1ZBjzNkyJAC840bN6ZLly7Uq1f4o8X16tWjS5cuVkLdGBOWUMfz+DPwMXATkAj8CxgMJKvqAFW9Eri5ZEKMvvRVK1iaNoWDe3aDKgf37GZp2pRiJZD81XKHDh1KkyZNTqmU+9xzzzFjxgxefvllAHbv3s0NN9xAp06dePTRR+nZsyfbthV8R/LQoUOMGTOGuXPnsnLlStLT0zn//PMREe6++26uuuoqUlJSWLHCif2RRx5h7ty53qq4a9as4dJLL6VPnz6MHj2a66+/vsjXaIwpv0JNHgA7cAZc/q2qdlLVV1T1VwAReQCoVhIBxoJVc1/jxLGCta1OHDvKqrmvFfmY99xzDwDnnXceL730kjdB/Prrr8ybN485c+YwbNiwAvuMGDGC+fPn88ILL/DXv/6V22+/ndzcgrUrq1atyo033uidb9asGampqQBceumlzJ8/n507dzJ58mQAbr/99gL7X3fddXz33Xe8+eabTJgwgUsuuaTI12iMKb9C7TB/H7g2yJNNs4H/jUxIsefgXv+vowRaXhz5K+X6WrduHQD16zvvW1533XVA6IMupaSkkJiYCJysjpvfnj172L59O82bN/cWXRwxolzfjTTGFFGoLY8koIGINPT5nC0ilVT1Z1X9pSQDjaZqdZLCWh6q/NVyv/76a++yQNq0aQPgrYw7b948vv/++2LFkF9SUhJnn302u3bt8rZoxo8ff0rrxhhjQm15dAS2BFiXKyKLgNtU9WAkgoo1nVJvYWnalAK3ripWqkyn1FuKddzU1FSWLVvGsGHDvNVuly5dSrdu3ejUqROvvPIKAD/88AMfffQRkyZN4ujRowwfPpzLLruMvLw8+vbtyyOPPALA6tWr+eyzz7zVbOfNm8eFF17I0qVLvfM///yz95hLly5l9uzZ3vPedNNNLFy4kHvvvZe+ffvym9/8hqZNmwZNaLFi0bpMJi7ZyI6sHFJqJjKyR1N6tfFXEccYEwkhVdUVkbwQjjVZVWPyHkckquqmr1rBqrmvcXDvHqrVSaJT6i0069Q10qEaH6H8Oy1al8mYBRvIOX6yhZQYH8f43hdaAjGmGCJRVXcc8BnwX1U9LCKJOK2R7sAT7nQ8EJPJIxKadepqySJGTVyysUDiAMg5nsvEJRsteRhTQkLt8/gj8E9VPQygqjk4j+teoaqHVHUhYRY5NCZSdmTlhLXcGFN8obY8agGZIvINkIPzrscFQDY4owECVUskQmMKkVIzkUw/iSKlZmIUojHm9BBqy+NxnCeuugBXutM6wGMi0gzYANgg1iYqRvZoSmJ8wU79xPg4RvZoGqWIjCn/Qmp5qOrrIrIOuJ6TpdDfUtVvxRkC8ELgRMmFaUxgnn4Ne9rKmNIT6ngeuTjJ4pSxS90XB4+eupcxpadXm/qWLIwpRaHetlrlL3GISJ0Ix3NaiVRV3ZKwdu1aWrRogYiE/Aa7Meb0EWryeEdEbveTLOZHOqBYdWjdL+yc8F8yRq9i54T/cmhd8V+oj1RV3ZLQtm1b2rf3+3h36Tp2CJ5rAeNqOtOv3ox2RMYYQk8ezwLTgV9EJNfzATqXXGix49C6X8ha8D25Wc7dudyso2Qt+L5YCaQoVXV//PFHLrvsMlq3bs3YsWMREZKSkpg/fz779u3j5ptvpk+fPtxyyy1cffXVbN26tdCqunPmzOGqq65i1KhRNGvWjCeeeKKYv63IOZS1Gz28D7K3A+pM3xtuCcSYGBBOVV3x8zktHFiyBT1e8CV7PZ7HgSVbinzMolTVHTlyJJ9//jlvvPEGQ4cOBaBFixb07duX+++/n9dff53x48fz0ksv8cEHHzBgwIBCq+qmpKTw8ssv8/TTT/OHP/yBRx99lI0bNxb5uiJl/+FjxB/aheBTAeF4Diz/S3SCMsZ4hfqexxdAqs8yAeZENpzY5GlxhLq8OIJV1U1PTwfgrLPOonbt2gXWrVmzBoA6deqQmJhIYmKid5mHv6q6VapUYdSoUcTFxbF582YAdu3aRdOm0X3M9efsIzQN9ABfdkbpBmOMOUWoLY8eqrrV57MFZzjaci+uZuWwlod83DCr6npqPGVmZnor63p4+if27NlDTk4OOTk5tGvXrtAYbr/9dhYuXMiMGTPo1KkTAKHUOytpx3LzOB7ob5saDUo3GGPMKUIdw/yAiNwlIutE5EsROVdEpgEJJRxfTKjeozESX/BXJfEVqN6jcbGOm5qaysaNGxk2bBhPPvkk4FS3XbVqFcApVXUnTpzIpZdeSmpqqrfPxHnNBiZNmsSNN97IqFGjuO222+jZsyevvvoqW7ZsKVBV11Nx11NVt0+fPqgqY8eO9bZspk2bxtq1a/EUk5w2bVqxrrMoKsVVYJfWIs/n7mgOlaHb2FKPxxhTUKhVdR8G/urObgF+CwwF2qjq4BKLLkIiUVX30LpfOLBkC7lZR4mrWZnqPRpTtU3dSIca1Nq1a6lduzaNGzdm586dpKSkMGTIEF566aVSjaM07D98jMz9OWRv/YZGH/2JFNnLTuqwo90ofnfN0GiHZ8xpIRJVdW/CqZ77LXCfqp4AXhSRDyIUY8yr2qZuqScLX7t27WLMmDG0a9eO9evX069fP5566qmoxlRSalWpBMDu7Yl0Ova8vTVuTIwJNXn8qqpjAURkiDuthdMCMaWkZ8+e9OzZM9phlJpaVSpRr0YCP034Y7RDMcb4CDV5HBWRLcBG4EIR+QRog9MSMcYYc5oJNXmMBj4GGrrzXXDqWY0pgZhKjap6O5xN7ImFp76MMf6FWlX3cxE5H6fvowGQAcxV1Z+KG4CILMap0lsVaAs8o6ovB9g2FRiCUwK+FXCvqq4vynkTEhLYu3cvderUsQQSg1SVvXv3kpBwWjzQZ0yZE2rLA1XdhjPUrJeIjFHV8QF2CVWmqnr6UT4F0kTkP6q6wedcFwKv43TYvyAi7wDvishvVTXst/UaNGhARkYGu3fvLmb4pqQkJCTQoIG902FMLAq1JHsK8GegGZD/zbjW+CSUcHkSh8szlG0VP5v2xnkvZZc7nwlcA3TAGV/dN+YhOK0UGjZs6Lua+Ph4zjnnnCLHbYwxp7NQWx5v43xJ+wrpprSIZAD+nrEcpKqz3G1SgCuAmar6hZ9tk93pcZ9psp9tUdU0IA2c9zxCidMYY0xoQk0ejYCHcP7q93wRC/BgiPt3DHCuPQAi0hx4BeeW1CsBjrHTncb7THf62dYYY0wJCjV5LAD+pj6Pv4jIgVB2VtWAlexE5H6gP8446T+LyChgk6ouEpGRwDmqepcbw1ignrtrCrANp2ijMcaYUhRq8jgP+NYdx/xIvuV/wPlSL45J7vT9fMuuc6dtgeYiEqeqG0TkZmCIiJwH1ASuKUpnuTHGmOIJNXl0d6e+dbqL3ZegqgGfk1XV/j7zczhNysAbY0wsCzV5bAVm+SwTYEBEozHGGFMmhJo87lbVU4ogish/IxyPMcaYMiBg8hARz6AJH/kmDhG5FuiFc9vqtKmsa4wxxhGs5XEdcC+QKSLet+zcN81XAutx3v8wxhhzmgmWPLJU9TMAEZkJ9AA+Am5V1WwgW0SOlUKMxhhjYkywYWi9T1Kp6iBgo6reGmgbY4wxp49gLY94d8Anz6O0FX3mC9vfGGNMORXsy/9SThYq9PCdN8YYcxoqrOVQ2EAXdtvKGGNOQ8GSx3rgviDrBXgxotEYY4wpE4Ilj9Gq+mmwnd3ChcYYY04zAZ+2UtUlhe3s761zY4wx5V+wR3WNMcYYvyx5GGOMCZslD2OMMWELKXmIyHkico2INHDnG4vIJSUbmjHGmFgVasvjGaAPUDnffg+LyPASicoYY0xMCzV5VFHVAar6A4Cq/ghcBVxdYpEZY4yJWaEmj3NEpIrPsirA2RGOxxhjTBkQamHDLGCjiHwKHACqA/8D7CihuIwxxsSwUJPHX4BFQH93XoA8YEgJxGSMMSbGhZQ8VPU99+mqW4EGwDbgH6q6uiSDM8YYE5tCHo9DVb8Avsi/TESuVdV3Ih6VMcaYmBYweYhIVyBJVeeLyNgAmw0ELHmUI4vWZTJnziLOz1hFtdxfia9em+63DKJZp67RDs0YE0OCtTwWAtVE5J/AOJyxOzzje3h+tvE8ypFF6zJ5edZbdPp5BfF6AoATB/bx4fQXACyBGGO8giWPZ4AUYBewFZjls16AAcUNQEQWAzuBqkBb4BlVfTnAtr7J6kVVvae4MRjHnDmL6LJrGRV8/ibQE8dYNfc1Sx7GGK+AyUNVn/D8LCJ/VtW3fbcRkQ0RiCFTVYe4x/sUSBOR/6iqv2O/Dzyeb/6XCJzfAOmrVtBm28enJA6Pg3ttBGJjzEkhvSToL3G4bihuAJ7E4fJ8Q/m+kOhRB+gFPAhcDxwq7vmNY9Xc17y3qvypViepFKMxxsS6kJ62EpHfA88CvwUqhXsSEckA6vtZNUhVZ7nbpABXADPdJ7v8eVJVF4tIMvAj0AXoGOCcQ3DfQ2nYsGG4IZ92Du7ZHXR9p9RbSikSY0xZEOqjujMAf9/AoXaYdwxwrj0AItIceAW4T1VfCXQQVV3sTneKyBagg4jUVtV9frZNA9IA2rdvbx37QSybMbXQbay/wxiTX6jJIxsnAfzCyYQhwF9D2VlVMwKtE5H7cd5cfxz4WURGAZtUdZE7Rvo5qnqXiFwMtFbVaSJSGUjG6WjfH+I1GD/SV61g/cfBRxOulnRmKUVjjCkrQk0ek4BcYJuq5nkWisi2CMQwyZ2+n2/Zde60LdBcROJw6mtdJyLnAm2Ar4ERqloirYpF6zL5cnEag4/NJqXCXo4k1qPKlX+BlsXu5okZ6atW8OG0yUG3qVipst2yMsacItTksRdYjvPeh++6h4sTgKqecsB86/rnm00HuhfnXKFatC6Tfy6cyl8kjSoVjgFQJWcnJ94Z5vzCykkCWfLyFDQ3N+g23YfcY7esjDGnCLUk+0s4lXTF51MuTVyykfuYSxU5VmB5xdwjsPwvUYoqspb9bQS5R48E3abVFT0tcRhj/Aq15fEzzq2kIvV5lDU7snJIqRzgvYbsgN03ZcabowazfetOguX/Vlf05PeD7yq9oIwxZUqoyWMuTgl23z6Pn0okqihLqZnIjsNJNBA/CaRGg9IPKIKWzZhaaOJIqFbNEocxJqhQb1tNwKmoe1xEcj0fitnfEatG9mjKZFI5rAVfaTkRlwDdAtWILBucJ6uC33G8fIAN02KMCS7U5AGn9neU2z6PXm3qc9l1d/F0/F1k5CWRh3A4MZmK175QpjvLl82YWuiLOXGVK1s/hzGmUKHetvoCSPVZJsCcyIYTO3q1qU+vNo/jKaUVqF5KWbL+4w+CZ3yBHrdbnUljTOFCTR6Xevo6RKSOqu51f760xCIzETX9juDvaijwx7sfsFaHMSYkod62ihORiSJyEPhFRA6KyIQw9jdR9OZfH+bQ/lMquHgpUL1NZ0scxpiQhfrl/zDwAM6YG+JORwJjSiguEyHpq1aw/ev1QbeRChUYMnpkKUVkjCkPQr1tdT3wZ+C/wGGcLoAOOMPQlst3PcqLwsqPAPS86/6SD8QYU66EmjwOqOokn2X/FJE+kQ7IRE76qhWFlh+p3eBsu11ljAlbqMkjUUTeA1ZzsuVxEZBQUoGZ4vtw6nOFbjPo2WmlEIkxprwJNXk8A/wv0DPfMsEppW5i0MwH7kTz8oJuIxXseQdjTNGElDxU9XUROQzcDjQCtgJTVfX94HuaaEhftYJ9GdsL3a5ltz+UQjTGmPIo1GFoK6vqQmBhvmW3ikiDYAM9lReL1mUycclGp2BizURG9mhKrzb+RtWNDR+86Ns95Z/VrzLGFFWo9y0+9LPsEDArcqHEpkXrMhmzYAOZWTkokJmVw5gFG1i0LjPaofmVvmoFhDA+lo0OaIwpjqAtDxHxvJZcL9/PHlWA80skqhgycclGco4XfGIp53guE5dsjMnWRyid5DY6oDGmuAq7bTWLk+N3zPSzfmtEo4lBO7JywloeTaF0kldLOpNOqbfY47nGmGIpLHl8hpM8WgNf5luuOGOKl9vCiB4pNRPJ9JMoUmomRiGawJbNmFpoJ/nZLVpxw6NPllJExpjyLGifh6p2UdWuwCRV7er5AFfiDBD1bGkEGU0jezQlMT6uwLLE+DhG9mgapYhOlb5qhTtOR3CWOIwxkRLqo7p/FREBLgduAnoD1UoysFjh6deI5aetls9KK3SbVlf0LHQbY4wJVaHJQ0Ta4CSMVCDZsxg4BhwvudBihzO2R+wkC19Hfz0YdH3VWrXtsVxjTEQFTB4i8jBO0vDcnxHgCHAAuAtYClhFvShbNmNq0PVSoQJ3TH+tlKIxxpwugvV5/JWTj+J+DgzBaXmkq+oCVf1VVa2ibhSF0tdxpVXMNcaUgGDJ4/fAK8AGYAHwrqpmQ6HDYJtSsuTlKUHX23jkxpiSEvC2lap+AnwiIpWAq4ApIlIRqCsiCap6REQGqaq/9z9MCVs2Yyq5R48G3cbGIzfGlJRCO8xV9RhOy2OBiNQA+ro/HwVa4f/lwZCJyHicYovZOEnqfWC4qp7SGS8iqTi3zza4575XVYMPk1dOFXa7Kj4hwVodxpgSE1ZNblXNVtUZqtoTGI4ztkdxxQEDVfVO4B3gDpwEVYCIXAi8DixU1Xtxks27IlI5AjGUKaF0kl8x+O5SisYYczoq8oAOqrod6FTcAFR1lNu6ATjLne70s2lvnHh3ufOZQEOc4XBPG6F2klurwxhTkoo1GpCq7g9lOxHJEBH18xnork8WkTdxEsTfgZV+DuN5x+S4zzTZz7aIyBARWS0iq3fv3h3iFcW+VXODP3ZrneTGmNIQ6kiCxdUxwLn2AKjqTuAGERkF/A3YDfjW0vC0RuJ9pv5aKahqGpAG0L59+3LzhNjBvXuCrrdOcmNMaSiV5BFswCgReVxVH3NnPVV6G7rrRgLnqOpdOJ32Y4F67jYpwDbgixIJOkakr1rBqrmvcXDvHqrVSSLhjDM4ctD/G+WtruhprQ5jTKkorZZHMI1FZAZO5/sVwFuAJ5m0BZqLSJyqbhCRm4EhInIeUBO4RlWDP69aBqSvWsHyWWneMiMJ1apx+YAhACxNm8KJY84lHtwT+PZbqyt6WgkSY0ypEQ1h1Lmyrn379rp69epoh+HXshlT/XaAS4UKVKpStdC6VTY+hzGmpIjIGlVt729dLLQ8TlvBnpzSvLyQEseQF+0dTWNM6SvW01am6NJXrQhpyNhgCus8N8aYkmLJIwrSV61gadqUQoeMLUy1OkkRisgYY8JjySMKVs19zdsJXhydUm+JQDTGGBM+Sx5REInbTQnVqlknuTEmaix5REHCGWcUa/8KFSt6H+U1xphosKetouBYTk6R942Lj6fH0OHW6jDGRJUljyLwfes73Pcs8k6cKPK575u9sMj7GmNMpFjyCJPnSan8b30vTXNG9Cvp1kCrK3qW6PGNMSZU1ucRJn9PSp04drTQareRYOVHjDGxwpJHmAI9KRWs7lR+6atWEFc5/PGrrNVhjIkldtsqTNXqJAVMFOmrVgS8dZW+agWfvJoWsCJuYazVYYyJJdbyCFOwF/MC3bry9JMUNXH0vOeBIu1njDElxZJHmIJ1igdqkRTnjfL4hAR7LNcYE3MseRRBtaQzA65LX7XilGXFeaP8+NEyP1yJMaYcsuRRBMFuXb314hQunfAJi9ZlepfFF6GD3MOKHxpjYpEljyIIdhspUY9SZft67p/3JY8s2kD6qhUcP3KkyOey4ofGmFhkT1sVUbWkM/32cQjQY89yLtn/Bf862IGEfZ+TWMRz2JjkxphYZcmjiDql3sIHU571u06AFglnc2vV1lQ4o513edaxX1i6Y1ZIx+95zwOWOIwxMctuWxVRs05dSahWze+6hlWb0SHpKuIqVEREvJ+alerSPWVgoce2cuvGmFhnyaMYApVFb1mrMxUqnPqr9SSQYKRCBSu3boyJeZY8iqFZp64kVMw9ZXmVitWLeETlyrvut1aHMSbmWfIopq51vwe0wLLDJw4U4UhKq7ZNLXEYY8oESx7FVLsGxEvB1sdX+z8lLy/vlG1Vlaxjv/g5ipIbn8DvH5xUQlEaY0xkWfIopvHH+tKt3mbytz7qVK4P4iSL/B//T1spB6Uqv33g+dIM2xhjiiXqyUNExovIGyIyTUS2u9P4ANuqz2dKacfra3X1K1h9Rita1tgBKG1q/54m1dtSQSoUeNIK4EjuIZ+9nRZH6wefo1eb+qUeuzHGFFUsvOcRBwxU1WMikgvcDawC3vCz7fvA4/nm/d0DKlUjezTl/nm3Mq7uK7TkR86r3sabLPITEeolnpNviXKs1pmMmT6r1GI1xphIiXrLQ1VHqeoxd/Ysd7ozwOZ1gF7Ag8D1gO+f8qWuV5v63NSxIY+duJUddc9FODVx+LP+jAtoNvTJEo7OGGNKRqm0PEQkA/B3X2aQqs4SkWTg70Bvd7oywKGeVNXF7vY/Al2AjgHOOQQYAtCwYcNixV+YJ3pdCMBj/7mVrqJBE0gewtKky+lwxe/tVpUxpswSVS18q+KeRKQB/hPVHlX9Nd92o4C/AY+oatA/y0UkHTgfqKOq+4Jt2759e129enX4gYfpkUUbOPM/P9NbK51y60pVyTieR/9Kh7i5Y0NvwjHGmFglImtUtb2/daVy20pVM1R1i5/PryKSvw9jqzttCCAiI0VkqvvzxSJyp/tzZSAZ5/bW/tK4hlA80etCGvVrxiI5Rp7Pk1YZx/O4q+YxJvdrbYnDGFPmxUKHeWMRmQEcBq4A3gIec9e1BZqLSByQBVwnIucCbYCvgRFaGk2nMPRqUx/83I46G1hX+uEYY0yJiHryUNUBQdb1zzebDnQv+YiMMcYUJupPWxljjCl7LHkYY4wJmyUPY4wxYbPkYYwxJmyl8p5HtInIbk4+BhyrkoA90Q6iBJX364Pyf43l/fqg/F9juNfXSFXP9LfitEgeZYGIrA70Mk55UN6vD8r/NZb364Pyf42RvD67bWWMMSZsljyMMcaEzZJH7EiLdgAlrLxfH5T/ayzv1wfl/xojdn3W52GMMSZs1vIwxhgTNksexhhjwmbJoxSJSAcRWSUiz4jIf0RkmYhc4K7rJiKfishkEflMRLpGO97iEJHKIrLeHWt+oLusXFyjiDQUkbdFZJqIvCwia0Skanm5PgARGS0i34nIiyKyWUT+7C4vs9coIueKyDz3v8lZ+ZYHvKaydL3+ri/Yd467vujXpz7jTtin5D7A5UCq+/M5gAKrgbrAr8Cz7rq/AweAM6MdczGu9TmcESEVGFherhHnD671wD/yLft9ebk+N/Zm7r/bR+78F+58o7J8jcBgnOGrFZjlLgv471bW/k0DXJ/f75zCrj2U81nLoxSp6ieqOted9bzlWRW40p3ucpdlAtXc5WWOiPwROELB4YTLyzW2B1oCdUTkCRFZAFSm/FwfwEHgGJDgzidwctjnMnuNqjqDU9+uDvbvVqb+Tf1dX5DvHCjm9VnyiJ6BQA5wP86oiADHfabJlDEiUg+4Cxjrs6q8XGNjdxqvqo8AR4F3cMb7grJ/fahqBvAg0E5EXgPOA16g/Pwb5hfsmsrb9Q7k5HcOFPP6LHlEgYgMBW4A2qnqRzjD6QLE+0x3+u5bBlyP8x/oC8BV7rIBlJ9r9Ax7/KM7/QGIcz9Q9q8PEbka57bjC6p6C05yfA6nhQXl4BrzCfbfZXn5b9bfdw4U8/oseZQiETnLvc3REXgAqCoi7wEfAoeAeu6mKTi3Dj6MSqDFoKpTVPV6Vb0DeN9d/Crl5xq/APYCtd35Ou50BeXj+uBkK+pXd3rInX5H+blGj2D/XZb5/2aDfOdAca8v2p08p9MHp9moPp8sd1034FNgMvAZ0DXa8RbzWvsA/3Kv8UOgc3m5RuBSnP6cycC3wMjy9G8IJAIvA2vca9kAjC3r1wj0Bea5/01+DTxT2DWVpev1d33BvnOKe332hrkxxpiw2W0rY4wxYbPkYYwxJmyWPIwxxoTNkocxxpiwWfIwxhgTNksexhhjwmbJwxhTbCIyS0QOiMhDftY1F5EtInJURH4UkT7RiNFElr3nYYwpFhFphfNC6AfAdUA1Vc3Jt74BcD7Om/mv4dQFOz8asZrIsZaHiToRudwdg+DRKMaQJiK78491EOJ+NdzxPNT9rBWRSu66eiLybxHZKyJ/CuFYD4tIVv4xUGKBiIxzY9olInP9bPIzzhvNw3BKmBzLv1JVM1R1mbtNNpDuHreeiKwUkSPu8buU5HWYyLLkYWLBTT5TL/fLpTS+TM8GagE1wtlJVbOBy3BqAgG8rqrH3HW7cMZImKSq/xvCsZ4Evgzn/KXsI1VN9bO8A3ARTkG9M1Q113cDEbkLp47SRcBb4Px+VLULJ0uCmzLEkoeJKhGpjDNGhgJNRaRdlEK5BkhR1X+Fu6N7i2aBO+ubAG8EXi9mbDFLRCoAT+Rb1FBEzvCz6evA73Bub00TESmN+EzJseRhou0qnKq7n7vz3i9fERkLtHZnR7utkEQR+a2IvCvOMLfrReQdEWni7pP/1s8rIjJfRA6LM1zshSIyx+3YnZLvPPcA24Gf87dw3I7ej0Rkm4h8LCIr3IGu/JntTtuIyPnu/kk49/+35DtmwNh9icgL+W/piMiNvre1ini9F7jXtVZE0sUZgjTBXwwhuBFoAWTh9GkI0NznOi7FGZ0wB2fMiCNqna1lX7QrQdrn9P4A83FKQt+O0/rYAcTlW7/SXT7Qna+G80WfizNoTV3gBLAV55ZJ/n2muvPp7vwEn/l2+c4zy+c81XFuwyjQ1l12GzA5wHVUwBmJTYG/usvuAu7Mt004sXvi2OLOd/G3PtzrzXddR9x4bnPXPRPk32gc+YY2zbc8Hmc8EwUew6nOWiA2d7s/Ab+45/wauNJnfYFrtE/Z+FjLw0SNiNQEKqrTN/AmzpdLMs64y4H0BBoAGaq6U1V/wfnybeiuy2+tO/3FnW72mf9tkPP8ESep7VRVz3HeBN7wt7Gq5gGezuT+7vQGd5+ixF4UoVyv57q2q+pB4Bt33e1FON/twLk4rY7JwPfu8gIPHajq/6pqXVVNUNUWqlpmxsMwgVWMdgDmtNYXp59jpTt/EGe87JuAjwPs08idHs637LDPOo8T7lQDzFcmMM+ASAc8C9wv2/8G2Wc2MAL4jYj0B7JVdW8RYy+KUK63rvtzivt7r4STwBCRGuo8AFAoEUkEHnFnJ6tqtoj4TR6mfLKWh4mm3sDvVLWLOk/d3OVZ7n45wckvPo+t7rRKvmVVfNZFwjZ3Wt2zQERqBevQV9V1OINDAUzl1FZKUWI/6k49w9wmBtguVBnudLf7e78EOAfoGWricA3n5FjX40REgQnufHP/u5jyxJKHiQoRORs4qqqH8i1egvOOQDWcp5/AuSUCkCgiqTi3XLYBDUQkWUTq4vzVvhVYHMEQF+P0vySLSGt32VDgykL28zxZFQe867PufcKP/Tt3Wk9EquK8bFccHwC7gbNFpKm7rCfOGOUhEZEawIPu7Gc4o9fNAxa6ywI9cWXKk2h3utjn9PvgjP/9DU5H6W35lo/FeRdAcf5C7gd0d7fbAXyC0z9wHvAO8BWwHlgE/MY9xsM4CUdxvngH+szf5jPfDrgH510Dz7KL3WOdj/Ol/hOwDJgBVC7k2hoBecCrAdaHE3s7oBVOa+ZH4Emc22b51xflelu517MVJ2HPA+oFuaZx5Oswd+PwDHVaKd92gnObT4GLwvjvYQvWYV7mPlaexBgTlIiMw3ma6lVVHVgCx9+Ck3S7qurKSB/flAy7bWWMKUwWTiulfYDyJEXiKU/CyceVj0Tq2KbkWcvDGGNM2KzlYYwxJmyWPIwxxoTNkocxxpiwWfIwxhgTNksexhhjwmbJwxhjTNgseRhjjAmbJQ9jjDFh+39+2ZxUMmVBgwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"tc.plot.energy_volume(crystal_systems=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f039bd7e-e62e-43d6-9c22-6a4bb1c68c73",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>alpha</th>\n",
" <th>beta</th>\n",
" <th>gamma</th>\n",
" <th>V</th>\n",
" <th>N</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4.039967</td>\n",
" <td>4.039967</td>\n",
" <td>4.039967</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>65.937658</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3.900545</td>\n",
" <td>3.900545</td>\n",
" <td>3.900545</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>59.343892</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3.929227</td>\n",
" <td>3.929227</td>\n",
" <td>3.929227</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>60.662645</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3.957496</td>\n",
" <td>3.957496</td>\n",
" <td>3.957496</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>61.981399</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3.985366</td>\n",
" <td>3.985366</td>\n",
" <td>3.985366</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>90.000000</td>\n",
" <td>63.300152</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>303</th>\n",
" <td>7.008729</td>\n",
" <td>7.232998</td>\n",
" <td>10.690023</td>\n",
" <td>121.764941</td>\n",
" <td>89.204727</td>\n",
" <td>90.106498</td>\n",
" <td>460.695818</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>304</th>\n",
" <td>7.054241</td>\n",
" <td>7.279967</td>\n",
" <td>10.759441</td>\n",
" <td>121.764941</td>\n",
" <td>89.204727</td>\n",
" <td>90.106498</td>\n",
" <td>469.729069</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>305</th>\n",
" <td>7.099174</td>\n",
" <td>7.326338</td>\n",
" <td>10.827974</td>\n",
" <td>121.764941</td>\n",
" <td>89.204727</td>\n",
" <td>90.106498</td>\n",
" <td>478.762321</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>306</th>\n",
" <td>7.143545</td>\n",
" <td>7.372128</td>\n",
" <td>10.895651</td>\n",
" <td>121.764941</td>\n",
" <td>89.204727</td>\n",
" <td>90.106498</td>\n",
" <td>487.795572</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>307</th>\n",
" <td>7.187372</td>\n",
" <td>7.417357</td>\n",
" <td>10.962497</td>\n",
" <td>121.764941</td>\n",
" <td>89.204727</td>\n",
" <td>90.106498</td>\n",
" <td>496.828823</td>\n",
" <td>16</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>308 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" a b c alpha beta gamma \\\n",
"0 4.039967 4.039967 4.039967 90.000000 90.000000 90.000000 \n",
"1 3.900545 3.900545 3.900545 90.000000 90.000000 90.000000 \n",
"2 3.929227 3.929227 3.929227 90.000000 90.000000 90.000000 \n",
"3 3.957496 3.957496 3.957496 90.000000 90.000000 90.000000 \n",
"4 3.985366 3.985366 3.985366 90.000000 90.000000 90.000000 \n",
".. ... ... ... ... ... ... \n",
"303 7.008729 7.232998 10.690023 121.764941 89.204727 90.106498 \n",
"304 7.054241 7.279967 10.759441 121.764941 89.204727 90.106498 \n",
"305 7.099174 7.326338 10.827974 121.764941 89.204727 90.106498 \n",
"306 7.143545 7.372128 10.895651 121.764941 89.204727 90.106498 \n",
"307 7.187372 7.417357 10.962497 121.764941 89.204727 90.106498 \n",
"\n",
" V N \n",
"0 65.937658 4 \n",
"1 59.343892 4 \n",
"2 60.662645 4 \n",
"3 61.981399 4 \n",
"4 63.300152 4 \n",
".. ... .. \n",
"303 460.695818 16 \n",
"304 469.729069 16 \n",
"305 478.762321 16 \n",
"306 487.795572 16 \n",
"307 496.828823 16 \n",
"\n",
"[308 rows x 8 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIYAAAHBCAYAAAAcirBzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA69UlEQVR4nO3df5glV10n/vcHEzIkxJYfExKEMAmzikBWF2aRVRaSsK5iGIJICKCSyCOzorsSRTC7KsZFlzwIOn7ZRR0DJihICKJxDEEkkESQiAMIAywq4ABmE5koacKPQIDz/aOqM3c63TPd09333u56vZ7nPnXr1K26n7q37+mqT51zqlprAQAAAGB47jbpAAAAAACYDIkhAAAAgIGSGAIAAAAYKIkhAAAAgIGSGAIAAAAYKIkhAAAAgIGSGNpAquqHq+rWqrr7mN5vU1V9uqqOXeZ676qqVlV/W1XfOlL+M1X1z1X1jkOs+8p+H89fQejAOlFV39PXFa2qrusff1NVL6yqo9fwfbdU1UfWavswRAv8nu+9Bu/xmKp66ypu78Sqem8f8w1VNTOy7KVV9dmqes1qvd9KjeMzXkYsj+pj2TepGGAp1E3jtRbnrFW1o6r2VdWlq7XNoZEY2lielOToJN87V1BV51fVtWvxZq2125Oc1lr74jLX++4k+5K8vrX2dyPlv57kA621Mw6x7k8k+dsjChhYd1prf5Hkgn728a21xyX5viRnJvmTqlqT/2OttX1Jvmtufi3rUhiKBX7P/7qc9avq2vkXhvqToi0jRe9Kcs4KwjxIa+3mJP8xyReT7GytzY4s/qUkf9lae9aRbHst6pWVfsYrUVWnjyaBWmvvGYkFppa66WBjOOa5yznrSrXWdiW5dLW2N0QSQxtEVX1jkq8l2Z3kaeN639barUe46hVJzh0tqKpHJnnfSmMCNrbW2r8kOT/JGUl+eA3f59a12jawNlpn9vCvXNY2v5jkqsw7bkny/UnevJrvBWxM6qbOpM5ZOTyJoY3jyUn+KMkfJjm77+b1uCQXJvmOPpP9iiSpqvtV1R9V1fV908Pz+vKT+/nWZ4rfXlUfrqqHVdXFVbWnqt5cVZv617+2qm6vqtPngqiq5/fbeEf/2kcsEu8b+ri+ZaTs3CSX99t5Vr+d6/tY77fQRqrqrXMZ+aq6x1z8/bK79/vdquonq+otVfUPVfXYPs53VdW7q2rzyPYe2b/ndVV1TVU9ZPlfBbDW+itlf57+6ttInXFdVb2uP/AY7X764qq6oqr+rqr+19x2quq7quqdfX13bVU9sS+/ZqRuuUtdWlVv65f/Wf/6H6mq/1dVbxz3ZwEbSf+b/av+t/aHI7/llyT5jiQX9svOqqqr+9Ve35c9aPQ4oF/vnlX1u/3v/J1V9aq5//tV9eD+OOK6qvrLqvqu+fGMeEOSJ8zF0/vBdMdeqaoX9O/9l30dcWcXiar6oX7Z2/vH41fpGO2rdXCLhKV+xgse69SBrhivr6rfqar31chxX/+aH62qD/Xr/VQd6MbyuCQ7k5zY788V897zBf37fbD6Y7+qultV/Vb/vVxXVZdU1XHL3R8YB3XTqtVNT868c9aReN5U3bnlz1XVn1TVx6rqJ0aWH1fd+ef7q+qqqnp5dcd4r1zkO1v0c6yqF1V3HviOqrq8qk46xGc8DK01jw3wSPLaJJuS3D3JZ5M8uS8/P8m18177tiQX9c/vm+SmJI/t57ckaUme0s/vTPLxJCcnqXTduJ4+sq19SU7vnz8zyYeSHNvP/+zc+ywS88eT/OLI/Fv76WOSfCbJ5n7+F5JcM/K6a5OcPzLfkmwZjX/e+7QkP9M/vyDJp5M8up//0yQX9s9nkuxPcmY/f1aSv0tyt0l/vx4eQ34kOb3/HR81r/w3knwkyXcnuWWkzvi1JJeMvO7adFfUKslJSe5Icv9+2XuSfGf//NuTXDqy3mjdclBdmq4J9C1JvmukbHeSmvTn5eExzY/Ffs8jy5838vyiJC8emT/o/39fdufvtJ8/6Dggya4kr+6f363/v396km9I8n+TPLtf9m/73/Txi8R1jySfT/Ij/fyxSf6kf/5D/baO7euZNyT5hX7ZdyW5eaR+eupcPTO/XunLlnKM9qx+/vlJTlrOZ5zDHOv0n/mNSe7Vf14fSvKMftnD0nVbOaWf/2/z6snTk+xbIJavJHlMP//KJL/TP//+JFePvPaPR79LD49xPtRNa1839csWPGcdWb4vySv754/q9+2ofv6lSa7uP6+7J3l3Dj42u2hkHxb9HJM8NN3xY/XLfiP9+eyQH1oMbQBV9U1JPt9au7219pV0Wdj5TQrnXvvNSR6f5NVJ0lq7JcmfpasARv1FP/1Qkltba59q3S/nQ0lOXSSUH03yhnZgzKHfTXKoq+d3dierqu9Md4KWJOcl+bPW2v5+/veSnFlVJx9iW4czuj/HttZu6Oc/mAP788R0n+Pbk6S1dlWSE5N85wreF1g7c//Dzk+ye6TOeF2SH6qqGnntn7fOTUn+Jd1BTJL8a5Ifqar7tdY+kOQnsgSttTuSvD7Js5Kkqv5dkg/29SRw5L7UX9m9LsnTkzzySDdU3Rhkz0o/7kRr7evpTlg+kuTRSR6c5Pf7ZR9MlxB54kLbaq19Kd3x0tzx1fZ+PunqoNe31r7Y1wF/mORH+mU/muTNI/XTnyT5rUXiXeox2pX98pf3ddpyLOVY569ba5/tP68PJTmlL39qkne31v6xn3/tEt/z8621d/bPPzCyvc8mOa26gX/vluQZST61zP2BcVE3rbBuWsY561v66QeTHJfkhH7+nCSva619vV//igXWnXOoz/G2dPXeU6q7kcnPJXnnItsZjKMmHQCr4slJ/kMdGCTsXklOrap7LPDaB/TT/SNl+5NsG31Ra+22/ulX0/14MjK/2AjyDxjdbuv60R6qL+0bkvxcVT0sXR/Ty0a288F58c2VH+kBw1L25wFJ7l0HD7a2P8l9jvA9gbW1JcnH0v12Hzry2z0qyT+n++3e0pd9bmS923Pgd//MdE2m31dVe/vnf7vE939NkrdU1fPSHWjtOpKdADrVdU1/ebobW+yrbjDX81ewyc1JjsnBxyb/0L/XGemucP/FSA75mHQtahbzhnRdQ+6V5AeS/GRf/oAkz+y3mXRXw78+suzOY5rW2leT/PUi21/qMdpKxilZyrHOYvXlSTlQp6a19q8H598XNbq9L89tr7X27qrake6k7NVJfifJS5a0FzBG6qZVq5uenEXOWfsE15zP9du7vf8MFqyD0l3cW8wDssjn2Fr7dFWdla7u+T/pkty/mO68cLAkhjaG703yyP4KdvrM5/50zYPn+3Q/3ZwDSZbNSf5pFeL4dL+t9HEcl+QBbeTOY6Naa++rqo+ly7o/vM/k3mU7I88Xi/GOdD/0JPmmIwv9zvf9p9ba6XMFfX/d21ewTWAN9H3B/3OSH0/XlewTrbWfHFl+3/6K1uEc01p7YVX9jyQvTHe160FLiaG19p6q+ud0B2Hf0lr76HL3A0iqu83yY9J1Vfq71t0VMOm6bK7E/nSJiM3puhSkqu6f7sTo00numPc//7gcOGlayJvTHRM8K8ndWzcQfvpt/UVr7ddGtnXfkWWjx0ZHJXlY30JxvjU7Rhv5jFdyrHNTkjvHhqyqFV0462O6trX25qp6cLpWAjemaykOE6duutNq1U2HOmddyhiNN+Xgc8RD1UGLfo5VdWySj7TWnlxVJyZ5U7ok0S8tY182HF3J1rk+M/zVuR9YcmcXh6vTtcK5LV2/0lTVH6Ubu+et6bPc/T/1J2Z1/glfmuRp/Y8t6cbz+b7DrHNFkucluWGk7NIk3z9ScZ2X5O2ttcVaC/1jkof3z79/eSEf5M+S3Keq/n1yZ+Xxjhw6Qw+MWVXdO12ddV26JsKXJjmrrw9TVd+abryfpXhjVR3bXyl7V7o+6Qs5qC7tD6DSv/+vp6tXgSNzr3RdBD6WZOtIwmH+rYxvS3JsVf2bqpo70fl8X/bDVfXU0Rf33TNekwPHPHdL8qp0V53/Osmnquop/bKj0nWlGL0pxkFaa7enO1Z4cQ6uYy5Nck4duDnH6elav8wtGz2mOTcHWhqM8xht7jNeybHOG9Nd7Z/rgj//jkKj+/OKqnrgYbb3A0l2JElr7ePpTjIXq4NhEtRNq1Q3LeGcdSnekG6ogLtVN4j2kw/x2kN9jo9K8st9DDenG2dN3bNWgxd5rP0j3T/xv03yiSRnjZSflW5g59vT9RV9X7oTnt/sl5+Q7p/79ekSMuf35ffu51u6q+aPSvLRJLem+/HsSDdI2b503S9e27/H36bL/iZd/9gb+m3/bhYZwG0k1m/v3+9h88p/eGQ7b0pyv778lX08H53b53Qj7388Xbb8J/rtXZvuB/7Wfv6GJN/ax3p7ukrxSf2+3JwDg1M/sl/3uv69nzjp79nDY8iPJN/T/27byO9yT7ouX0ePvG6uznh7uqvO39KXv3SkzvgPfR0yV289NF0rob9Kd2L01zkwIOs1I3XHN6c7ODyoLu1f98B0V/1OmPRn5eEx7Y8k/7H/Hbd0Y0u8sX+8Od1Jyt2SXJLuJOxN6U6cbk3y0n79H0h3AP+eJGf0ZRen6w7xzv73OHccM3cccM9+m+/sf+s/ORLPXCuV65L8ZfpBSg+zD2enG0z5XvPKn9/XIW9Pd/Jxv5FlP5x+kNR+f7+xL79LvZKlHaNdm+ShR/IZ969Z8Fgn3bHdvnTHRc/NvOO+/jU/muTD6Qai/bH+fR7ULzuq3/93p7vw97AcfNw1elz50nTHZVf167yn/57uPum/U4/hPQ73u4m6KVlB3ZSlnbO+sv9c547RTuk/67ljsXunG2/otf3yP03yq0ne0W9rRw7UXz9/qM8x3fhCb+jL39W/zzdN+u9w0o+5kbgBgGXqB1J8dWvtKZOOBWCtVdW9W2v/2j/fnG48t3u2AzceAVgTVXXPJF9p3cDTqaoXJNnWWlvwpkssj65kALBMVTXX/PoZ6e5OBrCh9V0x/rTv9pJ0g+6/U1IIGJOnp2u1mKo6Jl03vz+faEQbiMGnAWD5HpxubKG/T6K1EDAEX0vXFeTdVXVHujFUnjXZkIABeV+SnVX1jHRd8d6arqsfq0BXMgAAAICB0pUMAAAAYKCmqivZfe9737Zly5ZJhwGswHvf+95bWmubJx3HSqiLYGNY7/WRugg2BnURMA0OVRdNVWJoy5Yt2bNnz6TDAFagqj456RhWSl0EG8N6r4/URbAxqIuAaXCoukhXMgAAAICBkhgCAAAAGCiJIQAAAICBkhgCAAAAGCiJIQAAAICBkhgCAAAAGKipul09wFqoqnOTPDLJA5Ick+QZrbWvTDYqAACAydNiCFhXqurUqrq8qlpVXTpS/viquq6qdlbV9VV1xshqNyS5MMmLkzwlyUPGGzUAAMB0khgC1pszk1wxWlBVJyS5Msme1toFSd6f5Mqq2pwkrbVPtta+nuRJSV6XZO/8jVbVjqraU1V79u/fv8a7AAAAMB0khoB1pbV2SZJb5hU/IclxSW7u529McnxfnqraVFUvTPLpJL+Y5MELbHdXa21ba23b5s2b1yp8AACAqWKMIWAjOKmf3jFvOlf+00ku6svvluQ/J/nYuIIDAACYVlPRYqiqtlfVrtnZ2UmHAqxPN/XTo+dNb0qS1tpLWmvHtNbu2Vo7trX2zrFHCAAAMIWmIjHUWtvdWtsxMzMz6VCA9enqJF9IcmI/f/8kt/XlAAAALGIqEkMAS1VV5yR5bj+7rape1lr7TJKz+/mdSR6R5OzWmlGkAQAADsEYQ8C60lq7It1dyc6dV35NkmsmEhQAAMA6pcUQAAAAwEANosXQlguvWvJr91181hpGAkyzqtqeZPvWrVsnHQrrlP83MOUuWmQ8y4vcAAXWLb9rWLFBJIYAlqK1tjvJ7m3btj1n0rEAG09VnZvkkUkekOSYJM9orX1lslFtTIslafdtGnMgALAO6EoGALBMVXVqVV1eVa2qLh0pf3xVXVdVO6vq+qo6Y2S1G5JcmOTFSZ6S5CHjjRoA4K4khgAAlu/MdAPh36mqTkhyZZI9rbULkrw/yZVVtTlJWmufbK19PcmTkrwuyd6xRgwAsACJIQCAZWqtXZLklnnFT0hyXJKb+/kbkxzfl6eqNlXVC5N8OskvJnnw/O1W1Y6q2lNVe/bv379W4QMA3EliCABgdZzUT++YN50r/+l03ch2JflQkhPnb6C1tqu1tq21tm3z5s1rGSsAQBKJIQCA1XJTPz163vSmJGmtvaS1dkxr7Z6ttWNba+8ce4QAAPNIDAEArI6rk3whB1oC3T/JbX05AMBUkhgCAFimqjonyXP72W1V9bLW2meSnN3P70zyiCRnt9YMFgQATK2jJh0AwLSoqu1Jtm/dunXSoQBTrrV2Rbq7kp07r/yaJNdMJCgAgCOgxRBAr7W2u7W2Y2ZmZtKhAAAAjIXEEAAAAMBASQwBAEyRqtpeVbtmZ2cnHQoAMAASQwAAU0S3VgBgnCSGAAAAAAZKYggAAICD6NYKwyExBAAAwEF0a4XhOGrSAQAAAMBqOu2y0xYs33ve3jFHAtNPiyEAAACAgZIYAgAAABgoiSGAnkEWgWmgLgIAxkliCKBnkEVgGqiLAIBxkhgCAAAAGCiJIQAAAICBkhgCAAAAGCiJIQAAAICBkhgCAAAAGCiJIQAAAICBkhgCAAAAGCiJIQAAAICBkhgCAJgiVbW9qnbNzs5OOhQAYAAkhgAApkhrbXdrbcfMzMykQwEABkBiCKDnKj0AADA0EkMAPVfpAQCAoZEYAgAAABiooyYdAAAAK7PlwqsWLN+36ZkLr3CRLrMAQEeLIQAAAICB0mIIAIBVc9plpy1Yvve8vWOOBABYCi2GAAAAAAZqTVsMVdW5SR6Z5AFJjknyjNbaV9byPQEAAABYmiW3GKqqU6vq8qpqVXXpSPnjq+q6qtpZVddX1Rkjq92Q5MIkL07ylCQPWa3AAQAAAFiZ5XQlOzPJFaMFVXVCkiuT7GmtXZDk/UmurKrNSdJa+2Rr7etJnpTkdUnu0rm8qnZU1Z6q2rN///4j2wsAAAAAlm3JXclaa5dU1enzip+Q5LgkN/fzNyY5vi9/TVVtSvJTST6dLqn04CQfm7fdXUl2Jcm2bdvasvcAAGADqartSbZv3bp10qEwz5YLr1qwfN/FZy1YbiBuANaDlQ4+fVI/vWPedK78p9N1I9uV5ENJTlzh+wEAbGittd2ttR0zMzOTDgUAGICVJoZu6qdHz5velCSttZe01o5prd2ztXZsa+2dK3w/AAAAAFbJShNDVyf5Qg60BLp/ktv6coB1paq2V9Wu2dnZSYcCAAAwFsu5K9k5SZ7bz26rqpe11j6T5Ox+fmeSRyQ5u7VmFGlg3dF9AwAAGJrlDD59RboBpM+dV35NkmtWOS4AAFgfLlrkgsIpJ483DtjAFh38fdOYA4ENaKVdyVaF7hsAAAAA4zcViSHdNwAAAADGbyoSQwAAAACMn8QQAAAAwEBJDAEAAAAMlMQQAAAAwEBJDAEAAAAM1FGTDgAAgAOqanuS7Vu3bp10KINx2mWnLVi+97y9Y44EAMZvKloMVdX2qto1Ozs76VAAACaqtba7tbZjZmZm0qEAAAMwFYkhB0AAAAAA4zcViSEAAAAAxk9iCAAAAGCgJIYAAAAABspdyQAYnC0XXrXk1+67+Kw1jAQAACZLiyEAAACAgZIYAuhV1faq2jU7OzvpUAAAAMZCYgig11rb3VrbMTMzM+lQAAAAxmIqEkOu0gMAAACM31QkhlylBwAAABg/dyUDAADW3GmXnbZg+d7z9o45EgBGTUWLIQAAAADGT2IIAAAAYKAkhgAAAAAGyhhDAHAIWy68atIhAADAmtFiCABgilTV9qraNTs7O+lQAIABkBgCAJgirbXdrbUdMzMzkw4FABgAiSEAAACAgZqKxJAm0wAAAADjNxWJIU2mAQAAAMbPXckA2BDcPQwAAJZvKloMAQAAADB+EkMAAAAAA6UrGQArtpxuXPsuPmsNIwEAAJZDiyEAAACAgZIYAgAAABgoiSEAAACAgZIYAgAAABgoiSGAXlVtr6pds7Ozkw4FAABgLCSGAHqttd2ttR0zMzOTDgUAAGAspiIx5Co9AAAAwPhNRWLIVXoAAACA8ZuKxBAAAAAA4ycxBAAAADBQR006AAAAAMajqs5N8sgkD0hyTJJntNa+MtmogEnSYggAAGAdqqpTq+ryqmpVdelI+eOr6rqq2llV11fVGSOr3ZDkwiQvTvKUJA8Zb9TAtNFiCABgilTV9iTbt27dOulQkiRbLrxqwfJ9m5658AqnnLyG0QDznJnkiiRPmyuoqhOSXJnkd1prz6+q30xyZVU9uLW2v7X2yf51T0ryuiR7JxA3MEW0GAIAmCLu1gosVWvtkiS3zCt+QpLjktzcz9+Y5Pi+PFW1qapemOTTSX4xyYPnb7eqdlTVnqras3///rUKH5gSEkMAAAAbx0n99I5507nyn07XjWxXkg8lOXH+Blpru1pr21pr2zZv3ryWsQJTQFcyAICBOe2y0xYs33ueHiWwAdzUT4+eN70pSVprL0nyknEHBUwvLYYAAAA2jquTfCEHWgLdP8ltfTnAXUgMAQAArENVdU6S5/az26rqZa21zyQ5u5/fmeQRSc5urRksCFiQrmQAAADrUGvtinR3JTt3Xvk1Sa6ZSFDAuiMxtAKL3b51IfsuPmsNIwEAAABYPl3JAAAAAAZqKhJDVbW9qnbNzs5OOhQAAACAwZiKxFBrbXdrbcfMzMykQwEAAAAYjKlIDAEAAAAwfut28OnlDPwMAAAAwF2t28QQAAAAa6OqtifZvnXr1kmHAhvOYg1dJnU3c4khAACYVhctMgbnRW7awtpqre1Osnvbtm3PmXQswNoyxhAAAADAQEkMAQAAAAyUxBAAAADAQEkMAQAAAAyUxBAAAADAQEkMAQAAAAyUxBAAAADAQEkMAQAAAAzUUZMOAGBaVNX2JNu3bt066VAA4JBOu+y0Bcv3nrd3zJEAsN5pMQTQa63tbq3tmJmZmXQoAAAAYyExBAAAADBQEkMAAAAcpKq2V9Wu2dnZSYcCrDGJIQAAAA6iiz0Mx1QkhmSjAQAAAMZvKhJDstEAAAAA4zcViSEAADpaUgMA4yQxBAAwRbSkBgDGSWIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKCOmnQA02bLhVdNOgQAAACAsdBiCAAAAGCgJIYAAAAABkpXMgAWpGvt2lrO57vv4rPWMBIAAIZMiyEAAAAOUlXbq2rX7OzspEMB1pgWQwAAQJLktMtOW7B873l7xxwJk9Za251k97Zt254z6ViAtaXFEAAAAMBASQwBAAAADJSuZAAAALAEuluyEWkxBAAAADBQWgwBAMCEbbnwqgXL920acyAADI4WQwAAAAADJTEEAAAAMFASQwAAAAADJTEEAAAAMFASQwAAAAADJTEEAAAAMFASQwAAAAADNRWJoaraXlW7ZmdnJx0KAAAAwGBMRWKotba7tbZjZmZm0qEAAAAADMZRkw4AAIDh2XLhVQuW77v4rDFHAgDDNhUthgAAAAAYP4khAAAADmIcWBgOiSEAAAAOYhxYGA6JIQAAAICBMvg0AGO12ICzCzEILQAArC2JIQAAABh10SJd6E45ebxxwBjoSgYAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDwIZXVTNV9ZKqalX1mEnHAwAAMC0khoB1papOrarL+yTPpSPlj6+q66pqZ1VdX1VnjKz25SSXjD1YAACAKScxBKw3Zya5YrSgqk5IcmWSPa21C5K8P8mVVbU5SVprtyf52pjjBAAAmHoSQ8C60lq7JMkt84qfkOS4JDf38zcmOb4vX5Kq2lFVe6pqz/79+1clVgAAgGknMQRsBCf10zvmTU9KkqralOTZfdk5cy2JRrXWdrXWtrXWtm3efJfFAAAAG9JRkw4AYBXc1E+Pnje9KbmzK9mL+gcAAAA9LYaAjeDqJF9IcmI/f/8kt/XlAFPBHRIBgGkkMQSsK1V1TpLn9rPbquplrbXPJDm7n9+Z5BFJzm6tGSwIWBPukAhsdFW1vap2zc7OTjoUYI1JDAHrSmvtitbaua21aq09vLX2s335Na21x7XWLmitPba19o5JxwpsaO6QCGxorbXdrbUdMzMzkw4FWGPGGAIAWKbW2iVVdfq84kPdIfE1S9luVe1IsiNJTj755NUIdcM47bLTFizfe97eMUfCnC0XXrVg+b5Nz1x4hVP8TQNMIy2GAABWhzskAgDrjsQQQE9femCFDnuHxNbai/qusM8zDhoAMA0khgB6+tIDK+QOiQDAuiMxBACwTO6QCABsFAafBgBYptbaFenuSnbuvPJrklwzkaAAAI6AFkMAAAAAAyUxBAAAADBQEkMAAFPEHRIBgHGSGAIAmCLukAgAjJPEEAAAAMBAuSsZQK+qtifZvnXr1kmHQm/LhVdNOgQAANjQJIYAeq213Ul2b9u27TmTjgUAYKM77bLTFizfe97eMUcCw6YrGQAAAMBASQwBAAAADJTEEAAAAMBArWliqKpmquolVdWq6jFr+V4AABtBVW2vql2zs7OTDgUAGIAlJ4aq6tSqurxP8lw6Uv74qrquqnZW1fVVdcbIal9OcskqxgsAsKG11na31nbMzMxMOhQAYACW02LozCRXjBZU1QlJrkyyp7V2QZL3J7myqjYnSWvt9iRfO9RGq2pHVe2pqj379+9fTuwAAAAArMCSE0OttUuS3DKv+AlJjktycz9/Y5Lj+/KlbndXa21ba23b5s2bl7oaAAAAACu00jGGTuqnd8ybnpQkVbUpybP7snPmWhIBAAAAMHkrTQzd1E+Pnje9Kem6krXWXtRaq9ba81pr+ooBU8uArwAAwNCsNDF0dZIvJDmxn79/ktv6coB1xYCvAADA0CznrmTnJHluP7utql7WWvtMkrP7+Z1JHpHkbC2DAAAA1i8tqWE4jlrqC1trV6S7K9m588qvSXLNKscFAADAhLTWdifZvW3btudMOhZgba20K9mqkI0GAAAAGL8ltxhaS7LRAACdqtqeZPvWrVsnHQqsC6dddtqC5XvP2zvmSADWp6loMQQAQMdA+ADAOEkMAQAAAAyUxBAAAADAQEkMAQAAAAyUxBAAAADAQEkMAQAAAAzUVNyu3m1ZgWmgLmJabbnwqiW/dt/FZ61hJAAAbDRT0WLIbVmBaaAuAgAAhmYqEkMAAAAAjJ/EEAAAAMBASQwBAAAADNRUDD4NAEBn8APhX7TIOG+nnDzeOCDJaZedtmD53vP2jjkSgLWjxRAAwBQxED4AME4SQwAAAAADJTEEAAAAMFBTkRiqqu1VtWt2dnbSoQAAAAAMxlQkhvSlBwAAABi/qUgMAQAAADB+EkMAAAAAAyUxBAAAADBQR006AIBpUVXbk2zfunXrktfZcuFVS37tvovPOoKoAAAA1o4WQwA9A+EDAABDIzEEAAAAMFASQwAAAAADZYwhAIApciTjncFGstj4ffs2PXPhFU45eQ2jAdj4pqLFUFVtr6pds7Ozkw4FAGCijHcGAIzTVCSGHAABAAAAjN9UJIYAAAAAGD+JIQAAAICBkhgCAADgIMaBheGQGAIAAOAgxoGF4ZAYAgAAABgoiSEAAACAgZIYAgAAABgoiSEAAACAgZIYAgAAABgoiSEAAACAgZqKxFBVba+qXbOzs5MOBRgwdREAADA0U5EYaq3tbq3tmJmZmXQowICpiwAAgKGZisQQAAAAAOMnMQQAAAAwUBJDAABTxHhnAMA4SQwBAEwR450BAOMkMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUBJDAAAAAAMlMQQAAAAwUEdNOoAkqartSbZv3bp10qGsmS0XXrXk1+67+Kw1jAQAAACgMxUthlpru1trO2ZmZiYdCgAAAMBgTEWLIQAAABi3xXp27Ns05kBggqaixRAAAAAA4ycxBAAAADBQEkMAAAAAAyUxBAAAADBQBp8G6FXV9iTbt27duibbX2xww4Xsu/isNYmBjc/fGQAAy6HFEECvtba7tbZjZmZm0qEAAACMhcQQAAAAwEBJDAEATJGq2l5Vu2ZnZycdCgAwABJDAABTRLdWAGCcDD4NAADAii12A4R9m5658AqnnLyG0QBLpcUQAAAAwEBJDAEAAAAMlMQQAAAAwEBJDAEAAAAMlMQQAAAAwEBJDAEAAAAM1FQkhqpqe1Xtmp2dnXQoAAAAAIMxFYmh1tru1tqOmZmZSYcCAAAAMBhTkRgCAAAAYPwkhgAAAAAGSmIIAACAgxgHFoZDYggAAICDGAcWhkNiCAAAAGCgJIYAAAAABkpiCAAAAGCgJIYAAAAABkpiCAAAAGCgJIYAAAAABkpiCAAAAGCgJIYAAAAABkpiCAAAAGCgJIYAAAAABkpiCAAAAGCgJIYAAAAABkpiCAAAAGCgjpp0AADToqq2J9m+devWSYeyLFsuvGrJr9138VlrGAks33L+fhN/wwAAq02LIYBea213a23HzMzMpEMBAAAYCy2GAACmyHptvch0WqxV3r5Nz1x4hVNOXsNopthFi1wUGurnAQyKFkMAAFNE60UAYJwkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKCm4q5k7r5x5Ba708RC9l181hpGsjTinR4bed8AAABYmqloMeTuGwAAAADjNxWJIQAAAADGT2IIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGSmIIAAAAYKAkhgAAAAAGas0SQ1U1U1VvqqrnV9UfV9Xxa/VeAItRFwHTQF0EAEyrJSWGqurUqrq8qlpVXTpS/viquq6qdlbV9VV1xshqO5Lcr7X28iTfnOTHVjVyYHDURcA0UBcBABvJUlsMnZnkitGCqjohyZVJ9rTWLkjy/iRXVtXm/iUPTvKl/vmXkpy64miBoVMXAdNAXQQAbBhHLeVFrbVLqur0ecVPSHJckpv7+RuTHN+XvybJJ5Kc1i+7Rz9/F1W1I91VtJx88slLj5xl23LhVUt+7b6Lz1qT7W5ka/X5csCQ6iK/K9azjf73O6S6CDaaxeqnfZvGHAiDsOjfm3OBdWFI399Kxhg6qZ/eMW86V74ryS1VdWG6g6RXLbSR1tqu1tq21tq2zZs3L/QSgENRFwHTQF0EAKxLS2oxtIib+unR86Y3JUlr7dYkZ69g+wBLoS4CpoG6CABYl1bSYujqJF9IcmI/f/8kt/XlAOOiLgKmgboIAFiXlnpXsnOSPLef3VZVL2utfSbdla9tVbUzySOSnN1a278mkQKDpy4CpoG6CADYSJY6+PQV6e6+ce688muSXLMGcQHchboImAbqIgBgI1lJV7JVU1Xbq2rX7OzspEMBAAAAGIypSAy11na31nbMzMxMOhQAgIlywQwAGKepSAwBTAMnY8A0cMEMWEtVNVNVL6mqVlWPmXQ8wORJDAH0nIwBAOtJVZ1aVZf3SZ5LR8ofX1XXVdXOqrq+qs4YWe3LSS4Ze7DA1JIYAgAAWJ/OTDcY/p2q6oQkVybZ01q7IMn7k1xZVZuTpLV2e5KvHWqjVbWjqvZU1Z79+91cETY6iSEAAIB1qLV2SZJb5hU/IclxSW7u529McnxfvtTt7mqtbWutbdu8efOqxApML4khAACAjeOkfnrHvOlJSVJVm5I8uy87Z64lETBcR006AAAAAFbNTf306HnTm5I7u5K9qH8ATEeLIXcCAgAAWBVXJ/lCkhP7+fsnua0vB7iLqUgMuRMQAADA8lTVOUme289uq6qXtdY+k+Tsfn5nkkckObu1ZhRpYEG6kgEATJGq2p5k+9atWycdCjDlWmtXpLsr2bnzyq9Jcs1EggLWnWqtTTqGO1XV/iSfHPPb3jd3Hcl/2ohxdYhxdRwuxge11tblIIZzJ2PpDq7+YcLhLMV6+Hs5EvZr/Zj2fVq39VEyseOiQ5nG71tMSyOmw1vLeNRF02Pa/u7WyhD2cwj7mKzufi5aF01VYmgSqmpPa23bpOM4FDGuDjGujvUQ41Bs1O/Cfq0fG3GfWNw0ft9iWhoxHd60xcPaGMr3PIT9HMI+JuPbz6kYYwgAAACA8ZMYAgAAABgoiaFk16QDWAIxrg4xro71EONQbNTvwn6tHxtxn1jcNH7fYloaMR3etMXD2hjK9zyE/RzCPiZj2s/BjzEEAAAAMFRaDAEAAAAMlMQQAAAAwEANJjFUVd9ZVX9ZVS+rqhuq6m1V9bB+2eOr6rqq2llV11fVGROO9Ziq+kBVtao6f9pirKqTq+qPquq3qup3q+q9VXXclMV4YVV9tKr+T1V9rKp+ti+fWIxVdWpVXd5/r5eOlC8a07jjXSjGQ/12JhHjRreUz7P/vf12Vb2+qt7Q/xaP7ZftqqrXVdWrqurjVfXz49+Lu1rpfo285un93+e+sQV/CKuxX1W1o6r+rN/GNVX1U+Pdi7tahb/Db6mqt1fVm/t9eltVnTr+PWG11ALHJhOOZ8FjkQnHtOCxx5hjWPaxxiRiOtyxxSRiGlk2VX/rHLmq+uX+u3xFVf1FVX1bX76uj12P5He+3vb5EPt4qN/uutrHZMrOvVprg3gkOTPJ0/vnpyRpSfYkOSHJ55O8vF/2m0k+l2TzBGP9jSTX9jGeP00xpksmfiDJq0bK/tOUxfht/Wf3ln7+r/v5B00yxiQ/luSpfSyX9mWLfm6T+EwXiXHB387h4h/3974RHkv9PJP8Wv89fGOSe/XPL+6X/VaSb+ifX9Yve+J6369++ZYkf9yX79sg39fc7+3kfv7eSR69Afbr8n7+0Ume0D9/1Tj3w2PV/y4OOjaZcCyLHYvcfYIxLXbs8cAxx7GsY40JxrToscWkYhpZNjV/6x4r+o6399/hr/Tzf5Xkw0nuN8nfwyrt29SfU6zFPh6mfN3t4yG+y4mcew2mxVBr7e2ttdf3s7f00+PSHbAel+TmvuzGJMf35WNXVWcluT3dP6Q50xTjtiT/Nsl9qupXqupNSY6ZshhvS/KVJJv6+U1JPpHk9EwwxtbaJTnwtzfnUJ/b2D/ThWI8xG8nk4hxg1vq5/nUJF9srX2utfbZJF9K8rQkaa09t7X2tf5187+vSVnxflXVNyR5RZL/OpaIl2bF+5Xk2Um+mOSHquqyJD+f5KNrHfhhrMZ+zf3tbcqBuvhv1ixi1tQixyaTtOCxSGvtKxOMabFjj38ZZxBHcKwxkZgOc2wxkZiSqfxb58g9pJ9+tp/+a5KHJvnxrPNj1/VwTrFSi/1GFyvPOtzHZLrOvQaTGJrn/HQHsD+d5KS+7I5505MyZlV1YpKfSPKieYumJsZ0V+yT5OjW2i8k+XKSK5M8sC+feIyttX9K8nNJHllVr0myNd0J5TR9jnMOFdM0xnt+Dvx2kumMcT1b6ud50siyudcd9JqqOj7JU5K8NV0rm0lajf36pSSvbq3duCYRHpnV2K8tSY5N8rYk/yvJzyT57dUOdJlWY79+JckH0+3TLyd5d5K3rHqkrLlDHJtM0pZ+etCxSFU9fFIBLXbs0Vr74qRiGjHt/6vPz8HHFhMxpX/rHLl399MHzZt+vZ9O6+/hSK23c4rVtlH38fyM6dxrcImhqvov6a5oPrK19pYkN/WLjp43vWn+umPw1HRf/CuSPLEvOy/TFeNc1v0T/fTjSb6hfyRTEGNVbU/XDPgVrbVnpUtc/Ua6lk2jsU3yc5xzqO92mr73hX47o7FMRYwbwFI/z5tGls297s7XVNUD0v3d/3aSJ0z4Knqywv2qqnskOSPJ91bVXNLkPtWNb3OftQh4iVbj+xqtUz/eP3/MKsZ4JFZjv/4s3ZXZ/5Tuf9t/SPLqVY+UcVjw2KSqzptcSIseizx6MuEsfuxRVY+dVEwjpvZ/9SLHFpMyjX/rHKHW2juT/FCSB1bVr+RA671P9dOp+z2s0Lo5p1gjG24fx33uNZjEUFXdr29q/Ogkz09yXFXtTnJ1ki8kObF/6f3TNQe+etwxttb+d2vtqa21H093UJ10Y4RMTYzp+sz/S7pxMJJk7qTsHZmeGOdaL32+n36hn3400xPjnEN9t1PxvR/it5NpiXEDWfTzrKorquoH+vI3Jjm2qr6xqr4pyT2SvCFJquqZSXYn+Z0k16TronTB2PZgYSvar9bal1pr/7G19uN9/Zgk/9LPj7Wbxjwr/r6SXNVP750D9emku5Ktxn49MMnX0nXJmKuD55LzrCOLHZu01i6bYFiLHYtM8rez2LHHNPzdT93/6sMcW0zElP6tc4Sq6p5JPtVa+4G+ZeHX0n2vU/d7WCVTf06xxjbMPk7s3GvSAy6N65GuGVab97i1X/b4JNcl2Znk+iRnTDjWH0w3QFrrv+THTVOMSb47Xd/rnUk+kuQF0/Q5pjs5+d0k7+1j2ZvkRZOOMck5OTAg64eSvOxwMY073oViPNRvZ9Kf6UZ8LPR5pmv+/E9J/nv/muPSJX5e339fv53k2H7ZvgW+rwvW+371y4/v/yZbktkkv7re9yvdOCS/keSKdAm9a5Js3QD79X3p6uA/SPInSd6e5OGT3i+PFf1N3OXYZMLxLHgsMsF4Fj32GHMcyz7WmERMOcyxxaQ+p37ZVP2texzxd3y//vf420lele5i+336Zev62PVIfufrbZ8PsY+H+u2uq31cbH8OVz+u1X5Wv3EAAAAABmYwXckAAAAAOJjEEAAAAMBASQwBAAAADJTEEAAAAMBASQwBAAAADJTEEAAAAMBASQwxMVV1aVV9rqr+x7zyh1bVvqr6clV9oqp+cFIxAgAAwEYmMcREVNW3JzknyZ8n+Z9VdY+RxZ9L8mNJHp3kC0l+dfwRAhvVYknpJawnaQ1MvSOt44CNpaqeVVUfrKqvVtVfV9VD1+h9LqqqVlU3V9Xr+7LHVtU7qurqqvq2vuzEqrq2qm7vX3/6WsTDkZEYYk0sVEHM889JPpTkvyX5aJKvzC1orf1Ta+1t/fLZJP+336bKBFiRwySlD0fSGphqK6zjgA2iqn4myWXpzqX+Jsmjkuxc47d9S2vt6f3zP0jy40n+vyS/lSSttZtba6cnuXmN4+AISAxxSFV1VH91vFXVg+ct+9W+fE9V1SKbGK0gRn1nugrqpiT3bK19bd62fyLdidejkrwxUZkAh7eSpPThSFoDi6nO5/o6YE2uyo+816HquUXrOHUVDENV3T/JS5L8U5Iz0tUHSXL0OMNI0vrncg7rgC+JQ2qtfTXJ3/ez3zZXXlUnJbmgn31Ba61liarqbkl+ZaTo5Kq657yXvTbJv0/yV0l+6xCJJ4CFHFFS+nAkrYFFPCjJ8UnuSPIPY3rPheq5Res4dRWsH1V1bFW9uKr+oaq+UFXXVdXfVNWXqup+h1n97CR3T9dy8GtJfrgvf9Vh3nNTVX2tqv6uqr5zpPy/98nk31nGLpyXZFe688WfXMZ6TIjEEEvxoX76kJGyi5Icm+Sq1to7lrm9ZyZ5eJJbk/xLuozynVfXquq70yWhvpTuAOv25SSeABaylKR0VT2ov5o+//Gg/iWS1sBCTuun/9Bau2MSASzxwhuwPvxhkl9Il9h5X5LHJtmW5JLW2j8fZt3H9NO/Tddq6HlJ3pTkdYdZ7xuTXJPkW5L8TJL0dcjz010Uu2ipwbfW3t5aO7219r2ttb1LXY/JkRhiKT7cT+cGDvuWJM9OV1H93HI2VFVHJ/nlfnbnyLZHm12fmuRPk3wwyUnpMs7AQFXVN1TVC6rq7/sBFD9VVUdy9emQSekkaa19srW2aYHHJyWtYWOrqjOq6n1V9dmq+ko/2PwLlrj6XGLok1X1B/0V/g/39cZS3vtpVXVDv95tVbX7CHbhsHUcMP2q6iFJnpTk9iRnJnlOv+iOJL+2hE3M1Uf/mORdSb6Y5ClJfv1QK7XWPtO/7utJHtkX/1SS+yT59dbaTUvfC9YbiSGWYn6LoZckOSrJ77XWPrzwKot6TrrEz63pEkNzza0fNveC1trvt9ZO6E/GHt5au/pIAwc2hDckeWmSG9MljR+Y5H9X1balbmCJSenDkbSGje270tUzr09yebrf+Uur6hFLWPff9tPvSdeF48Pp6pfXHm7Fqvrv/ft9e5LdSa5OcsxyAl+lOg6YDo/tp9e21v5fkpl+/vLW2qcOtWJfF8yds93QWntakhf18z9wuDdurX0+ySeSnFJVm9O1FvpMlpaQYh07atIBsC7MHVw8pKoelS6T/MUkv7ScjfR3xviFfnZna222qu6SGAKYU1VPS1fnXN1a+/6+7BNJTkl34LNniZuan5R+YLoDryXXPa2130/y+0t9PbDuvCLJ/0tXv3w5Xaubk5KcuIR1567Q/8/W2our6pvTdeF4UFXdt7V2y0IrVdXWJC9O8tUkj2utvacvX+4gsSuu44Cp8YB+OpcEmmu5+I9LWPdbc2CQ6blz/WP76eG6oM35QJKtSV6Z5N5J/mtr7bYlrss6pcUQS/HxdF0n7p1kbtCxl/cZ7OX4qXQHWElyUVW1JBf3865oAQt5aj8dvep+XD+9cSkbWCgpnQVaKwLD1d/m/ZNJXp3kF9ONyTF3zPL3i63Xr3v3dGNyJAeSx5v66R3pkjWLOTvJNyT5q7mkUJIsZ5widRxsOLf20++rqouT/GA/f+bcmIf9HQZbVV0wb925JPXXk+yuqtfmQIuhlx9m3Tkf7KdPTVeX7FrBvrBOSAxxWK21r6e75WmSfEeOoDlhVc3kwHhE16drMn15kj/uywyQCCxkbnyO25Okqr4nyQlJPpvknUvchqQ0cDg/n+Sb0rUaOi4HunJ8Pt0FskP5thy4Mv/Ffjp3F6Br+ju8Lmbu2OcecwVVdbd+IOmlUsfBxvJ7Sd6WrrXizya5IcmfpLvr4H3718zd/GJ+/TKXGHplunO2p6RLbj+ztXb5Ydad88GR5/9jUgPqM166krFUH0ry7/rnv3wEzQlfmORe6bqlfU9r7StJ0t/RZzbdLV4fmuQ9i24BGJSquk+S+6e76vXyqjorB66avXApByoLJKXnBk68e7q+9idX1T37PvXAcH1TP/2+dImhs/r5vXODzFfVtUkel+SnW2s7R9Y9beT5lVX16XRX2u9If6X+EOte20//fVW9Lcm+dIO+LmkMNXUcbDyttc+mG69sQX3i+OHpWk7/wbzFc/XRe1pr/22Z6875TD/9dGvtjcsInXVMYoglaa09K8mzVrD+z6e7Gje/vKW7NSLAfN/eT29Id3v456Yb/+P5rbVLlrgNSWlgKX453dhCD0iXGLoyyY50Y23MOdwV+tf36z8xyUeS/Gxr7W8OtW5r7bqqena6MUS+O12998bW2teWGLc6DobnO9IN8fF9rbVb5y2bq4/+7xGsO2eupeEHFlk+363puuJuq6rXt9aevtCLqurEdPXkV/vX377E7TMGEkOslVuzhApiOVQmMDhzd/n5SGvtBTkw+OKSSUoDS9Fae1eSfzOv+L/MPTnUVfbW2s/lQKuduzjcFfrW2u+l6zpyJHGr42BgWmvvy4Fk852q6huTPKif/ej85Ydad5655NLeJcazM92g94d73c1JTl/KNhk/iSHWxFIriGVuU2UCwzLXYmixq14LuTWrnJQ+HElrGITvyOGvsq/Fugu5NUdQz6mrYGNrrX0uh0/6LGU7z0s3AD8DUn23aQCYKlX13iSPSPKE1tpbJh0PAABsRBJDAAAAAAPldvUAAAAAAyUxBAAAADBQEkMAAAAAAyUxBAAAADBQEkMAAAAAAyUxBAAAADBQEkMAAAAAA/X/A7P8sVyDk+xZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1440x504 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(20,7))\n",
"tc.plot.cell()"
]
},
{
"cell_type": "markdown",
"id": "4cb440b6-aa79-4369-80d6-141dcfc37696",
"metadata": {},
"source": [
"### Create an atomicrex job"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "56951cee-038f-44e7-bb11-b20841036f81",
"metadata": {},
"outputs": [],
"source": [
"job = pr.create.job.Atomicrex(\"FitAl\", delete_existing_job=True)"
]
},
{
"cell_type": "markdown",
"id": "9807a140-dc20-4c4a-b22c-dcc89c789425",
"metadata": {},
"source": [
"### Training Data\n",
"Set the training data. This can also be done structure by structure to set other fit properties and weights, but here we simply load the TrainingContainer"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "adbcf0a6-1ef8-4697-93d5-bd9346aad1ab",
"metadata": {},
"outputs": [],
"source": [
"job.structures.add_training_data(tc)"
]
},
{
"cell_type": "markdown",
"id": "1d275454-0b14-4862-b4f0-8b7166852f96",
"metadata": {},
"source": [
"Set the potential type. In this case an EAM potential"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e90476e0-54cf-4a6e-9424-bf282517a4b5",
"metadata": {},
"outputs": [],
"source": [
"job.potential = job.factories.potentials.eam_potential()"
]
},
{
"cell_type": "markdown",
"id": "1cd689cb-0d35-4b5c-93e6-e0112a5382b2",
"metadata": {},
"source": [
"### Functions\n",
"Reminder: $E = \\sum_{ij}V(r_{ij}) + \\sum_i F(\\rho_i)$ with $\\rho_i = \\sum_j \\rho(r_{ij})$\n",
"\n",
"It is necessary to define a pair potential, an electronic density function and an embedding function.\n",
"For all of those it is possible to choose between different functional forms.\n",
"Classic pair potentials are physically motivated and have a very limited number of paramaters that can often be derived from an experimentally measurable quantity.\n",
"Splines or polynomials offer more flexibility, but can lead to unphysical oscillations or overfitting. Compared with the machine learning potentials shown later the number of parameters is very low no matter which functions you choose.\n",
"\n",
"In this case a generalized morse function is used for the pair interaction. It has the form\n",
"\n",
"$(\\frac{D_0}{S-1}exp(-\\beta \\sqrt{2S}(r-r_0))-\\frac{D_0S}{S-1}exp(-\\beta\\sqrt{2/S}(r-r_0)))+\\delta $\n",
"\n",
"The parameters in the morse potential can be derived from phyiscal quantities, here they are just educated guesses. For example $r_0$ is the equilibrium distance of a dimer. The nearest neighbor distance in fcc Cu is about 2.8 $\\mathring A$ so it is taken as initial value.\n",
"In the case of analytic functions the initial parameter choices should not matter too much, since the functional form is constrained.\n",
"\n",
"The electronic density will be a cubic spline. The embedding function will be $-A*sqrt(\\rho)+B*rho$, which can be defined as a user function.\n",
"\n",
"The pair function and the electron denity and their first derivatives are required to smoothly approach 0 at the cutoff distance $r_{c}$\n",
"For this purpose the pair function is screened by multiplying with the function:\n",
"\n",
"$\\Psi(\\frac{r-rc}{h})$ where $\\Psi(x) = \\frac{x^4}{1+x^4}$ if $x<0$ else $\\Psi(x)=0$\n",
"\n",
"For the spline it is necessary to set a node point with y value 0 at the cutoff "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "96a1900f-f4d2-43b6-87dd-cf5570517836",
"metadata": {},
"outputs": [],
"source": [
"morseB = job.factories.functions.morse_B(\"V\", D0=0.15, r0=3.05, beta=1.1, S=4.1, delta=-0.01)\n",
"morseB.screening = job.factories.functions.x_pow_n_cutoff(identifier=\"V_screen\", cutoff=7.6)\n",
"morseB.parameters.D0.min_val = 0.05\n",
"morseB.parameters.D0.max_val = 1.55\n",
"\n",
"morseB.parameters.r0.min_val = 2.6\n",
"morseB.parameters.r0.max_val = 3.1\n",
"\n",
"morseB.parameters.S.min_val = 1.5\n",
"morseB.parameters.S.max_val = 4.5\n",
"morseB.parameters.delta.max_val = 0.005"
]
},
{
"cell_type": "markdown",
"id": "252c78d0-9230-4e23-83a1-20304f1630b5",
"metadata": {},
"source": [
"It is also possible to plot most of the functions. This can help to judge if the initial parameters are reasonable"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1c380b21-78e8-404c-a9ae-a5b6d6ea85fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<Figure size 720x504 with 1 Axes>,\n",
" <AxesSubplot:xlabel='r [$\\\\AA$]', ylabel='func(r)'>)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAG0CAYAAAB38IANAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmdElEQVR4nO3deXhcd33v8c93ZrRLtixLXmVH3rLYIRuKnfQ2NCENIQUuS8vaFlIuOA33lsKFsrQ0hAIXbhsg3Au9JQ0QlkJaCiEsDRQuIQZKFjkL2eM4cRI73ndLtpaZb/+YM9JYlmyNNdL5nZn363nmOcucM/pkHjv+6Cy/Y+4uAAAAhCEVdwAAAACMoJwBAAAEhHIGAAAQEMoZAABAQChnAAAAAaGcAQAABCSIcmZmrWa2zsw+ZWY/NrNHzOy1cecCAACYbhbCOGdmNlvSO9z9o2aWkbRTUp2kGe4+FG86AACA6RNEOStmZu2SnpO0TdJSDy0gAADAFAritGaBmb1S0s8lHZL0dooZAACoNiEeOauRdI+kMySd4e5PjXp/raS1ktTU1PTC008/ffpDIlhPbD+oukxap8xujDsKAABHWb9+/S537zjRdkGUMzM7S9IKd/92tHybpJdK+i13//V4+3V3d3tPT880pUQSvPlLd2tf34C+9z9+O+4oAAAcxczWu3v3ibbLTEeYCRiUdLWZXSCpU9IySR88XjEDxrKwtUEPb9kfdwwAAE5aEOXM3R+V9Ltx50Dydc5q0O7eAfUNDKmxNog/3gAAlCSoGwKAyeqc1SBJ2rL3cMxJAAA4OZQzVJTOWfkbATZTzgAACUU5Q0VZFB0527y3L+YkAACcHMoZKkp7c51qMymOnAEAEotyhoqSSpk6WxsoZwCAxKKcoeJ0tjVyWhMAkFiUM1SczlkcOQMAJBflDBWneKwzAACShnKGilMYToOxzgAASUQ5Q8XpHB5Og3IGAEgeyhkqTqGcPcdNAQCABKKcoeJ0NNepjrHOAAAJRTlDxTEzLZzVwHAaAIBEopyhInXOauTIGQAgkShnqEiMdQYASCrKGSpS56wG7ekdUG8/Y50BAJKFcoaKNDzW2T6OngEAkoVyhoo0MtYZNwUAAJKFcoaKtCg6csZ1ZwCApKGcoSK1N9cy1hkAIJEoZ6hIZhbdsclpTQBAslDOULEY6wwAkESUM1QsxjoDACQR5QwVq3NWo/b0DugQY50BABKEcoaK1TU7f8fmpl29MScBAGDiKGeoWF3tTZKkZ3ZzUwAAIDkoZ6hYpxSOnO3myBkAIDkoZ6hYjbUZzWmp47QmACBRKGeoaF3tTRw5AwAkCuUMFa1rdqM2cc0ZACBBKGeoaF3tTdp5sJ/hNAAAiUE5Q0Xrmp2/Y5PrzgAASUE5Q0UrlDOG0wAAJAXlDBWN4TQAAElDOUNFa6pjOA0AQLJQzlDxumYznAYAIDkoZ6h4Xe0MpwEASA7KGSreKbMZTgMAkByUM1S8JcMPQOfUJgAgfJQzVLzhOzZ3cWoTABA+yhkq3vBAtBw5AwAkAOUMFa+pLqMOhtMAACQE5QxVYcnsJp4SAABIBMoZqsIpsxv1NKc1AQAJQDlDVehqzw+n0ctwGgCAwFHOUBUKNwU8zXVnAIDAUc5QFZbNyZezjTsPxZwEAIDjo5yhKixpb1LKpI07KGcAgLBRzlAV6jJpnTK7SRsoZwCAwFHOUDWWz2nWk5QzAEDgKGeoGsvnNOvpXb0azObijgIAwLgoZ6gaK+Y0ayjnPAAdABA0yhmqxoo5LZLEqU0AQNAoZ6gaheE0NmynnAEAwkU5Q9VorM1oYWuDnmSsMwBAwChnqCrL5zRz5AwAELQgypmZrTGzX5jZdWZ2p5n91MxWxZ0LlWfFnGZt3HlI2ZzHHQUAgDFl4g4QaZL0eXe/2cyWSHpK0lckdccbC5Vmxdxm9Q/ltGXvYS2e3Rh3HAAAjhFEOXP3nxUt7oqmTXFkQWVbPqdZkrRhx0HKGQAgSEGc1hzlSkmHJb17rDfNbK2Z9ZhZz86dO6c1GJJveQfDaQAAwhZUOTOzqyS9TtIL3f1HY23j7je4e7e7d3d0dExvQCTezMYadbTU8YxNAECwgihnZjbXzL4j6QJJ75HUZGbfjzkWKtQKnrEJAAhYENecSbpC0quj+Suj6f54oqDSrZjTrG/fu0XuLjOLOw4AAEcJ4siZu9/k7jbq1Rp3LlSm5XOadah/SNsP9McdBQCAYwRRzoDptDx6xuaGHQdjTgIAwLEoZ6g6K+bmh9N4fBvlDAAQHsoZqk57c506Wur06FbKGQAgPJQzVKUz5s/Qo1sPxB0DAIBjUM5QlVbOn6ENOw5qYCgXdxQAAI5COUNVOmN+iwazro07Ge8MABAWyhmq0qoFMySJU5sAgOBQzlCVumY3qS6T0iPPU84AAGGhnKEqZdIpnTavRY9uo5wBAMJCOUPVWjl/hh55/oDcPe4oAAAMo5yhap0xf4b29g3yGCcAQFAoZ6haK6ObAh7Zuj/mJAAAjKCcoWqdPi//jE2eFAAACAnlDFWrpb5Gi9oauGMTABAUyhmq2koe4wQACAzlDFXtjPkz9PTuXvUNDMUdBQAASZQzVLmV82fIXXpsG9edAQDCQDlDVTtjfnTHJtedAQACQTlDVeuc1aAZ9Rk9TDkDAASCcoaqZmY6q7NVD27ZF3cUAAAkUc4Anb1oph7belBHBrNxRwEAgHIGnN3ZqqGc6+HneVIAACB+lDNUvXMWtUqS7n+OcgYAiB/lDFVvzox6zZ9Zrwee2xd3FAAAKGeAlD+1+cDmfXHHAACAcgZI0tmLWvXM7j7t7R2IOwoAoMpRzgDl79iUxNEzAEDsKGeApBcsnCkz6QFuCgAAxIxyBkhqqa/R8o5mjpwBAGJHOQMiZy9q1QPP7ZO7xx0FAFDFKGdA5JxFrdrdO6DNew/HHQUAUMUoZ0CkMBgtpzYBAHGinAGR0+a1qDaT0v3P7os7CgCgilHOgEhNOqUzF8zQfTwpAAAQI8oZUKS7q00Pbt6vI4PZuKMAAKoU5QwosrqrTQPZHM/ZBADEhnIGFDm/q01m0t1P74k7CgCgSlHOgCIzG2t02twW3b2JcgYAiAflDBhl9ZI2rX9mr4ayubijAACqEOUMGGX1kjb1DWT18PMH4o4CAKhClDNglNVdbZK47gwAEA/KGTDKnBn1WtLepLsoZwCAGFDOgDGc3zVLPc/sUS7HQ9ABANOLcgaMYfWS2drXN6gNOw7FHQUAUGUoZ8AY1iwpXHe2O+YkAIBqQzkDxtA5q0HzZ9br7k17444CAKgylDNgDGam1UvadNdTu+XOdWcAgOlDOQPGceHS2dpxsF9Pct0ZAGAaUc6AcVx0aock6Y4ndsacBABQTShnwDgWtjZoWUeT1m3YFXcUAEAVoZwBx/GiUzt011O7dWQwG3cUAECVoJwBx/GiFR3qH8rpnk08LQAAMD0oZ8BxrFnaptp0Sr/g1CYAYJpQzoDjaKzNqLtrltZxUwAAYJpQzoATuGhFhx7bdlA7DhyJOwoAoAoEU87MbKmZ/bOZuZndFHceoOBFp7ZLEndtAgCmRTDlTNKLJX0r7hDAaGfMm6H25lpObQIApkUw5czdb5TEoQkEJ5UyXbSiQ798cpdyOR7lBACYWsGUs4kys7Vm1mNmPTt3ciQD0+NFp7ZrT++AHti8L+4oAIAKl7hy5u43uHu3u3d3dHTEHQdV4pLT5iidMv3kke1xRwEAVLjElTMgDq2NtVqzpE0/fnhb3FEAABUumHJmZq+VdHW02G1m18WZBxjt8lXztHFnr57ccSjuKACAChZMOXP3b7n7693d3P1Md39v3JmAYpetnCtJ+vdHOHoGAJg6wZQzIHQLWht0VudM/fhhrjsDAEwdyhlQgstXzdMDz+3Ttv08LQAAMDUoZ0AJLl+VP7X5E05tAgCmCOUMKMGyjmYtbW/i1CYAYMpQzoASmJlesmqe7nxqt/b3DcYdBwBQgShnQIkuXzVXQznXTx7l6BkAoPwoZ0CJzlnUqkVtDbr1/i1xRwEAVCDKGVAiM9Orz1moXz25S9sPcNcmAKC8KGfASXjVuQuVc+l79z8fdxQAQIWhnAEnYWlHs85e1Kpb7uPUJgCgvChnwEl69TkL9MjWA3p828G4owAAKgjlDDhJLz97gdIp03e5MQAAUEaUM+AktTfX6UUr2nXrfVuUy3nccQAAFYJyBkzCq85dqOf3H9FdT++JOwoAoEJQzoBJeMnKeWquy+hbPc/FHQUAUCEoZ8AkNNSm9epzF+oHD27Vnt6BuOMAACoA5QyYpD+64BQNDOU4egYAKAvKGTBJp81r0equNv3TXc9yYwAAYNIoZ0AZ/NGFp+jZPX1at2Fn3FEAAAlHOQPK4KWr5qm9uVZfv/OZuKMAABKOcgaUQW0mpdefv0g/e2yHNu/tizsOACDBKGdAmbxx9WK5pG/c9WzcUQAACUY5A8qkc1ajLjtjrv7prmd1qH8o7jgAgISinAFldPXFy7T/8KC+ydEzAMBJopwBZXTu4lm6cOls3fjLp9Q/lI07DgAggShnQJm945Jl2n6gX7fcuyXuKACABKKcAWX228vb9YKFM/WFdU8py6C0AIASUc6AMjMzvePiZXp6V69ue2hr3HEAAAlDOQOmwOWr5mlpR5M+f/tGHukEACgJ5QyYAqmU6c8vXaFHtx7Q9x54Pu44AIAEoZwBU+QVZy3QqgUzdN2/P86dmwCACaOcAVMklTJ94IrTtXnvYX39TsY9AwBMDOUMmEIXrejQRSva9bmfbdCBI4NxxwEAJADlDJhi73/p6drbN6h/+PnGuKMAABKAcgZMsTMXztSrzlmgL/7yaT23py/uOACAwFHOgGnwvpeernTKdM2tD8mdoTUAAOOjnAHTYEFrg97zktN0++M7ddtD2+KOAwAIGOUMmCZvufAUrVowQ9d+72FuDgAAjKvkcmZmLWY2cyrCAJUsk07pE695gXYd6td1P3487jgAgEBNqJyZ2flm9k0z2ytpn6Q9ZrbfzG4xs4umNCFQQc7qbNWbL+zS1+58Rj2b9sQdBwAQoBOWMzN7p6Q7Jb1e0kxJFr1aJL1S0s/N7C+mMiRQSd57+WlaNKtRf37z/ZzeBAAc47jlzMwuk/TXkq6R1C2pTVKNpDpJ7ZJWS/qgpHeb2aumNClQIZrrMrr+Dedo24Ej+tAt3L0JADjaiY6c/Z6kC9z94+5+r7vvc/esuw+6+x5373H3v5X0QkmXTn1coDKct3iW3nXpCn3vged1y31b4o4DAAjIccuZu7/b3TdKkpn9zMxuGme7re7+Z1OQD6hY77hkuVZ3temvv/uQNu3qjTsOACAQpdyt2SFp7VQFAapNOmX6zBvOUSad0tqv9egg158BAFRaOfuVpKWjV5rZ18oXB6guC1sb9Pd/eJ427uzVu26+X9kc158BQLUrpZydKelBM3vQzG6PTnP+TNLLpigbUBX+y/J2XfuKlfr/j+3Q3/74sbjjAABililh29+KpqtGredXfWCS/vjCLj2+/aC+cMdTWtbRrNd1L4o7EgAgJqWUs8clfXLUOpP0/vLFAarXh1+xSpt29ekD3/6NWuoyuuIF8+OOBACIQSnl7Cp3Xzd6pZn9pox5gKpVk07pC3/8Qr35S3frnTffpxtq0rrk9DlxxwIATLMTDUL7MTObL0ljFbNo/b1mNtPMRh9VA1CiprqMvvwn5+u0eS266uvr9asnd8UdCQAwzU50Q8B9kv7DzN5sZm2j3zSzdjN7g6RfS3pkKgIC1WZGfY2++tY16prdqLfedI/+/eFtcUcCAEyjEw1C+21J/yLpJkk7zWyvmT1jZpvN7ICk7ZL+SdJP3f2rU54WqBJtTbW6ee2FOn3+DP3p19frm3c/G3ckAMA0OeFQGu7+fkm/L+ke5R98vkjSAknNkh6W9FZ3f+dUhgSqUVtTrb759jW6aEWHPvidB/XZn27gOZwAUAUmNM6Zu9/i7hco/+Dzc5V/lmaHu5/l7l+ZyoBANWuszejGt3TrNect1Gd++oSu/vq9PEkAACpcKYPQKnrw+QPufp+k/eUMYmaXmtkdZna9ma0zs0vK+flAUtWkU/rUa8/Wh152hn7y6Ha98nO/0hPbD8YdCwAwRSZczszs78xsY1FpujB6WsBZkw1hZnMk3Sqpx93fpfyNCLeaWcdkPxuoBGamt120VN942xodODKkV37uV/rqrzcpx+OeAKDilHLkbI2k8939dkly918o/+imT5QhxxWSmiQVbkvbIqklWg8gsmbpbP3wnb+t7q5ZuubWh/WHN96l5/b0xR0LAFBGpZSzGnffU7zC3Z+V1FqGHIWh0AdHTRkiHRhl7ox6ffWtq/XJ17xAD27Zr8uvX6cv3LFR/UPZuKMBAMqglCcEzDWzz0j6oaQDkmZI+j1J5RjCfGs0rRk13Tp6QzNbK2mtJC1evLgMPxpIHjPTG1Yv1kWnduia7z6kT9z2mL5x97P6y987Qy9ZOVdmFndEABXE3ZXNuYZyrlw0n8spP+/5dbmc8vPRNjmXsjnP7+tF2w+/P7JNzkd9Xm6M/V3Dn50d62dE+xQ+Oxt9Xi43sr9H77lrzOX8vMul4c/34fcLyyP75VzD23r03+Aq/lkj01wJd9uXUs7+VdJ7JY0eNqMcpzVvk9QraV60vEDSwWj9Udz9Bkk3SFJ3dzcX3KCqLWxt0BevPF/rntipj/7gEV31tfU6b3Gr/uzSFbr41A5KGjDFCqVgMOsazOU0lHUNZnPRyzUUTQezOQ3liuazroFoOpTLaWAop6GcH7XfUM41lHVlc/n5rLuy2XxBKhSlbC6nbE4j2xQKVK54u9w460fez+V01HbZbP7nFbbJVsj1rSnL/3J71FT5acpMVrQ+v5xfN7ys6P3UyHJqeJviaeFnFH1OCTltouMmmVm9pE9LulJSvaTDkr4o6b3uPlDStzP2518q6RrlbwY4T9KHC9e3jae7u9t7enom+6OBijCUzenme57T39/+pJ7ff0Rndc7U1b+zTJetnKtMuqQbs4Hg5HL5MjOQzReZ/qH8dPiVzap/MKf+7NHr89tlh/cbGMpv0z+YO2pdftui7YaL1fhFqrB+OmRSpnTKRqbplFJWvDzyfsoKy6lj9jvqM1IppY5aLvqM4eXUUfsWf4aZKW1SKvqZKTOlU4rW57czk9JF76eKl1P57VJFn1G8fyoqQcfbP2XKb1vY30yW0lH7F9anUvH/smpm6929+4TblTqopeV/FW+XtMvd3czmu/sxpx+nA+UMONbAUE7fuXez/v7nG/Xsnj7NnVGnN65erDecv1jzZtbHHQ8Vwt11eDCrwwNZHRnK6chgNnqNMT80ev3I8uFovn9onPXR/oPZ8h25qc2kVBe9atMp1WZS0bp0fj6dUk0mpdp0vsBk0qbadH6aSeffz6RMNZmUaqKiVJNOqSZtqom2q0mlVJPJ7z+yvmg+ZdE+o/ZLp4b3TafynxNCqUB5TEk5M7PZkpZLqitafb27n1d6xMmjnAHjy+Zctz+2Q1+78xnd8cROpUy6cNls/dezF+ilq+ZrZmPNiT8EiTeYzalvIKu+gaH8tD+aHxyZPzyYVW9/VocHhtQ7kFXfwMj84eJ9i+YPD2Z1Mg+sMJPqM2nV16RUX5NWfU1adZmUGmrTx6zPv/KlqW64QB09rU2nh8tVbTqluppomhmndKWN0/2ITdnLmZn9T+WvLzvmOjV3T5ecsAwoZ8DEbNrVq+/ct0Xff+B5Pb2rV5mU6fyuNr349Dm65PQ5WtbRxD9YAXF39Q1kdah/SAePDOrgkSEd6h/SoSNDOhhNC+/lpyPvFy/3DQyVfMSpsTatxtpMNE0fs9xQm1FT0XxDVKYaatOqG1WuGmqKljNp1dXkSxN/1lCtpqKc7ZZUK2m38jcnFMx198aTSjlJlDOgNO6uB7fs1789uE23P7ZDj0dPGmhvrlP3KbPU3TVL3V1tWrVghmq4Tq1kuZyrd2D8InVMiSpsF5Wswj69/UOayPXXDTVpNddn1FKXUXN9Rs110Suab4yKVENUsJrq8oWpsTajxrp8wWqqzUTv5wsUp9CAqTPRclbK3Zr3SHqZux81mJKZvbvUcADiYWY6q7NVZ3W26gNXnK7Ne/u07old6tm0Rz3P7NWPHs6PA12bSWl5R7NOm9eiU+e26LR5zVra3qz5rfWqy8RyoHxKDWZz6u2PilNReRrraNR4R6sOHRnSoYGhCZ3qa6xNq7kuo5b6jJrra9RSl9GclvrhUtUyPK0Zs3y11GfUVJehQAMVqpRy9mtJrzOz9ZKOFK1fU95IAKZL56xGvWnNYr1pTX7MwB0Hjqjnmb26/7l9emL7Qd311G7dct+W4e3NpDktdeqc1aiFrQ2a01Kn2c11mt1Uq7amWrU116qlLqPGusKpr4xqM+UrEO6u/qGRC8YPR9dBFS8fji447xvIqrd/5EjUUYVr1PKRwYndcTf6yFRLfUbzZ9ZH648tUi31haJVc1S5SnN0CsBxlHJaM6ejT2cO45ozoHLtPzyoDdsP6uldvdqy77A27z2sLXsPa8u+w9px8MgJi01N2oZLWuH2+tRRt7rnb3N35YcmGMzllM26BnOF8aNy0VhP+fdKvQi9NpMaLkxNtZmjClRTXTRfl58vvDd6viXal1N+ACZjKk5rShpzDLXKGJkOwJhmNtSou6tN3V1tY77fNzCk3YcGtLt3QHt6+9Ub3QFYmBaOYA1ki0bqLgyoWTTadyoqboVhBjLD0/y6/LACpvrawnVTIxedN9QWLj4fmW+oSauprrxH7gBgOpT0hAB3f93olWb2L2XMAyBhGmszamzLaFFbLPcFAUDFmfCvlGMVs8iXy5QFAACg6k34yJmZXTPOW1dKWlqWNAAAAFWulNOa14rrywAAAKZUKeVsu6QfFS03SDpH0oZyBgIAAKhmpZSzN7n77cUrzCwl6e/KGwkAAKB6lVLOFpnZm4uW05LmSXqjpPeUNRUAAECVKqWc3aSxrzm7pzxRAAAAcNxyZmY3SnrS3T8pab+k+4ve7pf0mDitCQAAUDYnOnL2QklXR/Mz3f2S0RuY2VWSvlDuYAAAANXoROVsvqR3mdl2SY+b2R/r2Ec4/bkoZwAAAGVxonL2G0mfLFq+aeqiAAAA4ETl7E8k/Y2kJZLO1dHXnBWcXeZMAAAAVeu45czdt0j6b5JkZte6+7WjtzGzv5yaaAAAANWnlAefXzvO+v9VtjQAAABVbsLlDAAAAFOPcgYAABAQyhkAAEBAKGcAAAABoZwBAAAEhHIGAAAQEMoZAABAQChnAAAAAaGcAQAABIRyBgAAEBDKGQAAQEAoZwAAAAGhnAEAAASEcgYAABAQyhkAAEBAKGcAAAABoZwBAAAEhHIGAAAQEMoZAABAQChnAAAAAaGcAQAABIRyBgAAEBDKGQAAQEAoZwAAAAGhnAEAAASEcgYAABAQyhkAAEBAKGcAAAABoZwBAAAEhHIGAAAQEMoZAABAQChnAAAAAaGcAQAABIRyBgAAEJDYy5mZ1ZnZX5jZXjPzuPMAAADEKfZyJmmNpP+QtD/uIAAAAHHLxB3A3ddJkpnFHQUAACB203LkzMw2m5mP8bryJD5rrZn1mFnPzp07pyAtAABAfKbryNkF4/ysXaV+kLvfIOkGSeru7uYaNQAAUFGmpZy5++bp+DkAAABJF/sNAWbWZWbXSZoVLV9nZt0xxwIAAIhFCDcEbJL03ugFAABQ1WI/cgYAAIARlDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAApKJO4CZ/VDSVklNks6TdJ27/2O8qQAAAOIRwpGzLe7+Nnd/o6Rtkm4wsxfEHQoAACAOsZczd19btLgrmjbGkQUAACBu01LOzGyzmfkYryuLtlkg6TJJX3b3u6YjFwAAQGim65qzC8b5WbskycxWSvqSpHe5+5eO90FmtlbSWklavHhxmWMCAADEy9w93gBm75b0RkkfkbRd0oslPeHu3z3Rvt3d3d7T0zO1AQEAAMrAzNa7e/eJtov9bk1Jn46mPyha9+o4ggAAAMQt9nLm7hZ3BgAAgFDEfrcmAAAARlDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAglDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5AwAACAjlDAAAICCUMwAAgIBQzgAAAAJCOQMAAAgI5QwAACAgmbgDmNknJJ0iab+kl0v6gaR3uvtgrMEAAABiEHs5k5SWdKW7D5hZVtJ/l/QLSd+INxYAAMD0i72cufv7ihbnRtOtcWQBAACI27SUMzPbLGnhGG/9ibvfZGbzJX1W0mui6c+P81lrJa2NFvvN7KEyx60W7ZJ2xR0iwfj+Jofv7+Tx3U0O39/k8P1NzmkT2cjcfaqDyMw6NXYR3OXuh4q2e5+k/y3pQ+7+8Ql8bo+7d5cvafXgu5scvr/J4fs7eXx3k8P3Nzl8f5Mz0e9vWo6cufvm8d4zs4+4+4ejxWei6eKpTwUAABCe2K85k9RlZjdK6pN0maR/lfTh4+8CAABQmWIvZ+7+lknsfkPZglQfvrvJ4fubHL6/k8d3Nzl8f5PD9zc5E/r+puWaMwAAAEwMTwgAAAAISCLLmZldamZ3mNn1ZrbOzC6JO1NSmNlSM/tnM3MzuynuPEliZmvM7Bdmdp2Z3WlmPzWzVXHnSgoza43+vn7KzH5sZo+Y2WvjzpUkZlZnZg9Ef3+vjDtP0pjZpui7K7x+EHempDCzxWb2bTP7f2b2j2a23sya4s6VBGZ28ag/d4VX63j7xH7NWanMbI6kWyV9wd3fY2aflXSrmS1z950xx0uCF0v6lqTXxR0kgZokfd7dbzazJZKekvQVSdxWPjFpST9x94+aWUbSTklfMbNb3H0o5mxJ8UlJe+MOkWDrJf1B0fK+mHIkipmlJH1fUo+7Xx2t+11JPGZx4v5B0g+j+S5J75Z0cLyNE1fOJF2h/D+S26LlLZJaovVfjStUUrj7jWZ2cdw5ksjdf1a0WBiEkd8cJ8jdd0v6aLTYKqle+b/H2bgyJYmZvUzSEeUH6f6deNMkVqOkV0g6Vfm/w38bb5zE6JZ0lqSnzexjklZK+qK7D8QbKzHulfSou2+XJDP7kqS/cfdx/9+XxNOa86Pp4Kjp/DG2BabKlZIOK//bD0pgZq9UvmAckvR2566kEzKzeZLeIemauLMk3P+R9BFJb1P+iTTrzKw+3kiJ0BVNa9z9Q5L6lT9jdWZ8kZLD3Q8UFbMVklZL+vrx9kliOSs8d7Nm1JTncWJamNlVyp8WfqG7/yjuPEnj7rdKOlf5o94/NLOlMUdKgj9Q/peB/yvp5dG6t5jZZIYiqjrufpu759y9V9JvlC8dK+NNlQiFU+lPRdONyl+mcEE8cRLtw5I+dryjZlIyy9ltknolzYuWFyh/3va22BKhKpjZXDP7jvL/Q3qPpCYz+37MsRLDzM4ys9+XJHcfVP4XqlpJc2MNlgDu/jl3/wN3/1NJhYvYv+LuX4kzV5KYWaeZFT8WsEv5wrsplkDJcpek3ZLaouXZ0fSxeOIkk5mdIelMSf98om0Td82Zu++ITotcY2bXSzpP0iu5GWBiorvjChfEdpvZde7+3jgzJcgVkl4dzV8ZTffHEyWRBiVdbWYXSOqUtEzSB9391/HGSo6o3L4kWny9mT3t7nfEmSlBjkhabWafVv7P3mFJr3H3PfHGCp+7H4j+3f149O/u70h6n7v/Mt5kifMRSR+ZyKUcDEILAAAQkCSe1gQAAKhYlDMAAICAUM4AAAACQjkDAAAICOUMAAAgIJQzAACAgFDOAAAAAkI5A4AJMLObzOyAmf1l3FkAVDYGoQWAEzCzsyX9h6R/U/4pES3ufjjeVAAqFUfOAFQ9M7vWzNzMtpnZzWNssl3SQ5L+TPnnCQ5E+80zs5+b2ZFo/4unLTSAikU5A4ARP3L3N4yxfo2k1co/rL3Z3bOS5O7b3P1iSdumLyKASkc5A4DjMLOUpI8VrVpsZs1x5QFQ+ShnACqSmX3CzPZFpxs/a2bfM7O9ZnZliR/1JklnStonabckk7SyvGkBYATlDEBFcvcPSro/WuxW/kL+qyT1TvQzzKxG0keixeslPRzNU84ATJlM3AEAYBp8N7pO7F9K3O/tkpYqf9TsekmLJL1I0qpyhgOAYhw5A1ANdpW6g5k1SPpQtHi9u++XtCFappwBmDKUMwDV4GQGdHynpPnR/LVm5pI+GS1zWhPAlOG0JgCMYmYzJb0/Wlyn/BAaklSr/LVri82s2d0PxZEPQGWjnAGoSGb2V5LOiRY/YGZZd//aBHd/n6RZyt8AcJm7FwadNUn7JbUof/Ts7rKGBgBRzgBUKHf/uKSPn+S+fyXpr8ZY75JmTDIaABwX15wBQP5uzGckdY/z+KYxFR7fJGko2v/IlKQDUFV48DkAAEBAOHIGAAAQEMoZAABAQChnAAAAAaGcAQAABIRyBgAAEBDKGQAAQEAoZwAAAAGhnAEAAATkPwFyCzbD4DV2xAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x504 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"morseB.plot()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b93e8548-cdcf-4d51-bbc0-ae7e5646cd02",
"metadata": {},
"outputs": [],
"source": [
"rho = job.factories.functions.spline(identifier=\"rho_AlAl\", cutoff=7.6, derivative_left=-0.2, derivative_right=0)\n",
"## the spline requires node points and initial values\n",
"init_func = lambda r: np.exp(-r)\n",
"nodes = np.array([1.0, 2.2, 2.7, 3.2, 4.0, 5.0])\n",
"init_vals = init_func(nodes)\n",
"rho.parameters.create_from_arrays(x=nodes, y=init_vals, min_vals=np.zeros(len(nodes)), max_vals=np.ones(len(nodes)))\n",
"# set node point at cutoff\n",
"rho.parameters.add_node(x=7.6, start_val=0, enabled=False)\n",
"rho.derivative_left.max_val = 0.0"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "56710703-5e6e-485e-a9d9-bc2c4bedac5b",
"metadata": {},
"outputs": [],
"source": [
"# User function for embedding term\n",
"F = job.factories.functions.user_function(identifier=\"F\", input_variable=\"r\")\n",
"F.expression = \"-A*sqrt(r)+B*r\"\n",
"F.derivative = \"-A/(2*sqrt(r))+B\"\n",
"F.parameters.add_parameter(\"A\", start_val=3.3, min_val=0.0)\n",
"F.parameters.add_parameter(\"B\", start_val=1.8, min_val=0.0)"
]
},
{
"cell_type": "markdown",
"id": "865bca67-41c4-4bb1-b357-ba2c4d37ce8b",
"metadata": {},
"source": [
"Assign functions"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ce82c058-99b1-4044-89e4-d5b9fc6191d5",
"metadata": {},
"outputs": [],
"source": [
"job.potential.pair_interactions[morseB.identifier] = morseB\n",
"job.potential.electron_densities[rho.identifier] = rho\n",
"job.potential.embedding_energies[F.identifier] = F"
]
},
{
"cell_type": "markdown",
"id": "3fa3875d-c6ac-4a93-8917-0219be6bd90e",
"metadata": {},
"source": [
"Set a fit algorithm"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d0c70020-3999-482a-9fc3-037d6b4e5be9",
"metadata": {},
"outputs": [],
"source": [
"job.input.fit_algorithm = job.factories.algorithms.ar_lbfgs(max_iter=10000)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "6e161ce8-8d33-4eea-8d41-889287ccb7c5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job FitAl was saved and received the ID: 738902\n"
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
]
}
],
"source": [
"job.run()"
]
},
{
"cell_type": "markdown",
"id": "cd20a5b9-74f8-4609-96f8-d8c84f7a6976",
"metadata": {},
"source": [
"Have a look at some of the outputs"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "8a895b83-d90e-489f-8382-393a520ae0a3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3366.772277399672"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD3CAYAAAD2S5gLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbBUlEQVR4nO3df5Ac5X3n8fd3dndG2p1BEsxIWiEWGQExPwoDWowrZ2JjxYllIAo22Ocr15lUYjlKVarkwqk6n68wFZ/rrmzCKdg+Y8V/AJU6YxP7sgZKpozsSPgSHFZWQgjYwHGyI2UVrZCQVqtd7e7M9/6YXjGa2dXOznTPTDefV9VU7/S3Z/R0b5c++/QzT4+5OyIiIpVS7W6AiIh0HoWDiIjUUDiIiEgNhYOIiNRQOIiISI3udjcgDPl83tetW9fuZoiIxMrevXuPuHthrloiwmHdunUMDw+3uxkiIrFiZr+cr6bLSiIiUkPhICIiNRQOIiJSQ+EgIiI1FA4iIlJD4SAiIjUUDiIiUiMR8xwa9YtDYzz5/L82/PqerhQff9fFrOhLh9gqEZH2e0uHw6uHT/KVH7/a0GtnvwZjRV+aj7/r4hBbJSLSfm/pcLjlmn5uueaWhl47Uyxx2X/ZyeGx0yG3SkSk/TTm0KDurhQX9KU5clLhICLJo3BoQj6bYVQ9BxFJIIVDEwq5jHoOIpJICocmqOcgIkmlcGjCbM/BZz+6JCKSEAqHJuSzaSanS5w8PdPupoiIhKrucDCzjJn9o5m5md0VrNtoZrvNbLuZ7TGzmyu2D73WaQq5DABHTk61uSUiIuFaTM/hvwPHZp+Y2UpgCBh2923APmDIzApR1JrbzWjks+Vw0LiDiCRNXZPgzOwWYBL4G+A9wepNQB9wKHh+EMgF6y2C2iNVbdoCbAEYGBioZzdC92bPQeEgIsmyYM/BzFYDfwTcU1XqD5bTVcv+iGpncfcd7j7o7oOFQns6Fuo5iEhS1dNzuAOYAL4CDAbrPgE8FPzcU7UcodwDCLvWcVb0pulKmXoOIpI4C4aDu38V+CqAmd0LbAAeBnYC48DqYNM1wFiw3iKodZyulHF+X1o9BxFJnMV8WunDwG8FTz8KXAFsBgbNbDtwPbDZ3Ufd/XDYtab3NCKFrGZJi0jy1H1XVnf/LvDdOUq75tl+V9i1TpTPaZa0iCSPJsE1qdxz0DwHEUkWhUOT8rnymINuoSEiSaJwaFIhm2GqWOLEpG6hISLJoXBo0uxEOI07iEiSKByaVMhqlrSIJI/CoUl59RxEJIEUDk1Sz0FEkkjh0KRlS3voTpl6DiKSKAqHJqVSRl6zpEUkYRQOIZid6yAikhQKhxBolrSIJI3CIQT5rO6vJCLJonAIQSGX4fXx05RKuoWGiCSDwiEE+WyG6aJzfGJ64Y1FRGJA4RACfZe0iCSNwiEE+i5pEUkahUMIztx8Tz0HEUmIBcPBzJab2R4z+zMze8rMXjSzO4PafjPziscTFa/baGa7zWx78Pqbm611qoJ6DiKSMPX0HLqAH7r73cAtQD/wsJl1A3uBGyoe2wDMbCUwBAy7+zZgHzBkZoVGa+HsbjTOW9pNuiuluQ4ikhgLfoe0u78OfCF4uhxYAhwCikAvcBtwOXAE+FKw3SagL9gO4CCQC9Zbg7VHFr97rWFm5LOaJS0iybFgOMwys83AF4GTwCfd3c3sAeApYCnwMnCrmV1BuXcBMF217KccAI3UqtuzBdgCMDAwUO9uRKaQ0/2VRCQ56h6Qdvch4DrKf80/aWaXuPtOdy+5+zjwPLAOuBIYCV7WU7UcaaJW3Z4d7j7o7oOFQvuvOmmWtIgkST0D0teY2YcB3H2a8n/UaeBCM/tixabrgAlgP7ATGAdWB7U1wFiwvtFaR1PPQUSSpJ6ewzSw1cy+bGbfAtYDnwVeAt5pZveb2RDlYPiQux9198PAZmDQzLYD1wOb3X200VqI+xyJfDbD6+NTuoWGiCRCPQPSLwG/OU/5/ed43S5gV5i1TlbIZSiWnGOnprgg+GiriEhcaRJcSM7MktalJRFJAIVDSM7cX2lMcx1EJP4UDiHJZ9MAjJ6cbHNLRESap3AIiXoOIpIkCoeQZDPdZLpTGnMQkURQOITEzMpzHTQRTkQSQOEQonw2o56DiCSCwiFEhZxuoSEiyaBwCFE+q1toiEgyKBxCVMhlODo+RVG30BCRmFM4hKiQTVNyeH1cvQcRiTeFQ4g010FEkkLhECLdX0lEkkLhEKI3ew4KBxGJN4VDiNRzEJGkUDiEqC/TTW+6Sz0HEYk9hUPINEtaRJJA4RAyfZe0iCTBguFgZsvNbI+Z/ZmZPWVmL5rZnUFto5ntNrPtwTY3V7wu9Foc5LNp3UJDRGKvnp5DF/BDd78buAXoBx42s5XAEDDs7tuAfcCQmRWiqIW2xxEr9xw0z0FE4q17oQ3c/XXgC8HT5cAS4BCwCegLfgY4COSC9RZB7ZHF717r5bPlW2hMF0v0dOmqnYjEU93/e5nZZuBvgJPAJyn3IACmq5b9EdWq27PFzIbNbHh0dLTe3Yjc7FyHo+PqPYhIfNUdDu4+BFxH+a/5J4FMUOqpWo4Ej7Br1e3Z4e6D7j5YKHTOVaczcx007iAiMbbgZSUzuwa4zN2/6+7TZjYCvINyL2IcWB1sugYYA3ZSvjwUdi0WZnsO+jiriMRZPT2HaWCrmX3ZzL4FrAc+6+67gc3AoJltB64HNrv7qLsfDrsW3i5Hq6Ceg4gkQD0D0i8BvzlPbRewq1W1OJi9rKS5DiISZ/o4TciWprvIZrrVcxCRWFM4REBzHUQk7hQOESjPkp5sdzNERBqmcIhAPqueg4jEm8IhAoVcRmMOIhJrCocI5LMZjk9Mc3qm2O6miIg0ROEQgdmJcK/r0pKIxJTCIQKa6yAicadwiMCZW2ho3EFEYkrhEIF8Ng2o5yAi8aVwiIDuzCoicadwiMCSni5yS7o110FEYkvhEBHNdRCROFM4RCSfzeg7HUQkthQOESnkMhxRz0FEYkrhEJGCeg4iEmMKh4gUchnGJmeYnNYtNEQkfhYMBzO70cyeMbP7zOxZM3vazK4KavvNzCseT1S8bqOZ7Taz7Wa2x8xubrYWJ5rrICJxVk/PoQ/4mrt/BvgYsBF4OKjtBW6oeGwDMLOVwBAw7O7bgH3AkJkVGq01v6utpVnSIhJn9XyH9I8qnh4Jln3Bshe4Dbg8qH0pWL8p2OZQ8PwgkAvWW4O1R+rfrfZ78/5KmusgIvGzYDhUuQuYAD4dPH8AeApYCrwM3GpmVwD9QX26atlPOQAaqZ3FzLYAWwAGBgYWuRvRU89BROKs7gFpM/sU8BFgg7v/AMDdd7p7yd3HgeeBdcCVwEjwsp6q5UgTtbO4+w53H3T3wUKh8646XdCnO7OKSHwt2HMws1XA14HjwN1An5k9DmwFtrr754JN11HuVewHDgDjwOqgtgYYA3ZS7h00UouVdHeK5b096jmISCzVc1lpE3B78PNdwfI4MAm808zuB9ZTDoYPuftRADPbDNxjZtuB64HN7j7aTC1uyt8lrXAQkfipZ0D6IeChecrvP8frdgG7wqzFTSGr+yuJSDxpElyE8jn1HEQknhQOEVLPQUTiSuEQoXwuzfhUkVNTM+1uiojIoigcIlSYnQg3polwIhIvCocI5WcnwmncQURiRuEQoYK+S1pEYkrhEKHZW2joE0siEjcKhwid35fGTD0HEYkfhUOEerpSrOhNq+cgIrGjcIiY5jqISBwpHCKWz6nnICLxo3CIWCGb0UdZRSR2FA4Ry2czHBmbwt3b3RQRkbopHCJWyGWYmC4yPlVsd1NEROqmcIjYme+S1qC0iMSIwiFiBd1CQ0RiSOEQMfUcRCSOFA4RU89BROJowXAwsxvN7Bkzu8/MnjWzp83sqqC20cx2m9l2M9tjZjdXvC70Whyd35cmZeo5iEi81NNz6AO+5u6fAT4GbAQeNrOVwBAw7O7bgH3AkJkVoqiFtsct1pUyzu/TXAcRiZfuhTZw9x9VPD0SLPuATcHyULDuIJAL1lsEtUcWtWcdJJ9NM6ov/BGRGFkwHKrcBUwAnwauDdZNVy37Kf8nH3btLGa2BdgCMDAwsKidaLVCTj0HEYmXugekzexTwEeADe7+A2AkKPVULUciqp3F3Xe4+6C7DxYKnX3VqZDNaMxBRGJlwZ6Dma0Cvg4cB+4G+szsceD3gXFgdbDpGmAM2Em5BxB2LbZmew7ujpkt/AIRkTarp+ewCbid8iWlnwLPATe5+2FgMzBoZtuB64HN7j4aRS2k/W2LfDbD1EyJsdMz7W6KiEhd6hmQfgh4aJ7aLmBXq2pxdWauw9hpzlvSs8DWIiLtp0lwLaBZ0iISNwqHFtAsaRGJG4VDC+SzaUA9BxGJD4VDC6zoTdOVMvUcRCQ2FA4tkEoZF/SlOaJZ0iISEwqHFtEsaRGJE4VDi+SzGY4oHEQkJhQOLVLIZRjVgLSIxITCoUVmew7u3u6miIgsSOHQIoVchumic3xieuGNRUTaTOHQImfmOmjcQURiQOHQIrOzpA9r3EFEYkDh0CKF2fsrndRcBxHpfAqHFqm8M6uISKdTOLTIsqU99HSZxhxEJBYUDi1iZuSzmusgIvGgcGghzZIWkbhQOLSQZkmLSFwsGA5mdomZfdvM3Mweqli/P1g3+3iiorbRzHab2XYz22NmNzdbS4J8Nq2eg4jEQj09h/cBj82xfi9wQ8VjG4CZrQSGgGF33wbsA4bMrNBoreG96zCFXIYjJ6colXQLDRHpbAuGg7t/EzgyR6kXuA24G/gEMPsn8SagDzgUPD8I5IL1jdZqmNkWMxs2s+HR0dGFdqMj5LMZiiXnDd1CQ0Q6XHcTr30AeApYCrwM3GpmVwD9QX26atkPWIO1Gu6+A9gBMDg4GIs/xSvnOpzfl25za0RE5tfwgLS773T3kruPA88D64ArgZFgk56q5UgTtUTIn5klrXEHEelsDfUczGwtsNXdPxesWgdMAPuBA8A4sDqorQHGgJ2UeweN1BJBs6RFJC7q+bTSncDW4Omgmd0HTALvNLP7zWyIcjB8yN2PuvthYHOw7XbgemCzu482Wgtxf9tKPQcRiYsFew7u/hjlTyt9tKr0/nO8ZhewK8xaEpy3pJt0d0o9BxHpeJoE10JmRiGbYVQ9BxHpcAqHFstrlrSIxIDCocUK2bS+00FEOp7CocV0fyURiQOFQ4vlsxmOjp+mqFtoiEgHUzi0WCGXoeRwdFyXlkSkcykcWkxzHUQkDhQOLaZZ0iISBwqHFlPPQUTiQOHQYuo5iEgcKBxarC/dxZKelHoOItLRFA4tZmaa6yAiHU/h0Ab5bEazpEWkoykc2qCQVc9BRDqbwqEN8rmMxhxEpKMpHNqgkM1w9NQUM8VSu5siIjInhUMb5HMZXLfQEJEOVs/XhF5iZt82MzezhyrWbzSz3Wa23cz2mNnNUdaSpBBMhDuscQcR6VD19BzeR/lrQs8ws5XAEDDs7tuAfcCQmRWiqDW/m52lkEsDmiUtIp2rnu+Q/qaZvbdq9SagDzgUPD8I5IL1FkHtkUXtVYcrZJcAmiUtIp1rwXCYR3+wnK5a9lP+Tz7sWg0z2wJsARgYGFhc69ssf6bnoDEHEelMjYbDSLDsqVqO8OZ/8mHWarj7DmAHwODgYKy+Oac33U1fuotHn/sVz+0/2tB7vOuS89nyG+tDbpmISFmj4bATGAdWB8/XAGPBeougljgfvWGA5/YfbejS0qmpGX7088NkMz38hxvj1WsSkXhYMBzM7E7gjuDpoJnd5+6fMbPNwD1mth24Htjs7qPBa0KvJc09t13Z8GuLJef3HnqOz3//BX5tdY4NF68IsWUiImDusboiM6fBwUEfHh5udzNa6o1TU/zOV/8Pk9NFHv/jd7PqvCXtbpKIxIyZ7XX3wblqmgQXU8t70+z4jxs4eXqGrX+5l9MzxXY3SUQSROEQY29ffR5fvuMd/OxXb3Dv919sd3NEJEEUDjF3yzX9/OF71vOtv/8V/+unv2p3c0QkIRQOCfAnv/1r/MblBT7//RfY+8tj7W6OiCSAwiEBulLGA//+WvqXLWXrX+7l305MtrtJIhJzCoeE0AC1iIRJ4ZAgGqAWkbAoHBLmlmv62fpeDVCLSHMUDgn0md/SALWINEfhkEAaoBaRZikcEkoD1CLSDIVDgmmAWkQapXBIOA1Qi0gjFA5vARqgFpHFUji8BWiAWkQWq9FvgpOYmR2g/tD//Fs+tuNZLluVbeh9urtSXHfRcm66rMDlq7KY2cIvEpHYUTi8hbx99Xl85WPX8T+efplfvn6qofcYn5rhyedHgJdYmcvw7svy3HRZnn93aZ6VOX3hkEhSKBzeYjZesYqNV6xq6j0OvjHBT14Z5ZlXjvDjnx/mez87CMDbV+d496V53n1ZnhvfdgFL011hNFlE2qDprwk1s/3AxRWrnnT3W81sI3APsI/y90F/3t1/HLymodp83opfE9opSiXnxZETPPPKEX7y6ijP/b9jTBVLpLtSbLh4xZmexdVrlpFK6RKUSCc519eEhhEO3wX+W8WqN4ATwGvAN9z9bjP7c+D3gPWANVJz99H52qBw6BwTU0X+fv/RMz2Lnx8aA2B5bw+/vv6Cpi49rS/0cds71rC8Nx1Wc0Xe0s4VDmFcVuoFbgMuB44AXwI2AX3AoWCbg0AuWG8N1h4Joa0SsaXpLt5zeYH3XF4A4PDYJH/76uvseWWUn752lJOnX2/ofUvujE3O8IUnXuL9V67ijsG13HRpnu4ufeBOJAphhMMDwFPAUuBl4FbgG0FtumrZTzkAGqmdxcy2AFsABgYGmtoBic7K3BJ+97oL+d3rLmz6vV44eJy/2nuAoX84yJP/NMKq8zLcft1a7tiwlktXNvbpKxGZW9Ph4O47gx/Hzex54ANAJljXU7Uc4c0AWGyt+t/dAeyA8mWlJnZBYuLqC5dx9YXL+OwH386Pf36Yx4YP8BfPvMaDu/8v1w0s544Na7n1mjUsW9qz8JuJyDk1FQ5mthbY6u6fC1atAyaArwN/AqwO1q8BxoCdlANgvIGaCACZ7i4+cHU/H7i6n8Njk/z1voM8NnyAz/3vF/jTx1/kt69azZ2Da/n19Xm6NAgu0pCmBqTNLA98C/gnygPKFwH/2d1/oE8rSSu5O88fePOy04nJGfqXLeHD16/lwxvW8rZ8X7ubKNJxIv20UidQOEilyekiT7/0bzw2fIBnXhml5LDugt6GB6+7U0b/siVcdH4va1csZe2KXi5aUf55eW+PZolLbEX9aSWRjrKkp4tbr1nDrdes4dDxSb637wD/fPBEw+93eqbEv74xwd5fHuPE5MxZtb5011mhUbm8aEUvy3o1/iHxpHCQRFu9bAl/9N5LQ3u/4xPTHDh2igPHJjhwbIJ/OTr78ymefe0oJ0+fHR7ZTDfp7sY/bpuy8o0Tu1OpYGl0BY/uLqMrlTqz7uxlipRBo50aw8j0pMh0p8h0d5WXPeWf091zr88E69PdqaZ6U90pI92doqcrFSyN9Jmfy/ur3lr0FA4ii7BsaQ/Lli7jqjXLamruzomJGf7l2KkzAXLwjQlmio1fui25Uyw5M6XKZYmZYvX6EtPFEhPTwfOiU2riknHJnamZEqdnH9NFTs+UmCm1/zK0GeXgqAiP2SDpeguGxkdvuIg/uOmS0N9X4SASEjNjWW8Py3rLH7lNopliialiidPT5dAoB0gxCJHimfWNcsrBNl10popFpmecqWL535muXBb9zM+z608XSyRhDHWx8tnMwhs1QOEgInXr7krR3ZVCdzBJPt17QEREaigcRESkhsJBRERqKBxERKSGwkFERGooHEREpIbCQUREaigcRESkRiLuympmY8Av2t2OOeQpf3Vqp1G7FkftWpxObRd0btva1a6L3b0wVyEpM6R/Md9tZ9vJzIbVrvqpXYujdi1ep7atE9uly0oiIlJD4SAiIjWSEg472t2Aeahdi6N2LY7atXid2raOa1ciBqRFRCRcSek5iIhIiBQOIiJSIzbhYGYbzWy3mW03sz1mdvMc2/SZ2YNm9qiZfcfMvm5mvRG26UYze8bM7jOzZ83saTO7ao7t7jIzr3pE+rE1M9tf9e89Mcc2rT5e753jOLiZLa/aLvLjZWaXmNm3g/d+qGL9gudZsF0kx26udtV7ngXbRnLsznG8FjzPgu0iO9fmOWZ1nWvBtqEfs3P9ztp9jtUrFvMczGwlMAR8w93vNrM/B4bMbL27j1Zsei/wKWAZ0AUcBY4D/ymipvUBX3P3R83sbcBrwMPAXCfWHwJ7K56/GFGbZu0F7qh4/sYc29xLa48XwIPAk8HP64BPA2NzbBf18Xof8BjwkdkVizjPILpjV9MuFneeQTTHbq52QX3nGUR7rs3XtnrPNQj/mM35OzOzD9L+c6wucek5bKJ8sA8Fzw8CuWB9pTuAU+5+wt2PARPUnjChcfcfufujwdPZ2Y1982x+LfBxyr/YK9z9VFTtCvQCtwF3A58ATs+xTUuPF/Az4F53f8LdnwCuB/7U3YtzbHstER4vd/8mtTNS6z3PIKJjN1e7FnmeQQTHbp7jBfWdZxDhuTZP2xZzrkHIx+wcv7O2n2P1ikXPAegPltNVy/45tpuseD49xzZRuYvyL+/Tc9R+Avydu//CzLYBj5hZn7s/GGF7HgCeApYCLwO3mtkV7l55fFp6vNz9BHACwMwuA94JfHKOTdtxvKD+82x2XTvOtbuY/zyD1h+7es4z6NxzDaI/Znfx5u/s2mBdJ59jQHx6DiPBsqdqOTLHdj0Vz3vm2CZ0ZvYpyom+wd1/UF1391fdffbeT38XLD8YZZvcfae7l9x9HHiecrf6yqrN2nK8Ap8H/utcf8m143gF6j3PZte19NgtdJ5B649dnecZdOi5BtEeszl+Zx19jlWKSzjsBMaB1cHzNZSvHe40s8fM7PZg/V8BvWZ2XjDwtBT4TlSNMrNVZvY94F2Uu9V9Zva4mS2vbJeZ3W9mFwQve1uwjGzMwczWmtkXK1ato/yXy/52Hq+K9l0BXA18O3je1uNV4Vzn2fJ2Hbv5zrOg1rZjt8B51rbjVdXGs861YF3kx+wcv7OOPMfm5O6xeAAbgd3AdmAPcDNwMXAA+GywTR/wDeBRyifDg0BvhG26C/CqxxtztOuPKf+itwP/DPxFxO3KAz8E7qc8+PUz4APtPl4V7fsOcHvF85YfL+DOYJ8deAG4b77zbJ42RnLs5mrXfOdZK4/dPO2a8zxr5fE61+9yrnOtVcdsgd9ZW8+xeh+aIS0iIjXicllJRERaSOEgIiI1FA4iIlJD4SAiIjUUDiIiUkPhICIiNRQOIiJS4/8DwZ8IjHn7KkgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(job.output.iterations, job.output.residual)\n",
"job.output.residual[-1]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "74465658-bc69-486c-a327-4cd7a5790ec7",
"metadata": {},
"outputs": [
{
"data": {
"application/json": {
"electron_densities": {
"rho_AlAl": {
"cutoff": "7.6",
"derivative_left": {
"enabled": "True",
"final_value": "-0.2003639909380159",
"fitable": "True",
"max_val": "0.0",
"min_val": "None",
"param": "'derivative-left'",
"reset": "False",
"start_val": "-0.2",
"tag": "None"
},
"derivative_right": {
"enabled": "False",
"final_value": "None",
"fitable": "True",
"max_val": "None",
"min_val": "None",
"param": "'derivative-right'",
"reset": "False",
"start_val": "0",
"tag": "None"
},
"identifier": "'rho_AlAl'",
"parameters": {
"node_1": {
"enabled": "True",
"final_value": "0.3678099451630189",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.36787944117144233",
"tag": "None",
"x": "1.0"
},
"node_2.2": {
"enabled": "True",
"final_value": "0.1116747345072877",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.11080315836233387",
"tag": "None",
"x": "2.2"
},
"node_2.7": {
"enabled": "True",
"final_value": "0.07145424033657911",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.06720551273974976",
"tag": "None",
"x": "2.7"
},
"node_3.2": {
"enabled": "True",
"final_value": "0.04425295799860187",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.04076220397836621",
"tag": "None",
"x": "3.2"
},
"node_4": {
"enabled": "True",
"final_value": "0.01922526131909083",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.01831563888873418",
"tag": "None",
"x": "4.0"
},
"node_5": {
"enabled": "True",
"final_value": "0.006425127502193282",
"fitable": "True",
"max_val": "1.0",
"min_val": "0.0",
"param": "'node'",
"reset": "False",
"start_val": "0.006737946999085467",
"tag": "None",
"x": "5.0"
},
"node_7.6": {
"enabled": "False",
"final_value": "None",
"fitable": "True",
"max_val": "None",
"min_val": "None",
"param": "'node'",
"reset": "False",
"start_val": "0",
"tag": "None",
"x": "7.6"
}
},
"species": "['*', '*']"
}
},
"embedding_energies": {
"F": {
"cutoff": "None",
"derivative": "'-A/(2*sqrt(r))+B'",
"expression": "'-A*sqrt(r)+B*r'",
"identifier": "'F'",
"input_variable": "'r'",
"is_screening_function": "False",
"parameters": {
"A": {
"enabled": "True",
"final_value": "3.300380222615908",
"fitable": "True",
"max_val": "None",
"min_val": "0.0",
"param": "'A'",
"reset": "False",
"start_val": "3.3",
"tag": "None"
},
"B": {
"enabled": "True",
"final_value": "1.941342723495742",
"fitable": "True",
"max_val": "None",
"min_val": "0.0",
"param": "'B'",
"reset": "False",
"start_val": "1.8",
"tag": "None"
}
},
"screening": "None",
"species": "['*', '*']"
}
},
"export_file": "'output.eam.fs'",
"identifier": "'EAM'",
"pair_interactions": {
"V": {
"identifier": "'V'",
"is_screening_function": "False",
"parameters": {
"D0": {
"enabled": "True",
"final_value": "0.1530946632052217",
"fitable": "True",
"max_val": "1.55",
"min_val": "0.05",
"param": "'D0'",
"reset": "False",
"start_val": "0.15",
"tag": "None"
},
"S": {
"enabled": "True",
"final_value": "4.099994790262965",
"fitable": "True",
"max_val": "4.5",
"min_val": "1.5",
"param": "'S'",
"reset": "False",
"start_val": "4.1",
"tag": "None"
},
"beta": {
"enabled": "True",
"final_value": "1.354779328092613",
"fitable": "True",
"max_val": "None",
"min_val": "None",
"param": "'beta'",
"reset": "False",
"start_val": "1.1",
"tag": "None"
},
"delta": {
"enabled": "True",
"final_value": "-0.01532934405060739",
"fitable": "True",
"max_val": "0.005",
"min_val": "None",
"param": "'delta'",
"reset": "False",
"start_val": "-0.01",
"tag": "None"
},
"r0": {
"enabled": "True",
"final_value": "3.051226104734049",
"fitable": "True",
"max_val": "3.1",
"min_val": "2.6",
"param": "'r0'",
"reset": "False",
"start_val": "3.05",
"tag": "None"
}
},
"screening": {
"identifier": "'V_screen'",
"is_screening_function": "True",
"parameters": {
"N": {
"enabled": "False",
"final_value": "None",
"fitable": "True",
"max_val": "None",
"min_val": "None",
"param": "'N'",
"reset": "False",
"start_val": "4",
"tag": "None"
},
"cutoff": {
"enabled": "False",
"final_value": "None",
"fitable": "False",
"max_val": "None",
"min_val": "None",
"param": "'cutoff'",
"reset": "False",
"start_val": "7.6",
"tag": "None"
},
"h": {
"enabled": "False",
"final_value": "None",
"fitable": "True",
"max_val": "None",
"min_val": "None",
"param": "'h'",
"reset": "False",
"start_val": "1",
"tag": "None"
}
},
"species": "['*', '*']"
},
"species": "['*', '*']"
}
},
"resolution": "10000",
"rho_range_factor": "2.0",
"species": "['*', '*']"
},
"text/html": [
"<pre>EAMPotential({\n",
" \"pair_interactions\": {\n",
" \"V\": {\n",
" \"species\": \"['*', '*']\",\n",
" \"parameters\": {\n",
" \"D0\": {\n",
" \"param\": \"'D0'\",\n",
" \"start_val\": \"0.15\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.05\",\n",
" \"max_val\": \"1.55\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.1530946632052217\"\n",
" },\n",
" \"r0\": {\n",
" \"param\": \"'r0'\",\n",
" \"start_val\": \"3.05\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"2.6\",\n",
" \"max_val\": \"3.1\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"3.051226104734049\"\n",
" },\n",
" \"beta\": {\n",
" \"param\": \"'beta'\",\n",
" \"start_val\": \"1.1\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"1.354779328092613\"\n",
" },\n",
" \"S\": {\n",
" \"param\": \"'S'\",\n",
" \"start_val\": \"4.1\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"1.5\",\n",
" \"max_val\": \"4.5\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"4.099994790262965\"\n",
" },\n",
" \"delta\": {\n",
" \"param\": \"'delta'\",\n",
" \"start_val\": \"-0.01\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"0.005\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"-0.01532934405060739\"\n",
" }\n",
" },\n",
" \"is_screening_function\": \"False\",\n",
" \"identifier\": \"'V'\",\n",
" \"screening\": {\n",
" \"species\": \"['*', '*']\",\n",
" \"parameters\": {\n",
" \"cutoff\": {\n",
" \"param\": \"'cutoff'\",\n",
" \"start_val\": \"7.6\",\n",
" \"enabled\": \"False\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"False\",\n",
" \"final_value\": \"None\"\n",
" },\n",
" \"h\": {\n",
" \"param\": \"'h'\",\n",
" \"start_val\": \"1\",\n",
" \"enabled\": \"False\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"None\"\n",
" },\n",
" \"N\": {\n",
" \"param\": \"'N'\",\n",
" \"start_val\": \"4\",\n",
" \"enabled\": \"False\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"None\"\n",
" }\n",
" },\n",
" \"is_screening_function\": \"True\",\n",
" \"identifier\": \"'V_screen'\"\n",
" }\n",
" }\n",
" },\n",
" \"electron_densities\": {\n",
" \"rho_AlAl\": {\n",
" \"identifier\": \"'rho_AlAl'\",\n",
" \"cutoff\": \"7.6\",\n",
" \"derivative_left\": {\n",
" \"param\": \"'derivative-left'\",\n",
" \"start_val\": \"-0.2\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"0.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"-0.2003639909380159\"\n",
" },\n",
" \"derivative_right\": {\n",
" \"param\": \"'derivative-right'\",\n",
" \"start_val\": \"0\",\n",
" \"enabled\": \"False\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"None\"\n",
" },\n",
" \"species\": \"['*', '*']\",\n",
" \"parameters\": {\n",
" \"node_1\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.36787944117144233\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.3678099451630189\",\n",
" \"x\": \"1.0\"\n",
" },\n",
" \"node_2.2\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.11080315836233387\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.1116747345072877\",\n",
" \"x\": \"2.2\"\n",
" },\n",
" \"node_2.7\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.06720551273974976\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.07145424033657911\",\n",
" \"x\": \"2.7\"\n",
" },\n",
" \"node_3.2\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.04076220397836621\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.04425295799860187\",\n",
" \"x\": \"3.2\"\n",
" },\n",
" \"node_4\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.01831563888873418\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.01922526131909083\",\n",
" \"x\": \"4.0\"\n",
" },\n",
" \"node_5\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0.006737946999085467\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"1.0\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"0.006425127502193282\",\n",
" \"x\": \"5.0\"\n",
" },\n",
" \"node_7.6\": {\n",
" \"param\": \"'node'\",\n",
" \"start_val\": \"0\",\n",
" \"enabled\": \"False\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"None\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"None\",\n",
" \"x\": \"7.6\"\n",
" }\n",
" }\n",
" }\n",
" },\n",
" \"embedding_energies\": {\n",
" \"F\": {\n",
" \"input_variable\": \"'r'\",\n",
" \"identifier\": \"'F'\",\n",
" \"species\": \"['*', '*']\",\n",
" \"parameters\": {\n",
" \"A\": {\n",
" \"param\": \"'A'\",\n",
" \"start_val\": \"3.3\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"3.300380222615908\"\n",
" },\n",
" \"B\": {\n",
" \"param\": \"'B'\",\n",
" \"start_val\": \"1.8\",\n",
" \"enabled\": \"True\",\n",
" \"reset\": \"False\",\n",
" \"min_val\": \"0.0\",\n",
" \"max_val\": \"None\",\n",
" \"tag\": \"None\",\n",
" \"fitable\": \"True\",\n",
" \"final_value\": \"1.941342723495742\"\n",
" }\n",
" },\n",
" \"expression\": \"'-A*sqrt(r)+B*r'\",\n",
" \"derivative\": \"'-A/(2*sqrt(r))+B'\",\n",
" \"is_screening_function\": \"False\",\n",
" \"cutoff\": \"None\",\n",
" \"screening\": \"None\"\n",
" }\n",
" },\n",
" \"identifier\": \"'EAM'\",\n",
" \"export_file\": \"'output.eam.fs'\",\n",
" \"rho_range_factor\": \"2.0\",\n",
" \"resolution\": \"10000\",\n",
" \"species\": \"['*', '*']\"\n",
"})</pre>"
],
"text/plain": [
"EAMPotential({'pair_interactions': DataContainer({'V': MorseB({'species': ['*', '*'], 'parameters': FunctionParameterList({'D0': FunctionParameter({'param': 'D0', 'start_val': 0.15, 'enabled': True, 'reset': False, 'min_val': 0.05, 'max_val': 1.55, 'tag': None, 'fitable': True, 'final_value': 0.1530946632052217}), 'r0': FunctionParameter({'param': 'r0', 'start_val': 3.05, 'enabled': True, 'reset': False, 'min_val': 2.6, 'max_val': 3.1, 'tag': None, 'fitable': True, 'final_value': 3.051226104734049}), 'beta': FunctionParameter({'param': 'beta', 'start_val': 1.1, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 1.354779328092613}), 'S': FunctionParameter({'param': 'S', 'start_val': 4.1, 'enabled': True, 'reset': False, 'min_val': 1.5, 'max_val': 4.5, 'tag': None, 'fitable': True, 'final_value': 4.099994790262965}), 'delta': FunctionParameter({'param': 'delta', 'start_val': -0.01, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': 0.005, 'tag': None, 'fitable': True, 'final_value': -0.01532934405060739})}), 'is_screening_function': False, 'identifier': 'V', 'screening': XpowNCutoff({'species': ['*', '*'], 'parameters': FunctionParameterList({'cutoff': FunctionParameter({'param': 'cutoff', 'start_val': 7.6, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': False, 'final_value': None}), 'h': FunctionParameter({'param': 'h', 'start_val': 1, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None}), 'N': FunctionParameter({'param': 'N', 'start_val': 4, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None})}), 'is_screening_function': True, 'identifier': 'V_screen'})})}), 'electron_densities': DataContainer({'rho_AlAl': Spline({'identifier': 'rho_AlAl', 'cutoff': 7.6, 'derivative_left': FunctionParameter({'param': 'derivative-left', 'start_val': -0.2, 'enabled': True, 'reset': False, 'min_val': None, 'max_val': 0.0, 'tag': None, 'fitable': True, 'final_value': -0.2003639909380159}), 'derivative_right': FunctionParameter({'param': 'derivative-right', 'start_val': 0, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None}), 'species': ['*', '*'], 'parameters': NodeList({'node_1': Node({'param': 'node', 'start_val': 0.36787944117144233, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.3678099451630189, 'x': 1.0}), 'node_2.2': Node({'param': 'node', 'start_val': 0.11080315836233387, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.1116747345072877, 'x': 2.2}), 'node_2.7': Node({'param': 'node', 'start_val': 0.06720551273974976, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.07145424033657911, 'x': 2.7}), 'node_3.2': Node({'param': 'node', 'start_val': 0.04076220397836621, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.04425295799860187, 'x': 3.2}), 'node_4': Node({'param': 'node', 'start_val': 0.01831563888873418, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.01922526131909083, 'x': 4.0}), 'node_5': Node({'param': 'node', 'start_val': 0.006737946999085467, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': 1.0, 'tag': None, 'fitable': True, 'final_value': 0.006425127502193282, 'x': 5.0}), 'node_7.6': Node({'param': 'node', 'start_val': 0, 'enabled': False, 'reset': False, 'min_val': None, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': None, 'x': 7.6})})})}), 'embedding_energies': DataContainer({'F': UserFunction({'input_variable': 'r', 'identifier': 'F', 'species': ['*', '*'], 'parameters': FunctionParameterList({'A': FunctionParameter({'param': 'A', 'start_val': 3.3, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 3.300380222615908}), 'B': FunctionParameter({'param': 'B', 'start_val': 1.8, 'enabled': True, 'reset': False, 'min_val': 0.0, 'max_val': None, 'tag': None, 'fitable': True, 'final_value': 1.941342723495742})}), 'expression': '-A*sqrt(r)+B*r', 'derivative': '-A/(2*sqrt(r))+B', 'is_screening_function': False, 'cutoff': None, 'screening': None})}), 'identifier': 'EAM', 'export_file': 'output.eam.fs', 'rho_range_factor': 2.0, 'resolution': 10000, 'species': ['*', '*']})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"job.potential"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2fe49eb2-bccb-4ba6-9a9f-8af61f6715c5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<Figure size 576x1296 with 3 Axes>,\n",
" array([[<AxesSubplot:title={'center':'Al F'}, xlabel='$\\\\rho $ [a.u.]'>],\n",
" [<AxesSubplot:title={'center':'Al rho_AlAl'}, xlabel='r [$\\\\AA$]'>],\n",
" [<AxesSubplot:title={'center':'Al V_AlAl'}, xlabel='r [$\\\\AA$]'>]],\n",
" dtype=object))"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAQWCAYAAAD7Bfv/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABvCklEQVR4nO39d5wdZ333/78+2/uuyqpbsiR3ueJ1AwM2BoyBYIqxCSHBNAEp3CSkkMBNHEqSbwL5OSHcwabEhoQYDATTTLPjRmxsufdeVVddu6vt1++Pc1Zey2trJR1pZs95PR+PfcyZOdeZ8xmd1b7PNXPNTKSUkCRJ+VSVdQGSJOmFGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtlamIeFdEbI6IuuJ8XURcExEpIg58gddcFRH9EfFgse3Yz5oXeo2kfcuglsrXm4Ba4EyAlNJgSum0F3tBSukMYA3wjyml08Z+gJ/t41olvQCDWipDEdEGjAA/As4twSq/AKwtwXok7aaarAuQtE+8GfgeMAR8MyIaUkr9e7KiiLhmVz1xSfuOQS2VpzOB9wGjFHrWrwN+sBuv/7OIeFfx8bElrUzSbnHXt1RmIqID6Ekp9aeUBin0rM/bzdX847jj03eUtkJJu8MetVR+3gycEhHXFOenAUsiojGltH13V+ZubylbBrVUfs4Ejk8pDQFERC3QDbwB+G6WhUnafe76lspIREwDhsdCGqD4+EpKM/pb0n5mUEtlIiLagf8BXhYRbxi3/A3AicA5EXFfcfFlETF/gnVcBcyhMJjsC/uhbEm7ECmlrGuQJEkvwB61JEk5ZlBLkpRjJQ/qiHiieNH/sZ8fl/o9JEmqFPvi9KxbgXPGzW/eB+8hSVJF2BdB3QT8FnAIsB74h33wHpIkVYSSj/qOiLOAnwONwEPAIHD4+BsCRMRyYDlAc3Pz8YcddlhJa5AkKa9uvfXW9Smlzsm236enZ0XElRRuBnB8Sum2idp0dXWlFStW7LMaJEnKk4i4NaXUNdn2JR1MFhELIuJz4xYdCGwHnijl+0iSVClKfYy6HzgxIv4JWEohpN+aUtpY4veRJKkilDSoU0rrgdeUcp2SJFUyL3giSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo6VPKgjoj4i7oyIFBHnl3r9kiRVkn3Ro/57YNM+WK8kSRWnpEEdEW8A+oFrSrleSZIqVcmCOiLmAL8PfGoSbZdHxIqIWNHd3V2qEiRJKjul7FGfA2wHvgi8sbjs3RHx7p0bppQuTil1pZS6Ojs7S1iCJEnlpWRBnVL615TSOSmlDwE/Li6+NKV0aaneQ5KkSrMvRn2/DXhtcfa8iHhlqd9DkqRKUVPqFaaUvgd8r9TrlSSpEnnBE0mScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHShbUEdEREddFxBci4ucRcV9EvL1U65ckqRKVskddDfwypfQx4A3AXODSiKgp4XtIklRRShaiKaUNwGeKsx1AA7AGGCnVe0iSVGlKfow6Is4GrgF6gA+klNIEbZZHxIqIWNHd3V3qEiRJKhslD+qU0hXAccBK4CcRsWSCNhenlLpSSl2dnZ2lLkGSpLJRysFkR0fE2wBSSkPAaqAOmF2q95AkqdKUcqDXEPDhiDgZWAAsBf4ypXRjCd9DkqSKUsrBZPcDry7V+iRJkhc8kSQp1wxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknKsZEEdESdFxPUR8fmIuCkifhURy0q1fkmSKlFNCdfVDHwppXRZRCwGHgMuBbpK+B6SJFWUkgV1SunqcbPri9PmUq1fkqRKtK+OUZ8PbAf+eKInI2J5RKyIiBXd3d37qARJkqa+kgd1RHwQOBc4PqX0s4napJQuTil1pZS6Ojs7S12CJEllo5SDyWZHxPeBk4GPAc0R8aNSrV+SpEpUysFkZwFvKT4+vzjdUsL1S5JUcUrWo04pXZJSip1+Okq1fkmSKpEXPJEkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpx0oa1BGxJCK+HREpIi4p5bolSapEpe5Rvwq4vMTrlCSpYpU0qFNKXwXWl3KdkiRVskyOUUfE8ohYEREruru7syhBkqQpIZOgTildnFLqSil1dXZ2ZlGCJElTgqO+JUnKsVKP+n478OHibFdEfL6U65ckqdLUlHJlKaXLKYz6Pq+U65UkqVK561uSpBwzqCVJyjGDWpKkHDOoJUnKMYNakqQcM6glScoxg1qSpBwzqCVJyjGDWpKkHDOoJUnKMYNakqQcM6glScoxg1qSpBwzqCVJyjGDWpKkHDOoJUnKMYNakqSdpJS4b9VW/van9/Oze1ZnWktNpu8uSVKOrNy8nSvuWMkVt6/iwbXbqKkKGk4/iNcdOTezmgxqSVJF27J9iCvvXs1/376S3zy+EYDjF03jM2cv4w1Hz2N6c12m9RnUkqSK0z80wjUPdnPFHSu56v51DI6MsmRmM3/ymkM4+9h5LJrRnHWJOxjUkqSKMDKauOmxDVxxx0quvGcN2/qHmdlSx++cvJC3HDefo+a3ExFZl/k8BrUkqWyllLjrmS1ccccqfnTXKrq3DdBSX8OZy+Zw9rHzeOnSGdRU53tctUEtSSo7j6zr4Yd3ruKHd6zkiQ191FVXcfphnZx97HxeddgsGmqrsy5x0gxqSVJZWLOlnx/duYor7lzJPSu3EgEvXTqD3z/tIM48cg7tjbVZl7hHDGpJ0pS1uW+QK+9ZwxV3FEZspwTHLGjn/77xCN549FxmtzVkXeJeM6glSVPK9sERfnX/Wq64YxXXPrSOoZHEkpnNfPSMQ3jTsfNYPDM/I7ZLwaCWJOXe0MgoNzyynh/esYpf3LuG3sERZrfV8+5TDuTsY+dz5Py2XI7YLgWDWpKUS6Ojidue2sQP71zFT+5azYbeQdoaavitY+bxpmPncdLiGVRXlWc4j2dQS5JyI6XE3Su38OO7VvPjO1exaks/9TVVvPqI2Zx9zDxeeWgn9TVTZ8R2KRjUkqRMpZR4cO02fnTnKn5812qe3NBHbXXw8oM7+dMzD+W1y+bQUl+5cVW5Wy5JytSj3T38+M7V/OiuVTyyroeqgJcdNJPfP20pZy6bQ0dTttfYzguDWpK03zy9sY8f3bWKH9+5mvtWF851PuHA6XzmzUdy1pFzmNlSn3WJuWNQS5L2qdVbtvOTu1bzo7tWc+fTmwE4bmEH//eNR/CGo+Yyp33qn+u8LxnUkqSS6942wJX3rOZHd67ilic2AbBsXhsfP+sw3nDUXA6Y3pRxhVNHSYM6Is4APgXcDrwE+OuU0v+U8j0kSfm0qXeQn927hh/ftYobH93AaIJDZrfwJ685hDcePZclnS1ZlzgllSyoI2IWcAVwUUrpYxHxz8AVEbE0pdRdqveRJOXHlu1D/PK+tfzkrlVc//B6hkcTi2c28wenH8Qbj57HoXNasy5xyitlj/osoBlYU5xfCbQWl3+jhO/zgj774/uorg7+8qzD98fbSVJF2tI3xM/vW8OVd6/mhkfWMzSSmN/RyPtevpjfOnoey+aV71XCslDKoJ5bnA7tNJ27c8OIWA4sB1i4cGHJCrh75RZSydYmSRqzuW+QX9y7lp/cvZpfP1LoOc/vaOQ9L1vM64+ayzEL2g3nfaSUQb26OK3dabp654YppYuBiwG6urpKlq0NtdVs7hss1eokqaJt6h3k5/eu4Sd3r+bGRzcwPJpYMK2R951aCOejDef9opRBfSXQC8wpzs8DthWX7xcNtVUMDI/ur7eTpLKzsRjOP717Nf/76AZGRhMLpzfx/pcv4Q1HzS3rm1/kVcmCOqW0LiLOBj4VERdSGPV99v4cSFZfU03/0Mj+ejtJKgvrewZ2hPNNj21kZDRx4IwmPviKJbz+qLkec85YSU/PSildBVxVynXujobaKvqH7FFL0q50bxvgZ/cWBoTd9FjhVKrFM5v50CsL4XzEXMM5L8rqgidtDbVs2T5ESslfMEnaybqt/TuOOd/8+EZGEyzpLJxK9fqj5nLYnFb/duZQWQX1rLZ6tg+N0Ds4UtF3WpGkMU9t6OPn967hZ/eu4banNpESHDSrhT981cG8/qg5HDrbcM67skqzztbCxdzXbe2nxSvgSKpAKSUeXtfDz+5Zw8/uWcN9q7cChct3/smrD+HMI+dwyGwvQjKVlFdQtxQu7L5264CXqpNUMVJK3PXMFn527xp+fs8aHlvfSwQcv3Aan3zD4Zy5bI7X1p7CyiqoF80o/CI+tbGXU5bOyLgaSdp3hkdGueWJTfz83jX8/N41rN7ST01VcMrSGbz31MW89ojZzGrzrlTloKyCel5HI/U1VTyyrifrUiSp5AaGR/jfRzbws3vW8Mv717Kxd5D6mipecUgnf/raQznj8Fl0NNVlXaZKrKyCuroqWDyzmUe7e7MuRZJKom9wmGsf7ObKe9Zw9QPr6BkYpqW+hjMOn8Xrls3hlYd20lRXVn/KtZOy+3QPmtXC7U9tzroMSdpj63sGuPr+dfzivrVc/3A3A8OjTG+u441Hz+XMI+fw0qUzqK+pzrpM7SdlF9THHtDBj+9azbqt/R6fkTRlPNbdwy/vW8sv71vLrcXTqOZ3NPLbJy7kdUfOoWvRNGqqq7IuUxkou6A+buE0AG57ajOvO3LOLlpLUjZGRxO3P725GM5rdhyyO2JuGx951cG8dtlsrw4moAyD+sj5bdRVV3HbU5sMakm50j80wq8fWc8v71vLr+5fx/qeAWqqgpOWTOd3T17Eq4+YzYJpnkal5yq7oK6vqeYlizq47qFu/ur1h2ddjqQKt6l3kKseWMcv71vDdQ+tZ/tQ4cqJrzy0k9ceMZvTDplFe1PtrlekilV2QQ1w+qGz+LsrH2DV5u3M62jMuhxJFeapDX384r41/PK+tdzyROGa2rPb6nnb8fN5zRFzOHnJdAeDadLKM6gPKwT1NQ92886TFmZdjqQyNzKauP2pTVz1wDquvn8dD67dBsChs1v5/dMO4jVHzOao+e1UVXm8WbuvLIP64FktHDC9kZ/evdqglrRPbNk+xHUPdXP1A+u45sF1bOoboroq6FpUuGzna4+Yw8IZHm/W3ivLoI4I3nLsfL74P4+wZks/c9o9TUvS3kkp8dj6Xq6+fx1XPbCWW57YxMhoYlpTLacfOotXHT6Llx/cSXujx5tVWmUZ1ABveckC/uXqR7jijpV88JVLsy5H0hQ0ODzKLU9s5Kr713H1A2t5YkMfAIfNaeWDr1jCGYfP4tgDplHtLm3tQ2Ub1ItnNnP8omlcdsvTfODlSzw2JGlS1vcMcM2D3Vz9wFque2g9PQPD1NVU8dKlM3jfqYs5/bBZnkKl/apsgxrg/JceyB/91+1c/cA6Xn3E7KzLkZRDo6OJ+1Zv5ZoH13HVA+u44+nNpASzWuv5rWPm8qrDZvOyg2Z4PW1lpqx/8846cg7zOxr56g2PGdSSdtjcN8j1D6/nmge7ufahbtb3DABwzIJ2PnrGIZxx+CyWzfOqYMqHsg7qmuoq3vOyA/nsT+7n5sc3cuLi6VmXJCkDo6OJe1Zt2RHMtz+1idEE7Y21vPzgmZx26CxecchMZrU68FT5U9ZBDfA7Jy3iK9c/xj/87AEu/9ApfkOWKsTG3kGuf7ibax7s5rqHutnQO0gEHD2/nT88/SBeeegsjj2gw4Fgyr2yD+rGumr+zxmH8Ff/fTe/un8dr3EXuFSWRkYTdz2zmWsfKoTznc8UjjVPa6rlFYd0ctqhnbz84E5mttRnXaq0W8o+qAHe3rWAr93wGJ/+8b2cetBMGuu8dJ9UDtZt6+fXj6zf0Wve1DdEBByzoIP/c8bBnHboLI6a326vWVNaRQR1bXUVn3vLUbzj4pv44tUP8+evOyzrkiTtge2DI9z8xEZueLib6x9ezwNrCpfqnNFcx+mHzuKVh3byioM7mdZcl3GlUulURFADnLxkBm8/fgEXX/cYrz9qLkfOb8+6JEm7MHbq1PUPr+eGR7q55YlNDA6PUlddRdeB0/jz1x3Kyw/qZNm8Nq+VoLJVMUEN8FevP5zrH17PR/7rdn70R6fSXF9Rmy9NCas2b+eGh9dz/SPr+fUj69nYOwgUrgb2eycv4tSDZ3LS4hkewlLFqKikmtZcx//vvGN551dv4q9/eC+ff/sxWZckVbyegWF+89gGrn94Pdc/3M2j3b0AdLbWc9ohnZx68ExOPWgms9o8dUqVqaKCGuCUpTP4o9MP4l+ufoRjFrTzu6ccmHVJUkUZGB7h9qc287+PbuDGR9dz+1ObGR5NNNRWceLiGbzjhIW8/JCZHDq71dMpJSowqAH+z6sP4d5VW7ngR/exaEYzrzikM+uSpLI1PDLK3Su3FIN5A7c8sZGB4VGqAo6c3877Xr6YVxzcyfGLptFQ6+5saWeRUsq0gK6urrRixYr9/r49A8Oc82//y8pN2/mv5Sc7uEwqkdHRxP1rtnLjoxv430c3cPPjG+kZGAYKx5lPWTqDly6dyYmLp3tLSFWkiLg1pdQ16faVGtQAKzdv5+3/9r9sHxrhsuWncOic1kzqkKaylBKPdvfs6DHf+NgGNvcNAbBkZvOOYD55yXRmeLERyaDeXU+s7+Xci25kNMFly0/ioFmGtfRiRkcTj3T38JvHN3Lz4xv5zWMbWLetcFOL+R2NvHTpDF560AxOWTKTOe0OAJN2ZlDvgUfW9fCOi29ieHSUr737BI5fNC3TeqQ8GR4Z5f7V2/jN44Xd2Lc8sZFNxR7znLYGTlw8vRDOS2dywPRGB4BJu5BJUEdEPfAR4K+AjpTSpP+n5iGoAZ7a0Mfvff03rNnaz7/+9ku8LaYq1sDwCHc/s2VHj/nWJzftOMa8aEYTJx44nRMXT+ekxTMMZmkPZBXUrwBGgP8EFk3FoAZY3zPAey+5hbtXbuFPXn0If3D6QV7tSGWvd2CYO57eXAzmDdz+1GYGhkcBOGR2Cycuns6Ji2dw4oHT3ZUtlcDuBnVJTs9KKV1XfPNSrC4zM1vq+fbyU/jL79/FF375EHc+s4UvnHuMI1NVNlJKrNy8nVuf3MRtT27i1qc2cf/qbYyMJqoCls1r510nL+LExdM54cDpTPea2VLmJt2jjohngPkTPPWelNIlxTZPMIkedUQsB5YDLFy48Pgnn3xyN0re91JKXPq/T/DZn9zP7LYG/vHtR/PSpTOzLkvabYPDo9y3eisrntjIbU9t4tYnN7F2a2HgV1NdNcce0MHxi6bxkkXT6Fo0jdYGv5RK+9o+2/UdEQuYuAe+PqXUU2zzBFN41/fObn9qE3/ynTt5fH0v7zt1MX925qFekEG5tqFngNue2ryjx3znM8/uxp7f0cjxi6bRdeA0XrJwGofNaaWmuirjiqXKk+mo73ILaoC+wWH+/soH+MaNT3LA9Eb++o3LHGimXOgfGuHeVVu44+kt3Pn0Zu58ZjNPbugDoLY6WDavneMXTSv0mBdO8/iylBNZDSY7EPhD4ANAG/AF4LKU0i4TOO9BPebGRzfwqSvu4eF1PZxx2Cw++cYjWDyzOeuyVCFGRhOPrOvhzqc3c8czm7nz6c08uGYbw6OF/79z2ho45oB2jjmgg65F0zl6Qbt7f6Sc8jzqfWhoZJR///XjXPirhxkYHuXcrgV85IyDmdvemHVpKiNjA77ueqbQU77j6c3cvXILfYMjALQ21HDMgo5CMC/o4JgDOpjtnaWkKcOg3g/WbevnS1c/wrdufoqI4F0nLeJ9L1/M/A4DW7tndDTxxIZe7lm1lXtXbuHeVVu5Z9WWHZfgrKuu4vB5bRy7oNBbPuaADhbPaPa0QWkKM6j3o6c39nHhrx7mB3esJIA3Hj2X9798iTf40ISGRkZ5ZF0P9xQD+d5VW7hv1VZ6iz3luuoqDpnTwpHz2lk2r42jF3Rw2NxW6mvchS2VE4M6Ays3b+frNzzOZTc/Re/gCCceOJ3zTjiA1x81l8Y6/8hWog09Azy4ZhsPrNnGQ2u3cd/qrTywZhuDxRHYTXXVHDG3jWXz2lg2vxDMB89qpa7GUdhSuTOoM7Rl+xCX3fwUl93yNI+v76W1oYY3HzufNx83n+MO6HB3ZRnaPjjCw+sKgfxg8eeBNdtY3zOwo8305joOm9PKkcVAPnJ+OwfOaKba3wepIhnUOZBS4jePb+TbtzzNT+9ezcDwKPPaGzjrqLm84ei5HHdAx5S/ilul6R0Y5vH1vTza3cOj63p4aG0PD67dxhMbehn7L1RfU8Uhs1s5dE4rh80pTA+d00pnS72ft6QdDOqc2do/xFX3r+Und63m2oe6GRpJdLbW88pDOjnt0E5OPWgmHU1epjEPUkp0bxvgkWIYP9r9bDCv2tK/o11VwKIZzRy6UygvspcsaRIM6hzbsn2IX923lqsfXMf1D3WztX+YqoBjDujgpMUzOOHAwsUpDO59Z3Q0sXZbP09u6OOpjX08taGPJzf28dSGXh7r7mVb8S5RAM111Syd1cLSzhaWdjYXprNaWDSjyQFekvaYQT1FDI+Mcuczm7n2wW6uf2Q9dz+zZcfFKw6Z3cLxi6axrDj697A5bQ5Km6SUElu2D7Fqcz+rNm/nmU1jQVyYPr2xb8clNQGqq4L5HY0smtHE4pmFMD6oGM6z29xlLan0DOopavvgCHc+s5kVT2zklic2cftTm9jaX+jdVQUs7WzhiHltHNTZwuLOZhbPLPw01ZXkBmhTQkqJrf3DdG8bYN3WflZu3s6qzf2s3rKdlZu3s3pLIZzHLgwypqmumoXTm1g4vYlFM5pYOKOZRcXH8zoaqfV615L2I4O6TKSUeGbTdu5dtZX7VhXOu71/9dbnHCsFmNvewMLphcCZ097AvPYG5rQ3Mre9gVlt9UxrqsttEKWU6B0cYXPfIFu2D7Glb4jN24fY0DNA97YBunsG6N42SHfPAOu3FZYNjow+bz0zW+qZ39HA3PZG5nU0Mq+joTgtPHYwl6Q8yeR+1Cq9iOCA6U0cML2J1x05Z8fyvsFhnljfx+Pre3l8fQ+Pre/lqQ193Pz4RtZu7d+x+3y81oYapjXVMa25jmlNtUxrqqO5vpqmuhoaa6tpqiv8NBbnq6uguqqK6iqoiqC6KqiOoKoqGE2JkdHE8GhieCQxMjrK8Ghh2dBIYvvgMH2DI/QNjrB9aIS+4vz2wRF6B0fY1j+0I5S3bB+asF4o7EWY3lxPZ2s9M1vqWNrZTGdrPZ0thWWdrfXML3458XixpHJmUE8xTXU1HDGvjSPmtT3vudHRxPqeAVZvKewOXrdtgE29Q2zqGyz+DLGhZ5BH1vUUw3SY/qHn91BLpaG2aseXgeb6wheBtoYa5nc00t5YS0dTbWHaWEd78XF7Yy0zW+qZ3lznCGpJwqAuK1VVway2Bma1NXDMAR2Tes3oaCr2fAu93u1DI4yMJkZT2tFTHutFj44mqqqCmqpCL7umqoqa6ufON471zmurvcCLJJWAQV3hqqqC5voamuv9VZCkPMrnKCNJkgQY1JIk5ZpBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOVYpJSyLSCiG3iyhKucCawv4fryrtK2Fypvm93e8ldp21zp27sopdQ52RdnHtSlFhErUkpdWdexv1Ta9kLlbbPbW/4qbZvd3t3jrm9JknLMoJYkKcfKMagvzrqA/azSthcqb5vd3vJXadvs9u6GsjtGLUlSOSnHHrUkSWXDoJYkKcemZFBHxBkRcW1EXBgR10XE6RO0aY6IL0fEZRHxnYj4t4hoyqLevTXJ7T0/ItJOP1Py9IeIWBIR3y5uwyUv0KacPt/JbG85fb4nRcT1EfH5iLgpIn4VEcsmaFcWn/FubG85fcYdxb9VX4iIn0fEfRHx9gnalctnPNnt3aPPuGbflL3vRMQs4ArgopTSxyLin4ErImJpSql7XNMLgA8C7UA1sBHYAnx8P5e8V3ZjewE+BNw6bv6+/VVnib0KuBw490XaXEAZfL5Fk9leKJ/Ptxn4UkrpsohYDDwGXArs/AfrAsrjM57s9kL5fMbVwC9TSp+JiBqgG7g0Iv47pTQ8rt0FlMdnPNnthT34jKdij/osCr/4a4rzK4HW4vLxzgH6UkpbU0qbgO3s+g9hHk12ewGOBd5F4Zf88JRS3/4osNRSSl9l11ctKpfPd7LbC+Xz+V6dUrqsODu23c0TNC2Lz3g3thfK5zPekFL6THG2A2gA1gIjOzUtl894stsLe/AZT7keNTC3OB3aaTp3gnb94+aHJmgzFUx2e28AbkwpPRgRHwW+ERHNKaUv74cas1Aun+9klevnez6FP85/PMFz5fgZn88Lb2/ZfcYRcTbwOaAH+EB6/mlGZfUZT2J79+gznoo96tXFae1O09UTtKsdN187QZupYFLbm1J6JKX0YHH2xuL09fu4tiyVy+c7KeX4+UbEByn0no5PKf1sgiZl9RnvanvL8TNOKV0BHEdhT+BPImLJTk3K6jPe1fbu6Wc8FYP6SqAXmFOcnwdsA66MiMsj4i3F5d8FmiKiLSI6gEbgO/u72BKY1PZGxD9FxIxim8XF6VQ9vvU8xcEa5fj5Tmjn7S2nzzciZkfE94GTgY8BzRHxo3L9jCe7vWX2GR8dEW8DSCkNUQjfOmB2mX7Gk9rePf2Mp9yu75TSuuLuhU9FxIXAS4CzgSbgFOC2YtMLgDYKV4QJ4CLg0/u73r21G9v7OHBRRDwDvAb4KlNwewGKoyXPKc52RcTngS9Shp8vTHp7y+bzpTC+YuwP9fnF6RYKA4rK8TOe7PaW02c8BHw4Ik4GFgBLgb8EVlGen/Fkt3ePPmOvTCZJUo5NxV3fkiRVDINakqQcM6glScoxg1qSpBwzqCVJyjGDWpKkHDOoJUnKMYNaKiMRcUHx1nlrIuKyXb+iZO87JyKuiYj+4vuftr/eWyp3BrVUnn6WUnrH/nqzlNKalNJpPHuXN0klYlBLkpRjBrWUcxFRHRF/FhEPRcRwRDwVEX+wm+v4YUTcEBE3RsQjEfFXL9L2i+N3YUfEOyNic3H+/L3eIEm7xaCW8u87wD9QuHXeD4EDgH+NiK7dWMcK4OUppVOAq4DPRcR5EzVMKf0R43Zhp5S+BdyxZ6VL2lsGtZRjEXEu8FbgypTS6Smlt1K4Aw/AYbuxqieBayLiVuDM4rKXla5SSfuKQS3l29jtL/9z3LLm4nTlZFYQEa8ALgHmUgjnS4pPte19eZL2NYNayrexXm8/QES8BpgFbAJumOQ6TipOb0kp9TPB//uIaIyI6eMWDRSn1cVp4yReI2kfMKilnIqIGcA8YBT4QkR8Hfhu8ek/TykNTXJVa4vTucXpsgnarACejohFxfkHitM5EdHMxLvZd36NpH3AoJby65ji9CbgcuBcCqH7gZTSV3djPZcDPwdOjIh/A4aLy18XEe8rPn4GWA9sL85/Crgf+AzwV8CDxeUfj4jjX+A1kvaBmqwLkPSCji5O70sp/RnwZ3uykpTSduB1Oy0+b6c2Z+40fydwxLhFn5hgvWfuvExS6dmjlvJrrEd9/268ZjOFEd5dWVxClEJv/UmKx9Ql7b1IKWVdg6QJFE+leglwVkrpZ1nXIykbBrUkSTnmrm9JknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGopYxHxrojYHBF1xfm6iLgmIlJEHLgb63lTRDxQvPDIvqjz1IgYiYi5Oy3/fkT0R8RpE7zmVxHx//ZnnVK5Mail7L0JqKV4n+iU0mBK6bTdXUlK6YfA35e2tOd4O7CFZ2+9Ofa+bwXW7Nw4IjopXAb1bRFRPa79vq5TKisGtZShiGgDRoAfUbjpRi5FRBWwFLiYydf5NuBPgXbgtH1TmVT+DGopW28Gvgf8F3B2RDTs6gURsTAibiruGj8/Iq6OiOFxu8kjIv6/YptfR8Ssca89ISKujYjritMTJlnnqcA1xTpfFhHzJ/GaVwOXAVey001AJE2eQS1l60zgxxTCbITn3+XqeVJKTwHvKM6OppReBfwFMFBcdjzw5ZTSyRR2Vb8PICLai+/z1ymlV1C4I9aVEdExiTrPAS4r3lXrfgq7wV9Q8cvBupTSIIVwf2tEeLc+aQ8Y1FJGigHZk1LqLwba99j9nucVACmlL6SUVheXPZRSerz4+E5gcfHxG4GtKaVriq+5AdhE4Rj5i9VZBXSmlJ4pLvqvSdR5DvCd4uMfAXXAGZPZIEnP5TdcKTtvBk4ZN/p5GrAkIhqL95DepZTSlgkWbx33eIBCSAIsALp3attdXP5iXgEcP67ORuCEiFhY7N1P5E3AeRExdtef7RSObf98F+8laScGtZSdM4HjU0pDABFRSyE43wB8dx+839NA507LOoFnJmg73jnAK1JKO0Z2R8T9FIL38zs3jog5wCMppT8ct+w84N8i4kNj2ytpctz1LWUgIqYBw+NDq/j4Svbd6O8fA60R8YpiDS+l0Iv/4YvUWQUsHB/SRT94kTrPAX6y07KfAs3Aa3a/bKmyGdTSflYc1PU/FEZPv2Hc8jcAJwLnRMR9xcWX7TzCOiKmUxhNTfHCKEcUH78K+DhwbET8TUS8CTgfeF1E/ElKaSuFwWqfjojrgL8DXp9S2vwi5V4FdEXE+8a9//EUdm2fULzYyfeBOcCFEfEXwCeB/zv+3Gngb4Fh4P8V6xqr84uT/GeTKlaklHbdSpIkZcIetSRJObbLwWQRsYTCLrJzgUtTSudP0KYZ+ALQQSH8NwAfSyn1lbJYSftGRFxGYff1zt4xwfFpSfvRZEZ9vwq4nBcf4HIB8EEKlwqsBjZSuNDCx/eyPkn7QUrpHbtuJSkLu9z1nVL6KrB+F83OAfpSSltTSpt49pxJSZK0F0p1HvVcoH/c/FBx2YQiYjmwHKC5ufn4ww47rERlSJKUb7feeuv6lNLO1zR4QaUK6tXArHHztcVlE0opXUzhLjx0dXWlFStWlKgMSZLyLSKe3J32ezTqOyI6IuLyiHhLcdF3gaaIaCtev7iRZ6/zK0mS9tBkRn2/nWdvFN8VEZ8HvgicAtxWXH4B0EahlxzARcCnS12sJEmVZpdBnVK6nMKo753vlrNgXJteCqO+JUlSCXnBE0mScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakmScsygliQpxyYV1BFxRkRcGxEXRsR1EXH6BG0OiYirI+KnEXFVRPwqIpaUvmRJkirHLoM6ImYBVwArUkofBW4HroiIzp2afgY4Hfg08HngDOATJa1WkqQKM5ke9VlAM7CmOL8SaC0uH299cdpQ/AG4ZW8LlCSpktVMos3c4nRop+ncndp9FjgV+FugBbgR+NlEK4yI5cBygIULF+5GuZIkVZbJ9KhXF6e1O01X79Tux8ARwKuBc4BTgK9PtMKU0sUppa6UUldn58570CVJ0pjJBPWVQC8wpzg/D9gGXBkRl0fEW4rLDwBGgP5ie4D6EtYqSVLF2WVQp5TWAWcDXRFxIfCS4nwThV7zYcWmvwfcC3wD+BLwP8AHS1+yJEmVYzLHqEkpXQVcNcFTC8a1+RkvcExakiTtGS94IklSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOTSqoI+KMiLg2Ii6MiOsi4vQXaLc8In5cbHdVRHyktOVKklRZanbVICJmAVcAF6WUPhYR/wxcERFLU0rd49qdA1wELEopPRUR04FD9lXhkiRVgsn0qM8CmoE1xfmVQGtx+XjvBfqA34mIS4FPAA+UqE5JkirSLnvUwNzidGin6dyd2h0INAG/Ar5PIaTnA+/YeYURsRxYDrBw4cLdKliSpEoymR716uK0dqfp6p3abSpOHwMeLT4+daIVppQuTil1pZS6Ojs7J1urJEkVZzJBfSXQC8wpzs8DtgFXRsTlEfGW4vKfFKfTgRnFx+76liRpL+xy13dKaV1EnA18KiIuBF4CnE1hN/cpwG3Fpv8EdAJ/CzQAVwMf2gc1S5JUMSZzjJqU0lXAVRM8tWBcm37gj0tUlyRJwgueSJKUa2UV1EMjo4yMpqzLkCSpZMomqEdHEx+97A7++Nt3MDwymnU5kiSVRNkEdVVVsGx+Gz+8cxX/57I7GDKsJUllYFKDyaaK3z/tIGqqgr/96QOMjCb+5bePo66mbL6LSJIqUNml2PJXLOX/vvEIfnbvGv7gW7cxOGzPWpI0dZVdUAO879TF/M2blvHL+9by4f+4lYHhkaxLkiRpj5RlUAO8+6UH8pk3H8lVD6zjg9+8lf4hw1qSNPWUbVAD/O7Ji/i7tx7FNQ9284FvrDCsJUlTTlkHNcBvn7iQf3jb0dzwyHree8ktbB80rCVJU0fZBzXAuSccwOfPOYYbH9vAey65md6B4axLkiRpUioiqAHedvwC/n/nHsvNj2/kPf9+Cz2GtSRpCqiYoAZ483Hz+ed3HMetT23i3V+/mW39Q1mXJEnSi6qooAb4rWPm8cXfPo47n97M737tZrYa1pKkHKu4oAZ4/VFz+dLvvIR7V23hd7/6G7b0GdaSpHyqyKAGOHPZHP7td47n/tXb+J2v3cTmvsGsS5Ik6XkqNqgBXn3EbC763eN5aG0P7/zKb9jYa1hLkvKlooMa4PTDZvGV3+vike4e3vmVm9jQM5B1SZIk7VDxQQ3wykM6+fq7T+Dx9b389lduonubYS1JygeDuujUg2fy7+efwNMbt/OOi29k3db+rEuSJMmgHu+lB83k399zAqu39POOi29izRbDWpKULYN6JycvmcGl7z2RtVv7ecfFN7J6y/asS5IkVTCDegInHDidb7zvJNb3DHLeRTexcrNhLUnKhkH9Ao5fNI1vvu9ENvUNct5FN/L0xr6sS5IkVSCD+kUct3Aa//n+k9i6fYh3XHwTT20wrCVJ+5dBvQtHL+jgWx84md7BYc67+EaeWN+bdUmSpApiUE/CkfPb+db7T6Z/aITzLr6RR7t7si5JklQhDOpJOmJeG/+1/GSGRxLvuPgmHlm3LeuSJEkVwKDeDYfNaeOy5SeTErzj4pt4aK1hLUnatwzq3XTw7FYuW34yVRG84+KbuH/11qxLkiSVMYN6Dxw0q4XLlp9MbXXwzq/cxL2rtmRdkiSpTBnUe2hJZwvfXn4KjbXVvPMrv+GelYa1JKn0DOq9cODMZr79wVNoqa/hnV+5iTuf3px1SZKkMmNQ76UDpjdx2fKTaW+q5V1f/Q23PbUp65IkSWXEoC6BQlifwvSWOn7vazdz65Mbsy5JklQmDOoSmd/RyGXLT6aztZ7f+9rN3Py4YS1J2nsGdQnNbS+E9ez2Bt799Zu58dENWZckSZriDOoSm93WwGXLT2b+tEbec8nN/PqR9VmXJEmawgzqfWBWayGsF01v5r2X3MJ1D3VnXZIkaYoyqPeRmS31fOsDJ7F4ZjPv/8YKrnlwXdYlSZKmIIN6H5rRUs9/feBkDupsYfk3buXqB9ZmXZIkaYoxqPexac11fOsDJ3HonFY++M1b+eV9hrUkafIM6v2go6mO/3j/SRwxr50P/8et/OyeNVmXJEmaIgzq/aS9sZZvvu9EjlrQzh986zZ+ctfqrEuSJE0BkwrqiDgjIq6NiAsj4rqIOP1F2r4jIlJEPFGyKstEW0Mt33jviRx3QAcfuex2fnjnqqxLkiTl3C6DOiJmAVcAK1JKHwVuB66IiM4J2h4InFfiGstKa0Mtl773RI5fNI2PXnY7/337M1mXJEnKscn0qM8CmoGxA6srgdbi8h0iohr4IvCHpSywHDXX13DJe07gpMUz+JPv3Ml3bzWsJUkTm0xQzy1Oh3aazt2p3V8DX08prdzVCiNieUSsiIgV3d2VeTGQproavn7+Cbxs6Uz+7Lt38u1bnsq6JElSDk0mqMdGPdXuNN0xGioiGoHTgTMj4svFxTMi4ssRMWPnFaaULk4pdaWUujo7n7cHvWI01lXz1Xd3cepBM/mL793Nt35jWEuSnmsyQX0l0AvMKc7PA7YBV0bE5RHxlpTS9pTSy1NKH0opfajYbkNx3jtTvIiG2mq+8ntdnH5oJ3/133fzzRufyLokSVKO7DKoU0rrgLOBroi4EHhJcb4JOAU4bKxtRLRGxOeLs9Mi4nMlr7gMNdRW8+XfPZ5XHz6L/3vFvfz7rx/PuiRJUk5ESinTArq6utKKFSsyrSEvBodH+cNv3cYv7lvLJ99wOO9/+ZKsS5IklVhE3JpS6ppsey94kiN1NVV86XdewllHzuGzP7mfi659NOuSJEkZM6hzpra6in/57eN449Fz+bsrH+BL//NI1iVJkjJUk3UBer7a6iouPO9YqquCf/z5g4yMJj5yxsFZlyVJyoBBnVM11VX807nHUh3BP/3yIYZHE3/86oOJiKxLkyTtRwZ1jlVXBf/49mOorgr+5aqHGR1NfOy1hxjWklRBDOqcq64K/r+3HU11VfCv//MIw6OJv3jdoYa1JFUIg3oKqKoK/vYtR1FdFXz52kcZGR3lr15/uGEtSRXAoJ4iqqqCz775SGqqgq9cX7ggimEtSeXPoJ5CIoIL3rSMBHzl+sfpaKrjD04/KOuyJEn7kEE9xUQEF/zWMrZsH+Iff/4gHU21/M5Ji7IuS5K0jxjUU1BVVfD5tx/D1u1DfPIH99DRWMcbjt75rqOSpHLglcmmqNrqKv7f7xxP16JpfPTbt3PdQ5V5X29JKncG9RRWuJ/1CRw0q5UPfvNWbntqU9YlSZJKzKCe4toba7n0vScwq62e911yC49192RdkiSphAzqMjCrtYFL33MiEcH5/34L63sGsi5JklQiBnWZOHBmM197dxfrtvXzvktX0Dc4nHVJkqQSMKjLyHELp/Ev7ziOu5/ZzEf+6w5GRlPWJUmS9pJBXWZeu2wOF7xpGb+6fy0X/PBeUjKsJWkq8zzqMvR7pxzIyk3buei6x5g/rZEPvXJp1iVJkvaQQV2m/uJ1h7FqSz9/f+UDzG1v4Oxj52ddkiRpDxjUZapw9bKjWbu1nz+7/C7mdzTSdeD0rMuSJO0mj1GXsfqaai561/HMn9bI8m/eylMb+rIuSZK0mwzqMjetuY6vn38CI6OJ91xyM1u2D2VdkiRpNxjUFWDxzGa+/K7jeWpjH3/wn7cxNDKadUmSpEkyqCvEKUtn8Lm3HMUNj6znU1d42pYkTRUOJqsg53YdwOPre/m3ax5laWcz73/5kqxLkiTtgkFdYf7stYfyxPpePvfT+1k0o5nXHDE765IkSS/CXd8Vpqoq+Kdzj+Wo+e185L9u556VW7IuSZL0IgzqCtRYV81Xf6+LaU21vP/SFazZ0p91SZKkF2BQV6hZbQ189d0nsK1/iPd/4xbvtiVJOWVQV7Aj5rXxxXcex32rtvLRy+5g1LttSVLuGNQV7lWHzeaTbziCX9y3lr//2QNZlyNJ2omjvsV7XnYgj6/v5eLrHuPAGc2886SFWZckSSoyqEVE8Ne/dQRPb+rj/15xDwumNfKKQzqzLkuShLu+VVRTXcUXf/s4Dp7Vwh/85208uGZb1iVJkjCoNU5rQy1fO/8EGuqqee8lt9C9bSDrkiSp4hnUeo75HY187d1dbOgd4P3fWMH2wZGsS5KkimZQ63mOXtDBP7/jOO56ZjN/8h1P25KkLBnUmtCZy+bwidcfzpX3rOEffv5g1uVIUsVy1Lde0PtOXczj63v58rWPcuCMJt5xoqdtSdL+ZlDrBUUEf/OmZTy9aTuf/ME9HDC9iZcdNDPrsiSporjrWy+qprqKL73zOJZ2tvCh/7iVh9d62pYk7U8GtXapcNpWF/U11bznkltY3+NpW5K0vxjUmpQF05r42ru7WN8zwPsvXeHdtiRpP5lUUEfEGRFxbURcGBHXRcTpE7S5OCK+FRFfi4hHI+ITpS9XWTrmgGdP2/rDb93O8Mho1iVJUtnbZVBHxCzgCmBFSumjwO3AFRGx88WgR4DfTSm9D7gB+GxEvLHE9SpjZy6bw6fPPpKrH1jHX/333aTkOdaStC9Npkd9FtAMrCnOrwRai8t3SCl9OKU0dhmr9cVpcymKVL686+RFfOSMg/nOimf4wi8eyrocSSprkzk9a25xOrTTdO4EbYmIVuCtwC+A/36BNsuB5QALF3pu7lT0x68+mHVb+/nX/3mEWW31/N4pB2ZdkiSVpcn0qFcXp7U7TVfv3DAiFlDYTf5l4KyU0uBEK0wpXZxS6kopdXV2ejvFqSgi+Oybj+TVh8/mr394Lz+9+3m/DpKkEphMUF8J9AJzivPzgG3AlRFxeUS8BSAi3gn8CLgIuAr4nYj4aMkrVm6M3RrzJQun8dHL7uCmxzZkXZIklZ1dBnVKaR1wNtAVERcCLynONwGnAIcVm/4tcCxwGXAL8I3Sl6u8aayr5mvv7mLhjCY+cOkK7npmc9YlSVJZiaxH7XZ1daUVK1ZkWoP23uot23n7l2+kZ2CYy5afzGFz2rIuSZJyKSJuTSl1Tba9FzxRScxtb+Rb7z+Z+poq3vXVm3msuyfrkiSpLBjUKpmFM5r4z/efTEqJ3/nqb3h6Y1/WJUnSlGdQq6QOmtXCN993Er0Dw/zOV3/Dmi39WZckSVOaQa2SO2JeG5e+90Q29Azwzq/exNqthrUk7SmDWvvEcQunccl7T2Ttln7Ou+hGVm3ennVJkjQlGdTaZ044cDrffP9JbOgZ5NyLbvSYtSTtAYNa+9RLFk7jPz9wEtv6hznvoht5Yn1v1iVJ0pRiUGufO3pBB9/6wElsHxrh3Itu5KG127IuSZKmDINa+8Wyee1ctvwUEnDOv/0vNz++MeuSJGlKMKi13xw6p5Xvf/ilzGyt511f+w0/v3fNrl8kSRXOoNZ+dcD0Jr77oZdyxNw2Pvwft/IfNz2ZdUmSlGsGtfa76c11fOsDJ3HaobP45A/u4TM/vo/hkdGsy5KkXDKolYmmuhou/t3jec/LDuRrNzzOey65hS19Q1mXJUm5Y1ArMzXVVfz1by3jH952NDc9toGzv3QDDzsiXJKew6BW5s494QAuW34yPQMjnP2lX/PdW58h69uvSlJeGNTKheMXTecnHzmVoxe086eX38mffOdOegaGsy5LkjJnUCs3Zrc18J/vP5k/ec0hXHHHSt74L9d7vrWkimdQK1eqq4KPnHEwly0/heHRxLkX3cinrrjH3rWkimVQK5dOXDydn3/0Fbz3ZYv55k1P8tp/upaf3r3aY9eSKo5Brdxqrq/hU791BN/90Etpa6zl9//zNs696EbuemZz1qVJ0n5jUCv3jl80jR//0an87VuO4vH1vbzpX3/NH3zrNh5YszXr0iRpn4usdyV2dXWlFStWZFqDpo5t/UN8+dpHueTXT9A7OMKZy2bzh6cfzFEL2rMuTZImJSJuTSl1Tbq9Qa2paHPfIF//9RP8+68fZ1v/MF2LpvG7pyzirCPnUlfjjiJJ+WVQq6Js7R/i8hXP8M0bn+CJDX3MbKnn7V0LeOtx8zl4dmvW5UnS8xjUqkijo4nrHu7mGzc+ybUPdTMymjhyfhtvPnY+bzpmHrPaGrIuUZIAg1qie9sAP7pzFT+4YyV3PbMFgOMWdvDaI+bw2mWzWdrZknGFkiqZQS2N88i6Hn52z2p+cd/aHaG9pLOZ1xw+m1ce2knXouke05a0XxnU0gtYtXk7v7p/Lb+4dy2/eXwDQyOJprpqXrp0Jq88tJPTDunkgOlNWZcpqcwZ1NIk9AwMc+OjG7j2oXVc82A3z2zaDsCSmc288tBOXnlIJycvmUFDbXXGlUoqNwa1tJtSSjy+vpdrH+rm2oe6ufHRDQwMj1JfU8WJi6fzioM7efkhMzl0disRkXW5kqY4g1raS/1DI/zm8Y1c8+A6rn94PY+s6wFgVms9px48k1ce0snLDprJzJb6jCuVNBXtblDX7MtipKmoobaaVx5S2P0NhWPbNzy8nuse7ubqB9bx/dtWAnDE3DZefshMXnFwJ8cvmuZuckn7hD1qaTeMjCbuXbWF6x9ez3UPdXPrk5sYHk001FZx0uIZvPzgmbzikE4OntXibnJJE3LXt7Qf9QwM85vHNhSC++FuHuvuBWB2Wz0vP7gwIO2kxdNZMK3R4JYEGNRSpp7Z1McND6/n+ofX8+tH17O5bwiAee0NnLh4OictmcGJi6ezZGazwS1VKINayonR0cRD67Zx8+Mb+c3jG/nNYxtZ3zMAwMyWek5cPI3jDpjGsQs7OHJeO411HuOWKoFBLeXU2GlgY8F98+MbWbm5cP52dVVwyOxWjj2gnWMWdHDMAR0cNKuF2mqvmiaVG4NamkK6tw1w1zObufPpzdzxzBbufHozW7YXdpfXVVdx8OwWDpvTxuFzWzl8bhuHzWllhqeFSVOaQS1NYSklntjQx51Pb+b+1Vu5f8027l+9le5tAzvazGqt59A5rSztbGHprBaWzmxm6awWZrXWe9xbmgI8j1qawiKCxTObWTyzmTcfN3/H8vU9AzywehsPrNnK/au38eDarXxnxdP0DY7saNNSX8Pimc0s7WxmSWcLC6c3ccD0Rg6Y1kSnIS5NWQa1NAXMbKnn1IMLV0Ybk1JizdZ+Huvu5dHunh3TW57YxA/uWPWc19fXVLFgWiMHTG/igGlNOx7PbW9gTnsDnS311Hg8XMolg1qaoiKCue2NzG1v5GUHzXzOc/1DIzyzqY+nN27n6U19PL3x2ce3PbmJrf3Dz2lfFYUvA3PbG5jdVgjv2W0NzNnxuJ4ZzfW0N9ZSVWXPXNqfDGqpDDXUVnPQrFYOmtU64fNbtg/x9MY+1m7tZ83WftZsKf5s7eeJDb3c9NiG54U5QE1VML25jhkt9cxsqWNmSz0zdp5vqWN6cx3tjbW01Ne4y13aSwa1VIHaG2tpn9/OkfPbX7BN3+Awa7cOsGZLP909A6zfNsCG3gHWbxssTHsGeXx9L+t7BugfGp1wHTVVUXivplo6GmvpaKqjY8d8HR1NtTueb2uopbWhhpb6Gloaamiuq6Ha3rtkUEuaWFNdDYtnFgao7Urf4DDrtw2yvrcQ6Jv7hti8fZAt24eKj4fY0jfEum39PLR2G1v6htg28Pwe+86a66ppLgZ3a3HaUl9DS/2zod5cX0NTXTWNddU01lYXHtcW5+uqaaqtoaGuqvic4a+pZ1JBHRFnAJ8CbgdeAvx1Sul/dmrTDHwB6ACqgA3Ax1JKfaUsWFL+NNXVsHBGDQtnNE36NcMjo2ztH2Zz3yCb+obY1j9Ez8AwvQPDbOsfpmdgmJ7idFtxeU//MBt6+p59fmCYkdHdO8W0rrrqOaHeMBbuddXUVVdRX1tFfc34x1XU1RSW1deMzRcf11YV21WPa/ds29rqKmqrg5qxaVVh6uEA7Y5dBnVEzAKuAC5KKX0sIv4ZuCIilqaUusc1vQD4INAOVAMbgS3Ax0tetaQpr6a6iunNhePZeyqlRP/QKNuHRugbHGb74EjxcWG6fbDw0zc0Qv/g+OXDO9r1F6c9A8MMDo8yMDxanI7seNw/NMJufh948W2vCmqqg9qqKmqKQV5XXXxcFdQWH9dWVz2nTe3Y66qrqK4KqqMQ+tVVhavbVUU8Zzr2uCqYcHl1FcXni8uK6xxbXl0VREBQmEJhEGMAEYU2Y49hrO1z24y9nnHPVY1bZ/Glz5mPGP+42OBF7Op7z2S+Fr3Yl6fO1nrmdzROYi37xmR61GcBzcCa4vxKoLW4/Bvj2p0D9KWUtgJExHbgXAxqSftIROzYxb03gT8ZwyPjQ7wQ5OMfD4w9HhplcKQQ7sMjiaGRUYZGRhkeTQyPjDI0khgeHWV4JDE4UpgOjxaXj4wyNK7dUPH5oZFR+gZHnvO60dHESEqMjsJoSoyMph3TwuPCbVkLbQrTjK9vNWW992WL+dRvHZHZ+08mqOcWp0M7TedO0K5/3PzQBG0AiIjlwHKAhQsXTqpQScpSTXUVNdVVNE/hK7imsSAvhvZzgnxc8I9floqvK0wBCq8dmx9NY/PPfhEYP/9Crx9Nz12eKDROE7x+V9v0os9P6h/mxZ9eMC273jRMLqhXF6e1O01XT9Bu1rj52gnaAJBSuhi4GAqXEJ1UpZKkvRJR2HXuKOKpZTKXIroS6AXmFOfnAduAKyPi8oh4S3H5d4GmiGiLiA6gEfhOieuVJKmi7PKLVUppXUScDXwqIi6kMOr7bKAJOAW4rdj0AqCNQk85gIuAT5e+ZEmSKsek9oCklK4CrprgqQXj2vRSGPUtSZJKxKvwS5KUYwa1JEk5ZlBLkpRjBrUkSTlmUEuSlGMGtSRJOWZQS5KUYwa1JEk5ZlBLkpRjBrUkSTlmUEuSlGMGtSRJOWZQS5KUYwa1JEk5ZlBLkpRjBrUkSTlmUEuSlGMGtSRJOWZQS5KUYwa1JEk5ZlBLkpRjkVLKtoCIbuDJEq5yJrC+hOvLg3LcJijP7SrHbYLy3C63aeoot+1alFLqnGzjzIO61CJiRUqpK+s6SqkctwnKc7vKcZugPLfLbZo6ynW7Jstd35Ik5ZhBLUlSjpVjUF+cdQH7QDluE5TndpXjNkF5bpfbNHWU63ZNStkdo5YkqZyUY49akqSyUTZBHRFnRMS1EXFhRFwXEadnXdPeioglEfHtiEgRcUnW9ZRCRJwUEddHxOcj4qaI+FVELMu6rr0RER3F37kvRMTPI+K+iHh71nWVSkTUR8Sdxd/D87OuZ29FxBPFbRn7+XHWNe2tiFgYEd+LiH+LiK9ExK0R0Zx1XXsjIk7b6XMa++nIurb9rSbrAkohImYBVwAXpZQ+FhH/DFwREUtTSt0Zl7c3XgVcDpybdSEl1Ax8KaV0WUQsBh4DLgWm8qkX1cAvU0qfiYgaoBu4NCL+O6U0nHFtpfD3wKasiyihW4Fzxs1vzqiOkoiIKuBHwIqU0oeLy14NDGVaWGl8GfhJ8fGBwB8D2zKrJiNlEdTAWRQCYE1xfiXQWlz+jayK2lsppa9GxGlZ11FKKaWrx82OXcBgSn/zTyltAD5TnO0AGij8Lo5kVVOpRMQbgH7gGuCV2VZTMk3AbwGHUPgd/Idsy9lrXcDRwOMR8VngCOBrKaXBbMvaa7cB96eU1gJExNeBT6eUpvz/q91VLru+5xanQztN507QVvlxPrCdwrfkKS8izqYQaD3AB9IUH6kZEXOA3wc+lXUtJfYvwN8A7wfeClwXEQ3ZlrRXDixOa1NKnwQGKOxRPDK7kvZeSmnruJA+GDgR+I9sq8pGuQT16uK0dqfp6gnaKgci4oMUdukfn1L6Wdb1lEJK6QrgOAp7dH4SEUsyLmlvnUPhi9QXgTcWl707It6dXUl7L6V0ZUppNKXUC9xFIeiOyLaqvTJ2WOKx4vRRCodjTs6mnH3ir4HPVmJvGsonqK8EeoE5xfl5FI5jXJlZRZpQRMyOiO9T+CPyMaA5In6UcVl7JSKOjoi3AaSUhih8QawDZmda2F5KKf1rSumclNKHgLEBV5emlC7Nsq69ERELIuJz4xYdSOHLyBOZFFQavwE2ANOL8zOK0weyKae0IuJw4Ejg21nXkpWyOEadUlpX3O34qYi4EHgJcPYUH0hGceTw2KCXroj4fErpT7OsqQTOAt5SfHx+cbolm1JKZgj4cEScDCwAlgJ/mVK6MduySqP4JeS1xdnzIuLxlNK1Wda0F/qBEyPinyh8TtuBt6aUNmZb1p5LKW0t/v37XPHv3yuBP08p3ZBtZSXzN8DfTPVDSXvDC55IkpRj5bLrW5KksmRQS5KUYwa1JEk5ZlBLkpRjBrUkSTlmUEuSlGMGtSRJOWZQS9ohIi6JiK0R8VdZ1yKpwAueSAIgIo4B/hf4KYWrx7WmlLZnW5Uke9RShYiICyIiRcSaiLhsgiZrgXuAP6JwnejB4uvmRMQ1EdFffP1p+61oSQa1VIF+llJ6xwTLT6JwK8HVQMvYnYpSSmtSSqfx7P3eJe1HBrUkIqIK+Oy4RQsjoiWreiQ9y6CWprCI+LuI2FzcJf3PEfHDiNgUEefv5qreSeFWgpsp3DIxmNr3aJbKhkEtTWEppb8E7ijOdlEYBPZBCvdnn5SIqKVwK0GAC4F7i48NaikHyuJ+1JIA+EHxuPJ3dvN1HwCWUOhNXwgcALwCWFbK4iTtGXvUUvlYv7sviIhG4JPF2QtTSluAh4vzBrWUAwa1VD725KIIHwHmFh9fEBEJ+PvivLu+pRxw17dUoSKiHfiL4ux1FE7LAqijcKx7YUS0pJR6sqhPUoFBLU1hEfEJ4Nji7McjYiSl9M1JvvzPgWkUBo+9JqU0doGTALYArRR61TeXtGhJu8WglqawlNLngM/t4Ws/AXxiguUJaNvL0iSViMeopcqxGXgS6HqBS4hOaOwSosBw8fX9+6Q6SRPyphySJOWYPWpJknLMoJYkKccMakmScsygliQpxwxqSZJyzKCWJCnHDGoppyLiXcV7TdcV5+si4privacPnKD9hRHRGxFPRMR545a/KiIejIh7I2KX1+/e+X0n+d4PR8Sf77RsebGWS3ZrwyU9h0Et5debgFrgTICU0mBK6bQXapxS+ihwOfBASunb45ZfDVwPvD6ldN/uvu+u3jsiXgLMAM4bvzyldDFwySTeT9KLMKilHIqINmAE+BFw7m689DvAGRExc9y6aoG5KaUn99H7ngt8GHhJRBy0G7VKmgSDWsqnNwPfA/4LODsiGib5ul8C24C3jlv2GuBX+/B9Dy/24O9g975USJoEg1rKpzOBHwNXUujhvm4yL0opDQE/4Lm7od9OYZd4yd83IrqA3xRn/wuDWio5g1rKmYjoAHpSSv3FW09+j52O/+7Cd4BXRsTs4oCwzpTSM/vofd9OIaApTo+OiEN3o1ZJu+BtLqX8eTNwSvGOVVC4Z/SSiGhMKW2fxOt/ReFOWecATwG/2IfveyZwUuEW1kBht/u5wGcm+Z6SdsGglvLnTOD44m7sscFg3cAbgO/u6sUppeGI+AGF3vDjwF/ui/eNiBOB/0op/X/jlv0F8LsY1FLJuOtbypGImAYMj4Ul7DjufCW7P/r7VGBmSmnVPnrfc4Ef7rTsB8CyyZyvLWlyDGopJyKiHfgf4GUR8YZxy98AnAicExFj50FfFhHzX2R1VwMbgJ+W4H3fFBH/b9wu8csi4q+B9wKf3ml1nwVGge8XL4ByPvC6iPjEruqQNLFIKWVdgyRJegG7PEYdEScBn6dwCsapQA/wf1JK9+7Urhn4AtBBoae+AfhYSqmvxDVLklQxJjOYrBn4UkrpsohYDDwGXAp07dTuAuCDQDtQDWwEtgAfL1m1kvbKuN3Xz/FilyaVlK3d2vUdEa3AVgrXEj58p+ceB2allJqL833AmpTSkhLWK0lSRdnd07POB7YDfzzBc3OB/nHzQ8VlzxMRy4HlAM3Nzccfdthhu1mGysHQSOKBNVuZ39HI9Oa6Xb9AksrArbfeuj6l1DnZ9pPuUUfEB4F3ActTSvdP8Pwe9ai7urrSihUrJluvysjW/iGOvuAXfPINh/P+l7vjRVJliIhbU0o7Hz5+Qbs8Pat4GcLvAycDHwOaI+JHEdEREZdHxFuKTb8LNEVEW/FShI0UzuWUJtRUWw1A3+BIxpVIUn5NZtf3WcBYGJ9fnG6hMGjsFOC24rILgDbgYiCAi3j+OZbSDjXVVdTXVNE7OJx1KZKUW7sM6pTSJbzwzd8XjGvXS2HUtzRpzfU19A3Yo5akF+KVyZSpprpqe9SS9CIMamWquc4etSS9GINamWq0Ry1JL8qgVqaa66vZ7qhvSXpBBrUy1VRXQ69BLUkvyKBWpprrqulz17ckvSCDWplqqq+h18FkkvSCDGplyh61JL04g1qZaqqroW9whNHRyd/FTZIqiUGtTDXXF673vX3I3d+SNBGDWplqrCtcxdYbc0jSxAxqZaq5buwOWh6nlqSJGNTKVFOxR+3Ib0mamEGtTI0do7ZHLUkTM6iVqR09ao9RS9KEDGplakePesAetSRNxKBWpprtUUvSizKolanG4qjv7R6jlqQJGdTKlD1qSXpxBrUy1VBbRYTHqCXphRjUylRE0Ow9qSXpBRnUylyTd9CSpBdkUCtzzfU19HhlMkmakEGtzDXXV3uMWpJegEGtzDXX1bDNoJakCRnUylxrQw29BrUkTcigVuYKx6gNakmaiEGtzLXU26OWpBdiUCtzLfU1bOs3qCVpIga1MtdSX8PA8ChDI6NZlyJJuWNQK3MtDcXrfbv7W5Kex6BW5prrC0Ht7m9Jej6DWplrrR+7g5ZBLUk7M6iVubEedY89akl6HoNamRs7Ru251JL0fAa1MtdSb1BL0gsxqJW5saB21LckPZ9Brcw56luSXphBrcw926P2ntSStDODWpmrrgoaa6vpGRjKuhRJyh2DWrnQ0uAdtCRpIga1cqGlvoYed31L0vMY1MqFlvoaevrd9S1JOzOolQuFe1Lbo5aknRnUyoXm+hq2eYxakp7HoFYutDbUeMETSZqAQa1caK6vdtS3JE3AoFYutNTXGtSSNAGDWrnQUl/N4PAog8OjWZciSbliUCsXvDGHJE3MoFYuNHurS0makEGtXGhtMKglaSIGtXLBHrUkTcygVi6MHaPu8Z7UkvQcBrVywV3fkjQxg1q54K5vSZrYLoM6IpZExLcjIkXEJS/Q5vzi8+N/ukpercpWa0MtANu8g5YkPUfNJNq8CrgcOHcX7T4E3Dpu/r49LUqVp7mumqqAbR6jlqTn2GVQp5S+GhGnTWJdxwKHAwuAK1JKK/aqMlWUiKC1oZat2+1RS9J4k+lRT8YNwI0ppQcj4qPANyKiOaX05YkaR8RyYDnAwoULS1SCprrWhhp71JK0k5IMJkspPZJSerA4e2Nx+voXaX9xSqkrpdTV2dlZihJUBtoaatnqMWpJeo49CuqI6IiIyyPiLcX5f4qIGcWnFxenHqPWbmltqGGrPWpJeo5d7vqOiLcD5xRnuyLi88AXgVOA24rLHwcuiohngNcAXwU+XfpyVc7aGmt5emNf1mVIUq5MZjDZ5RRGfZ+301MLxrX5IoXwlvaYx6gl6fm84Ilyw2PUkvR8BrVyo62hhp6BYUZHU9alSFJuGNTKjbbGWlKCnkF3f0vSGINauTF2Yw6PU0vSswxq5UZb8XrfXp1Mkp5lUCs3nr0xhz1qSRpjUCs32hrHdn3bo5akMQa1cmOsR+0pWpL0LINaueFgMkl6PoNauTEW1A4mk6RnGdTKjfqaauprquxRS9I4BrVypa3Ry4hK0ngGtXLFW11K0nMZ1MqVtoZaj1FL0jgGtXLFW11K0nMZ1MoVj1FL0nMZ1MqVNnvUkvQcBrVyxWPUkvRcBrVypbWhhoHhUQaGR7IuRZJywaBWrrQ1egctSRrPoFaueBlRSXoug1q50t44dgcte9SSBAa1cqa9sQ6AzX2DGVciSflgUCtXOpoKPeot7vqWJMCgVs6M7fo2qCWpwKBWrowF9eY+g1qSwKBWztRWV9FSX2NQS1KRQa3caW+sdde3JBUZ1MqdQlA76luSwKBWDnU01brrW5KKDGrlTkeTu74laYxBrdxpb6xls0EtSYBBrRxqb6xjS98QKaWsS5GkzBnUyp2OploGR0bpHxrNuhRJypxBrdzZcdETR35LkkGt/Onw6mSStINBrdxp98YckrSDQa3c8XrfkvQsg1q509FUuCf1VnvUkmRQK386HEwmSTsY1MqdprpqaqrCXd+ShEGtHIoILyMqSUUGtXLJy4hKUoFBrVxqb6xli7u+JcmgVj51NNW561uSMKiVUx2NtWzqc9S3JBnUyqWOpjp3fUsSBrVyanpzLdsGhhkYHsm6FEnKlEGtXJrWXLg6medSS6p0BrVyaXrxMqIbez1OLamyGdTKpenFHvUmg1pShTOolUtjQb3Rkd+SKpxBrVwaO0btrm9Jlc6gVi6N3UHLoJZU6Qxq5VJNdRUdTbUeo5ZU8XYZ1BGxJCK+HREpIi55gTbNEfHliLgsIr4TEf8WEU0lr1YVZXpTHRs9PUtShauZRJtXAZcD575ImwuADwLtQDWwEdgCfHwv61MFm9Zcx8begazLkKRM7bJHnVL6KrB+F83OAfpSSltTSpuA7bx4sEu7NK2pjo299qglVbZSHaOeC4z/izpUXDahiFgeESsiYkV3d3eJSlC5md7sMWpJKlVQrwZqx83XFpdNKKV0cUqpK6XU1dnZWaISVG6mN9ezsW+QlFLWpUhSZvYoqCOiIyIuj4i3FBd9F2iKiLaI6AAage+UqEZVqOnNtQwOj9I36I05JFWuXQ4mi4i3UzgGDdAVEZ8HvgicAtxWXH4B0AZcDARwEfDpUheryjJt3PW+m+snM+5RksrPLv/6pZQupzDq+7ydnlowrk0vhVHfUslMH3d1sgOme7afpMrkBU+UW9O83rckGdTKrxneQUuSDGrllzfmkCSDWjnWWl9DTVUY1JIqmkGt3IqI4mVEDWpJlcugVq7NaK5jg0EtqYIZ1Mq1ztZ61vd4Yw5JlcugVq7NbKmne5tBLalyGdTKtZktdazvGfB635IqlkGtXJvZUk//0Ci9Xu9bUoUyqJVrM1vqAVjv7m9JFcqgVq7NbC0GtQPKJFUog1q5NrOlcHUyg1pSpTKolWudxR51d4/nUkuqTAa1cm16Ux0ReIqWpIplUCvXaqqrmN5U565vSRXLoFbuzWypd9S3pIplUCv3Zrbao5ZUuQxq5d7MlnrWO5hMUoUyqJV7haC2Ry2pMhnUyr3O1nr6BkfoHRjOuhRJ2u8MauXejsuI2quWVIEMauWeVyeTVMkMauXeWI+6e5sDyiRVHoNauTdr7DKi2/ozrkSS9j+DWrk3o6We6qpgnRc9kVSBDGrlXnVV0NlSz5ot9qglVR6DWlPC7LZ61tqjllSBDGpNCbPbGlhrj1pSBTKoNSXMbmtgrYPJJFUgg1pTwpz2Bjb3DdE/NJJ1KZK0XxnUmhLGTtFat9Xj1JIqi0GtKWFOewMAa7a6+1tSZTGoNSXMbisE9VqDWlKFMag1JRjUkiqVQa0poa2hhobaKoNaUsUxqDUlRARz2hpY42AySRXGoNaUMautwR61pIpjUGvKmGNQS6pABrWmjNlt9azd2k9KKetSJGm/Mag1Zcxua6B/aJSt24ezLkWS9huDWlPG2EVPVm/dnnElkrT/GNSaMuZ3NAKwarNBLalyGNSaMsaCeuVmB5RJqhwGtaaMmS311FYHKzfZo5ZUOQxqTRlVVcHc9kZ3fUuqKAa1ppT5HQa1pMpiUGtKmdfRyEqDWlIFMag1pczvKFydbGhkNOtSJGm/MKg1pcyf1sho8naXkiqHQa0pZd7YKVqO/JZUIQxqTSljQb1qi0EtqTIY1JpS5tujllRhDGpNKQ211cxorvPqZJIqhkGtKWee51JLqiAGtaaceR0NPLOpL+syJGm/mFRQR8QZEXFtRFwYEddFxOkTtDk/ItJOP12lL1mVbuH0Jp7etJ3R0ZR1KZK0z+0yqCNiFnAFsCKl9FHgduCKiOicoPmHgBPG/dxXulKlgoUzmhkcHmXtNo9TSyp/k+lRnwU0A2uK8yuB1uLynR0LvAv4OHB4Ssn9kyq5RdObAHhqg79eksrfZIJ6bnE6tNN07k7tbgAuLPa6bwC+EREfmmiFEbE8IlZExIru7u7dLFmVbtGMQlA/udGgllT+JhPUq4vT2p2mq8c3Sik9klJ6sDh7Y3H6+olWmFK6OKXUlVLq6uycaA+69MLmdTRSXRX2qCVVhMkE9ZVALzCnOD8P2AZcGRGXR8RbACLinyJiRrHN4uLUY9QqudrqKuZ1NNijllQRanbVIKW0LiLOBj4VERcCLwHOBpqAU4Dbik0fBy6KiGeA1wBfBT69L4qWFk1v5imDWlIF2GVQA6SUrgKumuCpBePafBH4Yonqkl7UwhlNXHn36l03lKQpzgueaEpaOL2JTX1DbO0f2nVjSZrCDGpNSZ6iJalSGNSakhYWT9HyOLWkcmdQa0paWOxRP2mPWlKZM6g1JbU21DKzpY4n1vdmXYok7VMGtaasJZ0tPNrdk3UZkrRPGdSaspYa1JIqgEGtKWtpZzOb+obY2DuYdSmStM8Y1Jqylna2APCYvWpJZcyg1pQ1FtTu/pZUzgxqTVnzpzVSV1PFo92O/JZUvgxqTVnVVcGSmc08us4etaTyZVBrSnPkt6RyZ1BrSlvaWbjd5cDwSNalSNI+YVBrSlvS2cJo8lKiksqXQa0p7aBZhZHfD63dlnElkrRvGNSa0g6a1UJ1VfDgGoNaUnkyqDWlNdRWs2RmM/evNqgllSeDWlPeoXNaeWDN1qzLkKR9wqDWlHf43Dae2bSdbf1DWZciSSVnUGvKO2xOK+CAMknlyaDWlHfY3DYAj1NLKksGtaa8ee0NtDbUeJxaUlkyqDXlRQSHzWnlAXvUksqQQa2ycNicNh5Ys43R0ZR1KZJUUga1ysJR89vpGRjmiQ3e8lJSeTGoVRaOWtAOwF3PbMm4EkkqLYNaZeHgWS001FYZ1JLKjkGtslBTXcWyee3cvXJz1qVIUkkZ1CobRy9o556VWxkeGc26FEkqGYNaZePoBe1sHxrh0W4HlEkqHwa1ysbRCzoAuPOZzZnWIUmlZFCrbCye0UxLfQ13GdSSyohBrbJRVRUce0AHtz65OetSJKlkDGqVla4Dp/HAmq1s9ZaXksqEQa2ycuKB00kJbn1yU9alSFJJGNQqK8cu7KCmKljxxMasS5GkkjCoVVaa6mpYNr+dWx63Ry2pPBjUKjsnLJrGHc9sZmB4JOtSJGmvGdQqOycsns7g8Ch3e91vSWXAoFbZOeHA6UTAjY9uyLoUSdprBrXKzvTmOo6c1871D6/PuhRJ2msGtcrSyw+eyW1PbWKb51NLmuIMapWlUw+eyfBo4qbHPE1L0tRmUKssHb9oGo211dzwcHfWpUjSXjGoVZbqa6o5ecl0j1NLmvIMapWtlx/cyWPre3livfenljR1GdQqW685YjYAv7xvbcaVSNKeM6hVtg6Y3sThc9v4+b1rsi5FkvaYQa2yduay2dz61Ca6tw1kXYok7RGDWmXtzGVzSAmuut/d35KmJoNaZe2wOa0snN7Elfe4+1vS1GRQq6xFBG88ei43PLLe3d+SpiSDWmXvrS+Zz8ho4od3rsq6FEnabQa1yt5Bs1o5an47/337M1mXIkm7bVJBHRFnRMS1EXFhRFwXEadP0KY5Ir4cEZdFxHci4t8ioqn0JUu77y3HzeeelVt5aO22rEuRpN2yy6COiFnAFcCKlNJHgduBKyKic6emFwAfBJYXpx8CPlXKYqU99aZj51FbHVx289NZlyJJu6VmEm3OApqBsWGzK4HW4vJvjGt3DtCXUtoKEBHbgXOBj5esWmkPzWyp56wj53L5rU/zp2ceQlPdZH71Je1rQyOj9A4Ms61/mJ6B4k//MNuHRhgYHmFweJSB4VEGhkYZHBllYGiEgZFn50dHE6MpMZp4zuORlEgpMTo67nGClNKEdUy8tOC1R8zhnSct3Df/AJMwmb9Wc4vToZ2mcydo1z9ufmiCNgBExHIKPW8WLsxu41VZ3v3SRfzwzlX84PZVmf6nk6a64ZFRegdH6BscpndghN6BYXrHPd5WDNuegSF6+gsh/Oyyws+24vP9Q6O7/f51NVXU11RRV11FdVVQXRVURRDBcx/Hc5dHQFXEC673hZ7pGxze7RpLaTJBvbo4rd1punqCdrPGzddO0AaAlNLFwMUAXV1dL/ZFRiqZlyycxrJ5bXzjxif47RMPIF7kP6xULlJKbB8aoWdgmL6BkWcDdXCY3ucsG6Z3sBi6A4UQ7hkYpm/w2SDuGyisZ2B4cuFaXRW0NtTQUl/4aW2oYWZLHQfObKalvoa2secann2+pb6W5vpqmupqCmE8Fso1VdTXVFNbHRX3f3cyQX0l0AvMKc7PA7YBV0bE5cC3Ukr/DXwX+NOIaKNw7LsR+E7pS5b2TERw/ksP5M++exfXPNTN6YfO2vWLpP1sYHhkRyD2DY4L0WJvtW/wuYG6I0QHx14zvm3h9S+wt/d5aqqC5mKoNtVV01RfQ0t9NdObm3Ysa66vobmuhub6wuOmuurifGHZWPC21tfSUFtVcaG6L+wyqFNK6yLibOBTEXEh8BLgbKAJOAW4rdj0AqCNQk85gIuAT5e+ZGnPnX3sfC781cN88aqHOe2QTv+IaK8Nj4zSOzBCTzFQewaK0/5nH/cWQ/Q5zw8M0zMwQt+4Nn2DwwyNTC5VI6C5rhCULfU1NBV7obNaG2iaUVw2LlCb68aCdfyy4uO6wuvra6r38b+W9sSkRtSklK4CrprgqQXj2vRSGO0t5VZdTRUfPm0pn/zBPfzvoxt42UEzsy5JGRsaGWVb/zBbtg+xdftQYdpfnG4f3mm++NM/zLb+Ibb1T3438Pjeakux99nWUMPctobi8rEe7HN7qU311c9b1lxfTWNttV80K4RDX1Vx3t61gH+9+hG+8IsHeenSGf6xKyOjo4mt/UNs6B1kU+/g86Yb+wbZuNOy3sGRF11nbXXQ3lhLW0MtrY21tDfVccD0JlobamlteLZXWgjfZ4+5Ntc9G8jN9YXjrf6uaU8Y1Ko49TXV/MlrDuHPv3cXP7prNW86Zl7WJWkX+odG6N42wLptA3Rv62fdtgHWbR1g3XMeD7Cpb5CR0Yl3HTfWVjO9uW7Hz5LOFqY11dHRVEtbQw1tjbWFQB6bNhSmHmdV1gxqVaS3Hb+AS298gr//6f285vDZNNZ5bC4rg8OjrN3azzObtrNqc/Fny3ZWbu5n9ebtrNs2wJbtQ897XVUUzo+f1VbPnPYGjl7QzoyWOqY31zO9uZbpzfXMaK5jWnMd05vq/Iw1ZRnUqkjVVcGn3ngE5118E/981cN8/KzDsi6pbI2MJlZt3s5TG/t4YkMvT23o45nNz4byum0DzxuVPLOljnkdjSye2czJS2Ywq7UQyLNaG+gsPp7RXE91lT1dlT+DWhXrpCUzOK/rAC6+7lHOXDab4xZOy7qkKWt4ZJSnNvbx5IZCGD+5oY8ni9OnN/U9ZyRzXXUV86c1Mq+jgVcc3Mm8jkbmdzQWlzUyt72Bhlp7v9IYg1oV7RNvPJzrH+7mY5ffyY//6FQvLboL/UMjPNbdyyPdPTyyrodH1m3jkXU9PLG+j8GRZ0c/t9TXsHB6E4fNbeW1y+Zw4IwmFs5o4sAZzcxpa6DKnrA0af5VUkVra6jlH99+DO/62m/4i+/dzb+841gHDlHYXf34+l7uW72V+1dv5aE123iku4enN/YxNlarKmDh9CYOmtXKqw6bzUGzWlg8s5lFM5qY0Vznv6NUIga1Kt7LDprJn772UP7x5w9y1Pw2lr9iadYl7Vc9A8M8UAzk+1Zv5b7V23hwzdYd12CuqQqWdDZz5Lx2zj52PgfPatkRyu6ilvY9g1oCfv+0pdy7agt/+9MHmN5czznHL9j1i6ag3oFh7lm5hTuf2cydz2zhnpVbeHJD347n2xtrOWJuG+88cRFHzGvj8LmtHDSrxStWSRkyqCUK1wH/p3OPZev2Ffz5d++ktjo4+9j5WZe1VwaHR3lwzbZCKD+9mbue2cLD67bt2HU9v6ORoxe0c85LFnD43DaOmNfG3PYGd1lLOWNQS0UNtdVc/HvH855/v4X/c9kdrNy8nQ+/cumUCK7R0cTjG3p3BPIdT2/mvtVbGSxe3nJ6cx3HLGjndUfO4ZgD2jl6QQczW+ozrlrSZBjU0jhNdTV8430n8meX38U//OxB7np6C3/31qOY1lyXdWnPsbF3kDue3sQdT23m9qcLPeat/YV75jbVVXPk/HbOf+mBHL2gnWMWdLBgWuOU+MIh6fkMamkn9TXVXHjesSyb18bnf/EgZ164iY+fdRhvPnZ+JqcVDQyPcN+qrdz+1GbueLrw89TGwnHlqoBD57TxxmPmceyCDo45oIODZrV4IRCpjESa7I1K95Gurq60YsWKTGuQXsg9K7fwl9+/m7tXbuHI+W184OVLeP1Rc6mtrton7zcwPMJDa3q4d9UW7lu9lTuf2cL9q7buOEd5bnsDxx7QsePnqAXtnvstTTERcWtKqWvS7Q1q6cWNjib++/aVfOl/HuGx9b3MbKnnzGWzefURszl+0TTaGmp3e51DxSt5Pdbdy+Pre3hgzTbuW7WVR9b1MFwc7dVSX8OyeW0cu7CD4w7o4NgDpjGnvaHUmydpPzOopX1kdDRxzUPr+N6tK/mfB9fRV7w94tLOZhbPbGZ+RyOdrfU01FbTUFvNaEoMDI3SPzTCpr6hHXd6GrsBxfi7PM1sqWfZvLbiTzvL5rWxcHqTV/CSypBBLe0H/UMjrHhiE3c8vYk7n9nC0xv7WLlpO9sGhids31RXzey24g0lWus5cEYh3JcUQ76jKV+D1STtO7sb1B7ckvZAQ201px48k1MPnvmc5YPDo/QPj7B9cISqCBpqq2iord5nx7QllT+DWiqhupoq6mqq9ui4tSRNxK/5kiTlmEEtSVKOGdSSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo5lflOOiOgGnizhKmcC60u4vjwox22C8tyuctwmKM/tcpumjnLbrkUppc7JNs48qEstIlbszl1JpoJy3CYoz+0qx22C8twut2nqKNftmix3fUuSlGMGtSRJOVaOQX1x1gXsA+W4TVCe21WO2wTluV1u09RRrts1KWV3jFqSpHJSjj1qSZLKhkEtSVKOlU1QR8QZEXFtRFwYEddFxOlZ17S3ImJJRHw7IlJEXJJ1PaUQESdFxPUR8fmIuCkifhURy7Kua29EREfxd+4LEfHziLgvIt6edV2lEBH1EXFn8Xfw/KzrKYWIeKK4PWM/P866pr0VEQsj4nsR8W8R8ZWIuDUimrOua29ExGk7fU5jPx1Z17a/1WRdQClExCzgCuCilNLHIuKfgSsiYmlKqTvj8vbGq4DLgXOzLqSEmoEvpZQui4jFwGPApcBUPkeyGvhlSukzEVEDdAOXRsR/p5SGM65tb/09sCnrIkrsVuCccfObM6qjJCKiCvgRsCKl9OHislcDQ5kWVhpfBn5SfHwg8MfAtsyqyUhZBDVwFoUAWFOcXwm0Fpd/I6ui9lZK6asRcVrWdZRSSunqcbNjVxqa0t/8U0obgM8UZzuABgq/iyNZ1VQKEfEGoB+4BnhlttWUVBPwW8AhFH4H/yHbcvZaF3A08HhEfBY4AvhaSmkw27L22m3A/SmltQAR8XXg0ymlKf3/ak+Uy67vucXp0E7TuRO0VX6cD2yn8C15youIsymEWg/wgTSFT6mIiDnA7wOfyrqWfeBfgL8B3g+8FbguIhqyLWmvHFic1qaUPgkMUNijeGR2Je29lNLWcSF9MHAi8B/ZVpWNcgnq1cVp7U7T1RO0VQ5ExAcp7NI/PqX0s6zrKYWU0hXAcRT26PwkIpZkXNLeOIfCl6gvAm8sLnt3RLw7u5JKI6V0ZUppNKXUC9xFIeiOyLaqvTJ2aOKx4vRRCodjTs6mnH3ir4HPVmJvGsonqK8EeoE5xfl5FI5jXJlZRZpQRMyOiO9T+CPyMaA5In6UcVl7JSKOjoi3AaSUhih8QawDZmda2F5IKf1rSumclNKHgLHBVpemlC7Nsq69FRELIuJz4xYdSOELyROZFFQavwE2ANOL8zOK0weyKae0IuJw4Ejg21nXkpWyOEadUlpX3O34qYi4EHgJcPYUH0hGceTw2KCXroj4fErpT7OsqQTOAt5SfHx+cbolm1JKZgj4cEScDCwAlgJ/mVK6Mduy9l7xC8hri7PnRcTjKaVrs6xpL/UDJ0bEP1H4nLYDb00pbcy2rD2XUtpa/Pv3ueLfv1cCf55SuiHbykrmb4C/mcqHkvaWVyaTJCnHymXXtyRJZcmgliQpxwxqSZJyzKCWJCnHDGpJknLMoJYkKccMakk7RMQlEbE1Iv4q61okFXgetSQAIuIY4H+Bn1K4KE1rSml7tlVJskctVYiIuKB4P981EXHZBE3WAvcAf0Th8pODxdfNiYhrIqK/+PrT9lvRkgxqqQL9LKX0jgmWn0ThDkWrgZaxGyCklNaklE7j2dvIStqPDGpJREQV8NlxixZGREtW9Uh6lkEtTWER8XcRsbm4S/qfI+KHEbEpIs7fzVW9k8IdijZTuBNTMLVv/SiVDYNamsJSSn8J3FGc7aIwCOyDFG77OikRUUvhDkUAFwL3Fh8b1FIOlMVtLiUB8IPiceXv7ObrPgAsodCbvhA4AHgFsKyUxUnaM/aopfKxfndfEBGNwCeLsxemlLYADxfnDWopBwxqqXzsyUURPgLMLT6+ICIS8PfFeXd9Szngrm+pQkVEO/AXxdnrKJyWBVBH4Vj3wohoSSn1ZFGfpAKDWprCIuITwLHF2Y9HxEhK6ZuTfPmfA9MoDB57TUpp7AInAWwBWin0qm8uadGSdotBLU1hKaXPAZ/bw9d+AvjEBMsT0LaXpUkqEY9RS5VjM/Ak0PUClxCd0NglRIHh4uv790l1kibkTTkkScoxe9SSJOWYQS1JUo4Z1JIk5ZhBLUlSjhnUkiTlmEEtSVKOGdSSJOWYQS1JUo79/wHPuUIuBLZXiQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 576x1296 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"job.plot_final_potential()"
]
},
{
"cell_type": "markdown",
"id": "fd58d03d-79bb-4a27-a7bd-371e6dba48a4",
"metadata": {},
"source": [
"Acces the plotting interface common to the different fitting codes usable via pyiron"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "1230ba4e-4a4b-42fe-9355-5e1360fab63d",
"metadata": {},
"outputs": [],
"source": [
"plots = job.plot"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "7f94c7c7-eda9-4d39-8e82-a2e498b069cb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAGrCAYAAAAcgXyaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABFk0lEQVR4nO3dfZwddXnw/89FXOkGH9YH1CQ0BK2iIMVoKlisIhapVSHy40mxFrWkar0VtUFQbg1WKxpF1Fo0tQhWVITi8nRjtFKkxaIFAwTUcN/agCxBQAgoWTSG6/fHzJKTw56zc3bP4+bzfr3Oa3a+850512Q2Z/Y634eJzESSJEmSNLkdeh2AJEmSJPUzkyZJkiRJasKkSZIkSZKaMGmSJEmSpCZMmiRJkiSpiUf0OoBueOITn5iLFi3qdRiStF275ppr7srMnXsdRz/yPiVJvdfsPrVdJE2LFi3i6quv7nUYkrRdi4ibex1Dv/I+JUm91+w+Zfc8SZIkSWrCpEmSJEmSmjBpkiRJkqQmTJokSZIkqQmTJkmSJElqwqRJkiRJkpowaZIkSZKkJkyaJEmSJKkJkyZJkiRJasKkSZIkSZKaMGmSJEmSpCZMmiRJkiSpCZMmSZIkSWriEb0OQJLU30bXjLFy9Tpu2zjO/JFhlh+0O0sXL+h1WJIkdY1JkySpoZNG13L2VbeQ5frYxnFOPH8tgImTJGm7Yfc8SdKkRteMbZMwTRjfvIWVq9f1JCZJknrBliZJ0qRWrl73sIRpwm0bx7sai9TvFp1wSU/ff/0pr+jp+0uznS1NkqRJNUuM5o8MdzESSZJ6y6RJkjSpRolRAMsP2r27wUiS1EMmTZKkSS0/aHeGh+ZsUxbA0fsudBIISdJ2xTFNkqRJTSRGTjcuSdremTRJkhpauniBSZIkabtn9zxJkiRJasKkSZIkSZKaMGmSJEmSpCZMmiRJkiSpCZMmSZIkSWrCpEmSJEmSmjBpkiRJkqQmTJokSZIkqQmTJkmSJhERT42IcyIiI+LMsmz/cr3+NVJuX19XfnEvz0GS1B6P6HUAkiT1qQOAc4Ej6so/B1xS/rwIeCfwq3L9GuCwmrobOxeeJKlbTJokSZpEZn4hIvavK/4h8OPM/AVARJwBfDAzt5Tb5wKvAp4B3AV8rNHxI2IZsAxg4cKFbY1dktReJk2SJFWUmfcB9wFExNOB5wPH1lT5NLAaGAZuAl4ZEc/KzAcmOdYqYBXAkiVLssOhS5JmwDFNkiRNzweAD9W0MpGZl2bmg5l5P3A9Rfe9PXoUnySpTUyaJElqUUQ8C3g2cE5N2S4R8eGaaouAcWB9V4OTJLWdSZMkSZOIiMOBt5SrSyLi4zWbTwZOzszabnUPAM+PiFMj4gKKhOnQzLy7OxFLkjrFMU2SJE0iM8+lmD3vyEm21c+oR2beBRzYhdAkSV1mS5MkSZIkNWFLkyTNAqNrxli5eh23bRxn/sgwyw/anaWLF/Q6LEmSZgWTJkkacKNrxjjx/LWMby4mcRvbOM6J568FMHGSJKkN7J4nSQNu5ep1DyVME8Y3b2Hl6nU9ikiSpNml50lTROwYEcsj4p6IaPpwv4g4KiIui4hPRcTlEbF3t+KUpH5128bxlsolSVJrep40AfsA3wPubVYpIvYCzga+kZnvKOtfGBE7dj5ESepf80eGWyqXJEmt6XnSlJlXZOaVFaoeShHv7eX6GLCQIul6mIhYFhFXR8TVd955Z3uClaQ+tPyg3RkemrNN2fDQHJYftHuPIpIkaXbpStIUEbdGRE7yOqaFw8wrl5vrlvMmqUtmrsrMJZm5ZOedd55m5JLU/5YuXsBHDt2LBSPDBLBgZJiPHLqXk0BIktQm3Zo9b98G73VXC8fYUC6H6pYbJqkrSduVpYsXmCRJktQhXUmaMvPW6ewXEcuB3TLzrcD5wPuBp5Sb5wO3AN9vS5CS1Id8/pIkSb3X8+c0RcQi4G3A48r1jwNfy8yrgecCe0TEnMxcGxGvA5ZFxB8AI8DBmfmb3kQuSZ01umaM5eddx+YtxcSiYxvHWX7edYDPX5IkqZt6njRl5nrgb8tX/bbX1K1/FfhqdyKTpN46+aIbH0qYJmzekpx80Y0mTZIkdVHPZ8+TJE3unk2bWyqXJEmdYdIkSZIkSU2YNElSnxoZHmqpXJIkdYZJkyT1qRUH78nQDrFN2dAOwYqD9+xRRJIkbZ96PhGEJGlyE5M9OOW4JEm9ZdIkSX3Mh9ZKktR7ds+TJEmSpCZMmiRJkiSpCZMmSZIkSWrCpEmSJEmSmjBpkiRJkqQmTJokSZIkqQmTJkmSJElqwqRJkiRJkpowaZIkSZKkJkyaJEmSJKkJkyZJkiRJasKkSZIkSZKaMGmSJEmSpCZMmiRJkiSpCZMmSZIkSWrCpEmSJEmSmjBpkiRJkqQmTJokSZIkqQmTJkmSJElqwqRJkiRJkpowaZIkSZKkJkyaJEmSJKkJkyZJkiRJasKkSZImMbpmjP1OuYzdTriE/U65jNE1Y70OSV0WEU+NiHMiIiPizJry9WXZxOvimm0vjYjvRsRpEXFFRLykJ8FLktrKpEmS6oyuGePE89cytnGcBMY2jnPi+WtNnLY/BwDnTlJ+DfBHNa/jACLiScAFwNWZeRywBrggInbuRrCSpM4xaZKkOitXr2N885ZtysY3b2Hl6nU9iki9kJlfAO6aZNNc4FXAu4G/BH5Tlr8c2Am4vVwfAx5dlkuSBtgjeh2AJPWb2zaOt1Su7c6ngdXAMHAT8MqIeBYwr9y+uW45j0lExDJgGcDChQs7FqwkaeZsaZKkOvNHhlsq1/YlMy/NzAcz837gemARsAewoawyVLfcwCQyc1VmLsnMJTvvbA8+SepnDVuaIqKVr71+l5m3tSEeSeq55Qftzonnr92mi97w0ByWH7R7D6NSP4iIXYC3ZOb7yqJFwDiwHrgVuB94SrltPvAr4NLuRilJardm3fPWA1nxOOuBp800GEnqB0sXLwCKsU23bRxn/sgwyw/a/aFybR8i4nDgsHJ1SUR8HDgFeH5EnEpx3xsHDs3Mu8t9DgHeHxGnAc8FDsnMO7sevCSpraYa0xQVj1O1niQNhKWLF5gkbecy81yK2fOOrNt0YJN9vgN8p5NxSZK6r9mYpu9m5g5VXsDN3QpYkiRJkrqpWdL0ty0c57gZxiFJkiRJfalZ0nRmRMyvcpDMvK5N8UiSJElSX2mWNO0ErIqI1RHxxoh4TLeCkiRJkqR+0SxpOjkzXwn8BfAo4OKIODcilkbEUJP9JEmSJGnWaDh7XmaeVS7voHj6+acj4g+Ao4FPRMS/AWdn5hVdiVSSZmB0zZhTiEuSpGmZasrxh0TEbhTTrh5J8TC/vypfczoSmSS1yeiaMZafdx2btxSPnhvbOM7y84qhmCZOkiRpKg2750XESRGxc0S8LSK+B/w/4IPAMymey/R/gRVdiVKSZuDki258KGGasHlLcvJFN/YoIkmSNEiatTSdCLyfoiVp4uG1vwDOoeiW998djk2S2uKeTZtbKpckSarVLGkaLpf3A6PA2cC3MvPBTgclSZIkSf2iWdJ0G3A8MJqZm7oUjyS13cjwEBvHH96qNDLsRKCSJGlqzaYcf1dmfsWESdKgW3HwngztENuUDe0QrDh4zx5FJEmSBknDpCkzv167HhFvjYg1EXFtRDw1Ik6PiLmdD1GSZmbp4gWsPHxvFowME8CCkWFWHr63M+dJkqRKKk05HhHvA/6uXF0P3ALcQPH8pr/qSGSS1EZLFy8wSZIkSdPSrHteraOBDwGvBe7IzN9l5meB+R2LTJIkSZL6QNWk6deZ+f7M/BqwCSAiHgc8o2ORSZIkSVIfqNQ9D/hNRKwH1gF7RcRlwGLgR50KTJIkSZL6QdWk6QTg28DCcn1/4DcUD8CVJEmSpFmrUve8zLwSeCbwXuB04H3AHpl5xUwDiIgdI2J5RNwTETlF3ax7/cNM31+SJEmSmqna0kRm3gKc0oEY9gG+B9wLjExR92Lg5Jr1OzoQjyRJkiQ9pGFLUzluqZJW6tbLzCvKlqwqngAsBd4DHAbcP933lSRJkqQqmrU0LW4hGXpKs40RcSsw2QNS3pCZZ1Z8D4APZ+YlETEP+BnF2Kp9G7znMmAZwMKFCyerIkmSJElTapY0PZYiKali/RTb923wXndVPD4AmXlJudxQzua3T0Q8PjPvnqTuKmAVwJIlS5qOlZIkSZKkRpolTW9o4Ti/brYxM29t4VgPiYjlwG6Z+daIeAHwnMw8PSJ2BOYBG4B7pnNsSZIkSaqiYdKUmWd1I4CIWAS8DXhcuf5x4GuZeTXwXGCPiJgDbAReHRFPpXhG1A3AuzLTViRJkiRJHVN59rxOycz1wN+Wr/ptr6lZ/THwsi6FJUmSJElAxec0SZIkSdL2yqRJkiRJkpowaZIkSZKkJmaUNEXEp9oViCRJkiT1o0oTQUTE3sAHgWcAO9Zsegrwjg7EJUmSJEl9oerseV8FnjlJudN9S5IkSZrVqiZNvwccBdzB1kQpgL/rRFCSJEmS1C+qJk2fBq7IzNtrCyPi6+0PSZIkSZL6R9Wk6XvA2ogYB35XU/5k4DNtj0qSJEmS+kQrY5qeMEm5Y5okSZIkzWpVk6YHcUyTJEmSpO1Q1aTpa0w+pumr7Q9JkiRJkvpH1aTpjcB7IuJ2Hj6m6R/bHpUkSZIk9YmqSdO8crlLXbljmiRJkiTNalWTpuuA4+rKAvhkW6ORJEmSpD5TNWl6RWbeVl8YEa9oczySJEmS1Fd2qFIpM2+LiL+JiBsi4lcRsTYi3jxZIiVJ0mwQEU+NiHMiIiPizLJsn4j4j4j4eERcFRH/FhF71uyzvqw/8bq4ZycgSWqbSi1NEfG/gE/VFO0JfDYiIjNP70hkkiT11gHAucARNWU7AZ/NzK9FxG7Az4CzgCXl9muAw2rqb+xCnJKkDqvaPW8Z8A/AD4BNwFxgH+AtgEmTJGnWycwvRMT+dWWX1azeVS53qimbC7wKeEa5/WONjh8RyyjuryxcuHDmAUuSOqZq0nRfZr69ruzLEXFluwOSJGlAHAOMA++sKfs0sBoYBm4CXhkRz8rMB+p3zsxVwCqAJUuWOButJPWxqknTYyLiM8DVbG1pej7w6E4FJklSv4qIv6botve8zPzxRHlmXlr+eH9EXA/8GbAH8MPuRylJapeqSdMXKKYXr/8m7B3tDUeSpP4VEU+m6JZ+L/BuYKeIuCgzXxURuwBvycz3ldUXUbREre9FrJKk9qmaNH2aYqa9Y4FdgZspbhqf7VBckiT1VEQcztZJHZZExMeBG4BXl2XHlMt7y+UDwPMj4lTgaRQJ06GZeXd3IpYkdUqlpCkzk6Kl6aGH2UbEyyi66d3fmdAkSeqdzDyXYva8I+s2ndmg/l3AgR0OS5LUA5We0xQR35ik+A8pbiaSJEmSNGs1bWmKiBeVP+4aEX8CRM3mG4A3dyowSf1jdM0YK1ev47aN48wfGWb5QbuzdPGCXoclSZLUFVN1z7ucrZM/XD7J9tvbGYyk/jO6ZowTz1/L+OYtAIxtHOfE89cCmDhJkqTtwlTd824pX7+t+fkWiokgrgPe09HoJPXcytXrHkqYJoxv3sLK1et6FJEkSVJ3NW1pysxFABHx2cz8m/rtZZc9SbPYbRvHWyqXJEmabSpNBNEgYfoj4J/bHpGkvjJ/ZLilckmSpNmmUtI0ISKeFhHvj4h1wFUUz6GQNIstP2h3hofmbFM2PDSH5Qft3qOIJEmSumvK5zRFxM4Uz6h4HfBHE8XlcsukO0maNSYme3D2PEmStL1qmDRFxNHA0cCfAnPYmijdB/wdcCFwXIfjk9QHli5eYJIkSZK2W81amv6FYrrxoJgx78tl2ecy8xNlnYeNdZIkSZKk2aRZ0vRXwGuBRcBy4KLM/F1EZJN9JEmSJGlWaTgRRGaekZl/CvwJsBvwfyLiH4DHTNSJiJd3PkRJkiRJ6p0pJ4LIzA3AqcCpEfEsYGNEXAZcD7wMuLSzIUqSJElS70yZNNXKzB8DJwFExAuBV3YiKEntN7pmzBnwJEmSpqGlpKlWZv5nRLyqncFI6ozRNWOceP5axjcXTwkY2zjOieevBTBxkiRJmkJLD7etV7Y8SepzJ19040MJ04TxzVtYuXpdjyKSJEkaHDNKmiT1v9E1Y9yzafOk227bON7laCRJkgaPSZM0yzVrTZo/MtzFSCRJkgZTpaQpIn4WEV/rdDCS2q9Za9Lyg3bvYiSSJEmDqWpL052ZeVRHI5HUEY1ak0aGh5wEQpIkqYKqSdNlEfGy+sKI+Hab45HUZssP2p3hoTnblA0PzWHFwXv2KCJJkqTBUnXK8aOA5RGxCfglkGX5UzoSlaS2mWhN8hlNkiRJ01M1adq1XD6qfE3ISepK6jNLFy8wSZIkSZqmqknTdcBxdWUBfLKt0UiSJElSn6maNB2ZmTfVF0bEK9ocjyRJkiT1lUoTQWTmTRHx5xHxjYi4OCJ+PyLeA9ze4fgkSZIkqaeqPqfpWOBi4BBgD4rJIJ4AfLRzoUmSJElS71WdcvwdwJeB9wJ3Z+amzDweeHbHIpMkSZKkPlB1TNOvM/P1ABPPa4qIHYHdOhWYJEmSJPWDqknTIyLiP4AfAU+PiDOAFwK/7lhkkiRJktQHqiZNHwS+AfwxxVTjx5Tlh3UgJkmSJEnqG5WSpsy8MCJeALwJ2AW4FTgrM7830wAi4hJgA7AT8Fzg45n5Tw3qHgUsA9YCewPvyMzrZhqDJEmSJDXSMGmKiB2A9wCvBn4D/Etm/nUHYhjLzGXle34XWBURV2Xm2rp49gLOBo7LzM9ExAXAhRHxjMz8TQfikiRJkqSmLU0fAE6i6I4H8McRsSUz/7mdAUwkTKW7yuXcSaoeSjHb38SzocaAg4F9gCvaGZMkSZIkTWg25fjrgY3A+cBFwHhZ1rKIuDUicpLXMTV15gMHAl/MzO9Pcph55XJz3XLeJHWJiGURcXVEXH3nnXdOJ2xJkiRJatrStBPwjMz8JUBEPJ3iAbcPiYg3ZOYXK7zPvg3e667yOHsAZ1B0vTujwTE2lMuhuuWGSeqSmauAVQBLlizJCjFKkiRJ0sM0S5p+DiyMiF1ryn4VEYvZ2mXvrcCUSVNm3tpoW0S8E3gNcDLwi4g4HrgpM0cjYjmwW2a+laLF6/3AU8pd5wO3AJO1SkmSJElSWzRLmhYDV09SPlnZTJxaLmtbsV5dLp8L7BERczJzbUS8DlgWEX8AjAAHOwmEJEmSpE6aasrxmGL7jLu9ZWbD98jM19StfxX46kzfU5IkSZKqapY0fR84qsn2wARGkiRJ0izXLGl6c2be3GzniHhzm+ORJEmSpL7ScMrxzLxuqp2r1JEkaRBFxFMj4pzyERln1pS/NCK+GxGnRcQVEfGSKtskSYOr2XOaJEnanh0AnFtbEBFPAi4Ars7M44A1wAURsXOzbV2NWpLUdiZNkiRNIjO/QPk8wRovp3iO4e3l+hjw6LK82TZJ0gCrlDRFxCGdDkSSpAEwr1xurlvOm2Lbw0TEsoi4OiKuvvPOO9seqCSpfaq2NJ0eEcdGxEgng5Ekqc9tKJdDdcsNU2x7mMxclZlLMnPJzjvbg0+S+tlUz2masAbYBJwZEb8Dvg5cmJkPdCwySZL6z6XA/cBTyvX5wK/K8miyTZI0wCq1NGXmKzLz7MxcCvwNcDTwi4g4MyIOigjHRkmSZpWIOBx4S7m6JCI+npl3AIeU66cBzwUOycw7m23rfvSSpHaq1NIUEccBFwHHAK8HdqH4Ru0vgN2A90bE6Zn5tc6EKUlSd2XmuRSz5x1ZV/4d4DsN9mm4TZI0uKp2z/so8Iny5wB+DpwFnJmZP4uIRwA/AEyaJEmSJM0qVZOmIeAB4BvAF4HvZGbWbD8SeGybY5MkSZKknquaNF0PvDgz722w/Qbg0PaEJEmSJEn9o2rStK5JwkRmXtemeCRJkiSpr1Sd9e7wiNjS4HVLRHwsIoamPowkSZIkDZZWpgqPBq9dgHcDJ7Y9OkmSJEnqsard8z4B3EgxQ979wFxgX2Ax8HngZcBfAx/sQIySJEmS1DNVk6bnZebyurIfR8QbMvNG4MaIOKLNsUmSJElSz1VNmp4WET8ErgXGgWGKVqbHA0REtHAsSZIkSRoYVROdTwMrgb3L9SiX746I3Sie3XRPm2OTJEmSpJ6rlDRl5ici4kfA4cA8YAPw9cz8ZkQMU4xnMmmSJEmSNOtUSpoi4mfADzLzqPptmTkOrGt3YJIkSZLUD6pOOX7nZAmTJEmSJM12VZOmyyLiZfWFEfHtNscjSZIkSX2l6kQQRwHLI2IT8Esgy/KndCQqSZIkSeoTVZOmXcvlo8rXhJykriRJkiTNGlWTpuuA4+rKAvhkW6ORJEmSpD5TNWk6MjNvqi+MiFe0OR5JkiRJ6iuVJoLIzJsi4s8j4hsRcXFE/H5EvAe4vcPxSZIkSVJPVUqaIuJY4GLgEGAPiskgngB8tHOhSZIkSVLvVZ1y/B3Al4H3Andn5qbMPB54dscikyRJkqQ+UHVM068z8/UAE89riogdgd06FZgkSZIk9YOqSdMjIuI/gB8BT4+IM4AXAr/uWGSSJEmS1AeqJk0fBL4B/DHFVOPHlOWHdSAmSZIkSeoblZKmzLwwIv4YeCOwC3ArcFZmfq+TwUmSJElSr1VtaSIzvw98v7YsIt6QmV9se1SSJEmS1CcqJU0R8SiKVqZnATvWbPozwKRJkiRJ0qxVtaXpXOBlFOOZamV7w5EkSZKk/lI1aXo+8E/A7WxNlAL4y04EJUmSJEn9omrS9K+Z+eb6woi4vs3xSJIkSVJfqZo0PSYivgVcDTxQU34McH67g5IkSZKkflE1aTqiXL60pixwTJMkSZKkWa5q0vQL4Jt1ZUExOYQkSZIkzVpVk6b3ZeYZ9YUR8cY2xyNJkiRJfaVh0hQRry9//EF9whQRLwZe3MnAJEmSJKkf7NBk24lNtq0HvsvWsU6SJEmSNCs16553e2Z+CSAi/h3YG7g2Mw/IzJuBmyPiV90IUpqO0TVjrFy9jts2jjN/ZJjlB+3O0sULeh2WJEmSBkyzpOmhmfEy8yUR8e+ZeUCjOlI/GV0zxvLzrmPzluJXdGzjOMvPuw7AxEmSJEktadY9r54JkgbGyRfd+FDCNGHzluTki27sUUSSJEkaVM1aml4UEffVrA/XrQMMdyAmqWX1XfHu2bR50nqNyiVJkqRGmiVNOwCPqiurX7f1ST03umaME89fy/jmLUDRFU+SJElql2ZJ0zrglCbbAzipveFIrVu5et1DCdNURoaHOhyNJEmSZptmSdMpmXlWs50jYk6b49Es1cmZ7G6r2LI0tEOw4uA92/KekrZvEbE/8O+TbHoccC2wa03ZJZn5ys5HJUnqlIZJ01QJU1nnn9sbjmajybrPnXj+WmD6M9nVJmE7RLAlJ+8pOieCBzOdclxSJ3wOuKT8eRHwTuBXwDXAYTX1NnY1KklS2zVraZLaYrLuc+Obt7By9bppJTH1SVijhAngwUz+55RXtPwekjSFHwI/zsxfAETEGcAHM3NLRMwFXgU8A7gL+NhkB4iIZcAygIULF3YlaEnS9Jg0qeMadZ+r2q2uXitjmOaPOMGjpPbLzPuA+wAi4unA84Fjy82fBlZTzDB7E/DKiHhWZj5Qd4xVwCqAJUuWOLGSJPWxVp7T1BERcUlEfCEivhoR6yLi2CZ1s+71D92MVdPTKHGZbkJTNdkaHprD8oN2n9Z7SFILPgB8KDO3AGTmpZn5YGbeD1xP0XVvjx7GJ0maoRklTRFxYhtiGMvMv8rM1wC3A6siYq8GdS8G/qjmNWmXB/WX5QftzvDQtnOGtJrQjK4ZY79TLmO3Ey5hh4iG9eZEEMCCkWE+cuhejmGS1FER8Szg2cA55fouEfHhmiqLgHFgfdeDkyS1TcPueRFxWYX9nwN8ZCYBZOaymtW7yuXcBtWfACwFdgd+CqxsdFz7ivePicRlurPnOYZJUh87GTg586EPpgeA50fEqcDTKBKmQzPz7l4FKEmauWZjmvavsH+lPtgRcSsw2V/Ib8jMM8s684EDgS9m5vcbHOrDmXlJRMwDflbGuO+kgdlXvK8sXbxg2q0+jmGS1K8y84i69bso7mWSpFmk6sNt/wz4DfAD4H6KlqB9gB0rvs++Dd7rLoCI2AM4AzguM89odJDMvKRcboiI9cA+EfF4v8Gb3RzDJEmSpF5qljQdlZnXAUTEweWYo1qnR8QFVd4kM29ttC0i3gm8hqKLwy8i4njgpswcjYjlwG6Z+daIeAHwnMw8PSJ2BOYBG4B7qsSgwTV/ZJixBonT4+YOsXHTZp/DJEmSpI5p9nDb62pWXxgRp1E8l2KcYhrV59Gga1yLTi2XF9eUvbpcPhfYIyLmUDwc8NUR8VRgMXAD8K6afuSaRWofXvvY4aGG9eY+8hGsef/LuhiZJEmStjdVn9N0MfB2Hj6GqWFXuqoys+FUaHWtWz8G/Ot4O1A/8cPG8c0N6073WU+SJElSVVWTprcBvwQOB55C0S3u6xRd6qS2cuIHSZJas+iES3odAuudvVazWKWkKTPHgePLl9RQbbe66Y4zajR+qZ4TP0iSJKkbqrY0ERF/DhwLDAFvAV4LrMzMBzsUmwZMfbe6sY3jnHj+WoApE6faZKuZoOgjusCJHyRJktQlO1SpFBHHUoxrOgTYg6Kr3hOAj3YuNA2aybrVjW/ewsrV65ruN5FsjW0cn/LBXxMJ05UnHGDCJEmSpK6olDQB7wC+DLwXuDszN2Xm8cCzOxaZBk6jVqKpWo9aGcNU5XiSJElSO1XtnvfrzHw9QES8rFzuCOzWqcA0eBo9T2mqyRpaTYKc/EGSJEndVLWl6RER8R8R8Xng6RFxBrAW2NS50DRolh+0O8NDc7YpazRZw+iaMfY75TJ2a3G2Hyd/kCRJUrdVbWn6IPAN4I8pxuIfU5Yf1oGYNKAmxhhNNXte/YQRVTn5gyRJknqh6pTjF0bEC4A3Ar8P3AqcmZn/1cngNHiWLl4wZVLT6hgmgNftu5APLd1rJqFJkiRJ01IpaYqIXTPzB8APaspWRMR4Zl7bqeA0O01nIgcTJkmSJPVK1TFNX5yk7NvAJ9sYi7YTI3OHWqq/wIkfJEmS1ENNW5oi4v3lj4tqfp4wjFOOq6Lah9dO9SymWk78IEmSpF6bqnveCnjob9wP1G0L4MftDkizjxM/SJIkaZBNlTR9iSJp+jPgmzXlCWwEzupMWJpNpjPxw2lHPsdkSZIkSX2hadKUmccARMSxmflPXYlIs06rEz88bu6QCZMkSZL6RtWJIK6PiLdHxDMBIuJZEfHaDsalWWTuI+dMXak0PDSHD7xqzw5GI0mSJLWmlYfbXgXcU65vBP4kIp6dme/tRGAabBMTP4y10MrkGCZJkiT1o6pJ04OZ+dBEEJm5AXhLRHyrM2FpkE1n4gfHMEmSJKlfVe2e98yIeHJtQUQ8CXhq+0PSoGt14gfHMEmSJKmfVW1puhX4n4j4IXAf8BhgMfD9TgWmwdVKlzzHMEmSJKnfVU2aTgC+DfxxTdn9Zbm2c7UPrp0/MkxApQfYOoZJkiRJg6BS0pSZV5Yz570W+H3gFuArmfnzTgan/lc/fqlqK9OCkWGuPOGAToYmSZIktUXVliYy8xbglNqyiPjrzPx826PSwJjOg2sBlh+0eweikSRJktqvYdIUEa8DnpKZH4+IMxpU+zPApGk71uqDa8GJHyRJkjRYmrU0/SOwU0R8BTimQZ0qQ1c0i80fGXbiB0mSJM1qzZKmt1G0NN0WEeuo65oHBPCejkWmvlU78cNjh4cq7+fED5IkSRpEDZOmzPxSzepfZeaV9XUi4mcdiUp9q37ih43jmyvt58NrJUmSNKiajWlaWLP687r1Caew7TTkmuWmO/GDCZMkSZIGVbPueetxzJLqTGfihwUjwx2IRJIkSeqOHabYHlO8tJ2Z32ICNDw0x+nFJUmSNNCatTSdk5mvAYiIDwPfBn6QmZsiYhjYF3hZF2JUj9VO/DA8NFWevZUTP0iSJGk2aDYRxGtqVg8EPpCZvyu3jUfE94CVwImdDVG9VD/xw6bND1baz4kfJEmSNFs0a2mqNQKMRcSNwDgwDOwJ3NuhuNQnpjPxgw+vlSRJ0mxSNWk6GTgL2L+m7EHguDbHoz7T6sQPPrxWkiRJs02lpCkzz46INcBhwDxgA3BeZv6ok8Gp9+aPDDNWMXFyDJMkSZJmo6otTWTmjyLi0xRJ07rMrDa4RQPtJc/cmS9fdUvTOjsE/Owjr+hSRJIkSVJ3VZoKLSIeGxFfB+4CLgb+ICJuiIindzQ69dTomjH+9ZqxKes96NO8JEmSNItVnT/60xRd83YAIjNvAo4CPtapwNRbo2vGeOc511aaBMKH10raHkXE+ojImtfFZflLI+K7EXFaRFwRES/pdaySpJmpmjQtAV4KzAd+DpCZNwA7dSgu9dDomjGWn3sdVRqQfHitpO3YNcAf1byOi4gnARcAV2fmccAa4IKI2LlnUUqSZqxq0vQb4JbMvB3YAhARfwo8o1OBqXdWrl7H5iZ97uZEEBQtTB85dC8nfpC0vZoLvAp4N/CXFPfKl1N8oXh7WWcMeHRZLkkaUFUngvgpcFNE/A7YISI2UyRcF3QsMvXE6JqxKWfL+8QRe5soSVLRdX01xbMLbwJeCXy+3La5bjmvfueIWAYsA1i4cGFHA5UkzUzVlqZ3AjcAQ8Cc8vWTslyzxOiaMU48f23TOj64VpIKmXlpZj6YmfcD1wOLgB3LzUN1yw2T7L8qM5dk5pKdd7b3niT1s6pJ01OBtwB/DBwJ7AfsnZk3dyowdVeViR+G5oQPrpUkICJ2iYgP1xQtAsaB04H7gaeU5fOBXwGXdjVASVJbVe2e903gvZl5GnBV58LRTI2uGWPl6nXctnGc+RUfNltl4ofHzR3iA6/a01YmSSo8ADw/Ik4FnkaRMB2amXdExCHA+yPiNOC5wCGZeWfvQpUkzVTVpOmyMmHaRkS8NDO/096QNF0T3esmWovGNo4/1N2uWbIz1cQPC0aGufKEA9obrCQNsMy8CziwwbbvAN4bJWkWqdo977qI+EpE/H8R8eKIeFFEvAhY2cng1JqVq9c9rHvd+OYtrFy9ruE+VSZ+cEpxSZIkbc+qtjSdCCTFeCb1mYkueY2Sn9salJ80upazr7ql6bGd+EGSJEnbu6pJ02/Y+syJWk9uYyyahonxSM26180fGX5Y2Umja/nyFAmTEz9IkiRJ1ZOmr2bmG+sLI+LTbY5HLVpx4Y1NE6bhoTkP6143umasUgtTP038MJ0JLiRJkqR2aJo0RcR+wCHAWEQ8OzNvqN2emW/vZHCa2sbxzQ23LWiQXKxcva7pTHn9NvHDdCe4kCRJktqhYdIUEUcAXwGiLFoeEQdm5n90JTLNWH3iM9XYJygudr9N/NBsgguTJkmSJHVas5am/00xu97dZb3HAO8BTJoGzOiaMVZceGPTVqkJR++7sO8SkUYTWTQqlyRJktqp2ZTjC4E/zcwnZuYI8BfA02srRMTiDsamNpjo2jZVwhTA6/ZdyIeW7tWdwFow2UQWzcolSZKkdmqWNF2fmZdNrGTm2cAddXU+0ZGoVNnj5g41LZ+sa1u9BSPDfPLI5/RlwgRFd8HhoTnblE02wYUkSZLUCc26570gIu6rKxuuK/Or/h77wKv2ZPl517F5y9apHWqnCp+qC1u/TfowmYnugs6eJ0mSpF5oljTtADxqkvLasmaTsFUSER8BdgXuBV4JXAy8PTMf1p8sIo4ClgFrgb2Bd2TmdTONYZBNlVDMHxluOPHDoLTWON24JEmSeqlZ0rQOOKXJ9qCYGGKm5gDHZOZvI2IL8DcUk018ZZs3i9gLOBs4LjM/ExEXABdGxDMy8zdtiGNgLV28oGESsfyg3beZrntCvz2HqRGnG5ckSVKvNUuaTsnMs5rtHBEzbmnKzONrVp9cLjdMUvVQitav28v1MeBgYB/gipnGMVsNetc2pxuXJElSrzVMmqZKmKrWAYiIW4HJ/sJ9Q2aeGRHzgE9RJEafAi6fpO68crm5bjlvkrpExDKKrnwsXLiwSpgDo9Xuas1aovqd041LkiSp15q1NLXTvg3e6y6AzNwAHBERxwMfBe4EPlxXd6L1aahuOVmrFJm5ClgFsGTJkhm3iPWL7a27WqMxWU43LkmSpG5pNuV422TmrZm5fpLXryPi5JqqN5fLhQARsTwi/rEsOx94EHhKuT4fuAX4fjfOoddG14yx3ymXcdw51zbsrjYbOd24JEmSeq1bLU3NLIqILwCbgAOB84APlNueC+wREXMyc21EvA5YFhF/AIwAB28Pk0DUty5NZrZ2Vxv0MVmSJEkafD1PmjLzL5tse03d+leBr3Y8qD6z4sIbp3xA7WzurjbIY7IkSZI0+LrSPU/TN7pmjI3jD3tk1TbsriZJkiR1Ts9bmtTcVGOV5kQwvnkLJ190IysuvJF7xzfbhU2SJElqI5OmPjfZzHEThnYINj9YTAx4z6atrVGzfUY9SZIkqZvsntfHjv6n/2q6fSJhmsxsnlFPkiRJ6iaTpj510uharvzp3TM6xmydUU+SJEnqJpOmPjS6Zoyzr7plxseZzTPqSZIkSd1i0tSHVq5eR+OOd9U4o54kSZLUHk4E0Ydm2q1ugbPnSZIkSW1j0tSHRuYObTMbXisCuPKEA9obkCRJkrQds3teH8oZ9M1zHJMkSZLUXiZNfeje8em1MjmOSZIkSWo/k6Y+NJ3WogUjw3zk0L0cxyRJkiS1mUlTH1p+0O4MzYnK9ReMDHPlCQeYMEmSJEkdYNLUh5YuXsBOj6w2R4dd8iRJkqTOcva8PjO6ZoyVq9exscK4JqcWlyRJkjrPpKmPjK4Z48Tz1zK+ecuUdSe65EmSJEnqLJOmPrJy9bpKCVOAXfIkSaqx6IRLeh2CpFnMpKlPjK4ZY2zjeKW6R++7sC+65E10Jbxt4zjz7SooSZKkWcqkqQcmko2xjePMiWBLC0+zfd2+C/nQ0r06GF019V0JxzaOc+L5awFMnCRJkjSrOHtel00kGxOtSoOYMMHkXQnHN29h5ep1PYpIkiRJ6gyTpi6rOm6pXj8lTAC3NehK2KhckiRJGlQmTV0yumaM/U65rPK4pVpDO9BXCRPA/JHhlsolSZKkQWXS1AX1XfJatfLw57Q3oDZYftDuDA/N2abMB+1KkiRpNnIiiC6Ybpc8KLrl9ePEChMxOXueJEmSZjuTpi6Y7jiffhvHVG/p4gUmSZK2SxGxD/Bx4PvAC4FfA+/IzBsjYj2wa031SzLzld2PUpLULiZNHTa6ZowdWpxWHPo/YZKk7dxOwGcz82sRsRvwM+AsYAlwDXBYTd2N3Q9PktROJk0dNDGWqdWECfpv4gdJ0laZeVnN6l3lcqdyORd4FfCMctvHJjtGRCwDlgEsXLiwM4FKktrCpKmDZjK9uCRpYBwDjAPvLNc/DawGhoGbgFdGxLMy84HanTJzFbAKYMmSJa1/uyZJ6hpnz+uQ0TVj05otz255kjQ4IuKvgSOA52XmNwEy89LMfDAz7weuBxYBe/QuSknSTJk0dcDomjGWn3tdS/sEcNqRzzFhkqQBEBFPjojzgX2BdwM7RcRFEbFLRHy4puoiilao9d2PUpLULnbP64AVF97I5gdb62nxySOf40x0kjQ4Xg68uvz5mHJ5L/AA8PyIOBV4GkXCdGhm3t31CCVJbWPS1Eaja8Z47/nXs2nzgy3tt9/THm/CJEkDJDPPBM5ssPnA7kUiSeoGk6Y2GV0zxru+fi0tNjAxJ+DsY1/QmaAkSZIkzZhjmtpk5ep1LSdMAJ844jltj0WSJElS+5g0tcl0ZsqzW54kSZLU/0ya2uDof/qvlvfZ72mPt1ueJEmSNABMmmbopNG1XPnT1iZFeuScMGGSJEmSBoRJ0wyMrhnjy1fd0vJ+Hzts7w5EI0mSJKkTnD1vBt57/vUt7zM8tEPDcUyja8ZYuXodt20cZ/7IMMsP2t0xT5IkSVKPmTRN0+iasZafxwTwkUP/sOHxTjx/LeObtwDFxBInnr8WwMRJkiRJ6iG7503TidNoZRoZHmqYAK1cve6hhGnC+OYtrFy9blrxSZIkSWoPW5qmYXTNGOMttjIN7RCsOHjPbY5R2xWv0ZTlt01jKnNJkiRJ7WPSNA3Lz7225X1WHr73Q61Mk3XFC2CyZ+POHxmefqCSJEmSZszueS06aXQtrQ5lOu3I52zTLW+yrngJRN1+w0NzWH7Q7tMLVJIkSVJb2NLUgulMMf66fReydPGCbbrjTdaiBEXitGBk2NnzJEmSpD5i0tSC48+7ruV9PrR0r4d1x2tkwcgwV55wwHTDkyRJktQBJk0VnTS6lt9uadRG1NiiEy5hTgRbsvm+dsWTJEmS+pNJU0Vnt9gtr1azhCnArniSJElSHzNpqqj1Nqap2R1PkiRJ6n/OnlfB6Jqxth/T7niSJEnSYLClqYKTL7qxrcdbYHc8SZIkaWCYNE3hpNG13LNpc9uOF2CXPEmSJGmA2D2viek8l2kq80eG23o8SZIkSZ1l0tTEcedc29bjOY5JkiRJGjwmTQ2cNLp2RvuPDA/xun0XsmBkmKAYx/SRQ/dyHJMkSZI0YHo+pikiPgLsCtwLvBK4GHh7Zj5sIFFE1M/8/dnMfFsn4ppJt7zHzR1izftf1sZoJEmSJPVKz5MmYA5wTGb+NiK2AH8D/AfwlUnqXgycXLN+Rxfia9nGNk4cIUmSJKm3ep40ZebxNatPLpcbGlR/ArAU2B34KbCyc5FNn5M9SJIkSbNHV5KmiLgVmGwwzxsy88yImAd8Cji0XF7e4FAfzsxLyvo/A/YH9m3wnsuAZQALFy6cUfytcLIHSZK0PVp0wiU9ff/1p7yip++v2a1bLU37NnivuwAycwNwREQcD3wUuBP4cH3lzLxkon5ErAf2iYjHZ+bdk9RdBawCWLJkSf1YqI7wobWSJEnS7NOVpCkzb220LSJOzswPlKs3l8uF5bblwG6Z+daIeAHwnMw8PSJ2BOZRdOO7pxMxP/1JO/F/77h/ynojw0OsOHhPEyVJkiRplur5mCZgUUR8AdgEHAicB0wkUc8F9oiIOcBG4NUR8VRgMXAD8K7M7Egr0rfftT8Hnnp5w8TJZEmSJEnaPvQ8acrMv2yy7TU1qz8GujqP97fftT8Ao2vGWLl6HbdtHGe+XfAkSZKk7UrPk6ZBsHTxApMkSZIkaTu1Q68DkCRJkqR+ZtIkSZIkSU3YPU+SJM1Yr5/RI0mdZEuTJEmSJDVh0iRJkiRJTZg0SZIkSVITjmmSJEnSwHNcHaw/5RU9ff9eX4NOnr8tTZIkSZLUhC1NkiQNuF5/uytJs50tTZIktVlEvDQivhsRp0XEFRHxkl7HJEmaPpMmSZLaKCKeBFwAXJ2ZxwFrgAsiYueeBiZJmjaTJkmS2uvlwE7A7eX6GPDoslySNIC2izFN11xzzV0RcfM0dn0icFe74+kTnttg8twGk+dW2LWTgfSReeVyc91yXm2liFgGLCtXfx0R67oQW7sM+u/0oMcPg38Oxt8B8dHKVfsy/hY97BxaOP9GGt6ntoukKTOn1SUiIq7OzCXtjqcfeG6DyXMbTJ7bdmdDuRyqW26orZSZq4BV3QqqnQb9ug96/DD452D8vTXo8UP3z8HueZIktdelwP3AU8r1+cCvynJJ0gAyaZIkqY0y8w7gEGBJRJwGPBc4JDPv7GlgkqRp2y66583AQHabqMhzG0ye22Dy3LYzmfkd4Du9jqODBv26D3r8MPjnYPy9NejxQ5fPITKzm+8nSZIkSQPF7nmSJEmS1IRJkyRJkiQ1YdJUIyI+EhFfiYjTI+Ln5XKoQd2se/1Dt+OtqsXzOioiLouIT0XE5RGxd7fjbUVEXBIRX4iIr0bEuog4tkndgblm0PK5Ddp12zEilkfEPRHRtI/wAF63Vs5t0K7bEyPinIj4YkRcGBEfiog5DeoO1HVTY1Wve0QcXP4+nxoR10bENyJiQS9irourld/bvSPi38rf2RVdDrU+lpdGxHcj4rSIuCIiXjJJnZ0i4nMR8bWI+Hp5f5/bi3gnU/EcdoiIN0XEWPnvvqgHoU6qYvyryr+x/jkifhoR7+tFrJOpGP/by/+rp0XEz8r/K4/tRbyTqXIONXWPKn+H1nckmMz0Vb6AjwGPLH/+ByCB1zaoexGwpOa1sNfxz/S8gL2ALcD/KtcvAG4Gduz1OTQ5t1U1P3+3PLe9Bv2atXJuA3rdXgTsB6wvPoaa1h2061bp3Ab0up0L3FX+vLj8nXzzbLhuvmZ+3YHXAS8qf35JWe+8QYm/3P6/gL8p66zoYcxPAn4NfKJc/xRwH7BzXb2VZayPAR5X/nxKr//NWzyHZwOvAi4v41/U69hbjP90YE7581nlObxygOI/EXhy+fPflvG/t9fxt3IO5bZFwDfK+Nd3Ih5bmmpk5vGZ+dty9cnlckOD6k8AlgLvAQ6jeCZHX2rhvA6laH28vVwfAxYC+3Q2wunLzGU1qxNPhW70LdvAXDNo6dwG8bpdkZlXVqw+aNet6rkN1HUrv5lfCvyiLBorl0c02GWgrpsm18p1z8wvZ+YV5erEZ9ZOHQ1wCq3+3mbmZ+iP39WXU/zb1X4+PLosr3UYsCkz78vMe4BxGv+f7LZK55CZN2TmRV2OrYqq8b8lM7eUq33xe1+qGv9HMnPi/8fEs+Vu60qEU6t0DuX/888Ab+tkMNtd0hQRt07SbSQj4phy+7yI+DrFHzSfovjmYzIfzsyTgLcD7wAu6UL4DbXpvOaVy811y3mT1O2aqc6trDMfOBD4YmZ+v8Gh+uqaQdvObWCvW0UDed0qGKjrBiyneExF1Xj77rqpsTZe9wnHAHcDXemq1IH4e63q58O8mm0T9frl3PryM64FLcUfEY+m+BvrWxQtHr1WOf6I+L2IOAM4jqJl9uyOR1dN1XP4AHBGZo7RQdvjc5r2ZfLzvgsgMzcAR0TE8cBHgTuBD9dXzsxLJuqXfSf3iYjHZ+bdnQp8Cu04r4nWp6G6ZaPWtm5pem4RsQdwBnBcZp7R6CB9eM2gPec2kNetqkG8bhUN2nW7B/g7Ksbbp9dNjbXlukfEDhR/wDwT+MNO/xFToy3x95Gqnw8bKLowUVOvX86tXz/jqqocf0TsAnwJ+BywMjMf7Hx4U6ocf2Y+ALwxIr4JnAPcCzQcR91FU55DRAxTdAd+UkQcVBY/ISI+B7wvM3/ZrmC2u5amzLw1M9dP8vp1RJxcU/XmcrkQIIqB3f9Y/vyCiHhL+fOOFBnvBooP555ox3kB5wMPsrV5dj5wC9Co5aYrpji3dwJnUtwUr4+I4yNiKfT/NYP2nBsDeN2a7Tfo163ZfgN+3e4FRtk2XoCvw2BcNzXWpuv+B8C/UXQj/gAwLyLOG5T4+8ylFN0Ea+P+FXBpRJwbEa8uy88D5kbEYyJiBBimPLc+UPUc+lWl+CPitRRjOD9P8UDroyPiuO6H+zBV439/bJ0YZZu/EfvAlOeQmeOZ+SeZ+ebMfHNZ75fletsSJtg+W5qaWRQRXwA2UXSHOo/igx/gucAe5S/WRuDVEfFUikGlNwDvysx+fVJwpfPKzLUR8TpgWXnzGwEOzszf9CLoik4tlxfXlE18EA/yNYOK5zaI1y2K2ZHeRjFwmYj4OPC1zLyaAb9uVc9tEK8b8FbgsxHxRYoxSx8G/qncNtDXTU1Vve6vo/jG9yUUA8oBrutyrJOpFH9mbomIZWz9nH1ZRPw2M/++2wFn5h0RcQjw/og4rYzzEIqE9AXAD8uqKygmgVgFBMUf7h/sdryTqXoOUczU9r+Bp5W7vjcizsvMb3U/6q1auAZ/D+wKfK1m93d2MdRJtRD/XOBLEXEHsD/wTfogfmjpHCa6R078bfu4iPhwZra1e3B4D5MkSZKkxra77nmSJEmS1AqTJkmSJElqwqRJkiRJkpowaZIkSZKkJkyaJEmSJKkJkybNSET8JCIuL193RfEU9ttryi7vYiynle+dEfHL2hjK8kXdimWmIuKY8t82I2JLRFwZEfdFxA0RcWQH3/dLEfFgRPTLMxqIiDPLf4f15ZSjU9X/SETcX+5zW0QcXLPttIi4JyK+Xv4bXztx7E6eg6TZr5P3w4hYFRF3RsSeLezz+oj4VUS8frrvW+E96u9Vtffdn0TEMZ167xZiXFFzLb5Wof47yr8hMiLuLqehn9h2QkRsiIgfRMSfRcRVZT2not4OmDRppm7PzP0zc3/gP8uyb9aUdU1mHkfxfAGA/5qIoYzjmw137EOZeSZwSrk6npn7UTw7ZE/gqxHxJ+1+zyieqv1qimd9vLZu26I+uDGcWV7jpjLzROCr5eovM/PCms3vAf5fZh5R/htPeTxJqqiT98Pfp3j222Nb2Gce8Khy2RGT3Ktq77unNNyxN76ZmUdNVSkzPwV8cmIV+GLNtlOAnwMvzsxvAlMeT7OHSZNmaqoPxX750PwKcHevg5iJzPwOxTkExcPd2u0QYOLp2Ud34Pjd9OVy+eyI+MOa8lex7cOCJaldOnk/PBiYn5nfq7pDZn4U2KVc9sIPytcgOpsiYXo88PKJwohYAtyYmeO9Cky9Y9KkGSm/aWnmxRGxsWyl+FREXFh2j3pTTVe6FRGxR9n9KiPizImdI2K/iPjPiPjviPhxRJwUES393kbE5Zn5rcy8LyI+ExEPlO/ziYj414i4NyJOrak/JyLeU3aFuzoivh8R+5XbjqyJczQizo6In5ZdyOZGxD9HxB3lcf+lrLcxIt4XETeX63dExAERsbDsvvCTiNitwnkE8Ihy9TfTjbPJWxzJ1hamh5KNiHgkNU86L7tdnFz+/NiI+IeIuLG8RldFxIHltlfUxPCdiPhcee3/MyKeFhGnluv/FhEj1a7mNv8eb4qIteV5XxcRS2s2f5fi20DYttXsaIoEWpLaagb3w2Mi4v3lZ9nlEfGziDhj4nMxIt5G8Xn2i7LunNpuYRHx7ii6cN8eEUeV+7wwIn4C3DrxuV/x/tf0Plb136K87/4oM38URXe3ifv9FyPivCi6uP17bO3ad2VEfL68n11eHuPoKLpQX1XeY06OiB3L+07t+b8rIr4bLfaEiIiDI+Ka8t/9xqjphpeZ/wNMJKj195CzW3kfzSKZ6ctXW17AKMU3M2fWlV9ell8JzAGOAA4HzizLV5T1VtTuD+wKbAJuKff7u3L725rEMHHMX5bvezlweV2d9WWdk8r1deX6c8r148v1vy/fdz1wP/DkujjvBZ5E0W3iVOBjZflnynpnleuXl+sHleu3ADuUZV8AntngXI4p6/+6XD+6XP8tsPd042zwXk8Ezi9/vrLc72M12xeVZdngmh9B0QJ2HfA7YHFdDDdQfElzes3vQu36uytc0xU1ZUeUZV8p1/8DeBD4w5o6Hy3r3FzGNgJcUXfs/cs663v9/8eXL1+z50Xr98O/AZ5Y1nlNWef0mv0mPgePKdcf+kwGXkjRBS8peiNM3F8m7iFn1hxnPc3vf03vYw3OdeJ9trD1vruxrs5E/D8D5gIvAN5Vt++ewO8BX6LoKp7A/yn3f3e5/olJzv/NZdm5DeJbMcm/wz7lPeN75fq/lHVeWVPnLWXZJopujnOAayb+fevj6PXvnK/Ov2xpUjeNZuaWzPx6Zp5bof5rgWFgXWZuAW4sy4+tsO9DY5qa1Lm6XN5eLp9VLt9ULm8s3/cnFB/y24zzAf4zM+/IzJ9n5rsobnxQfKjCw7slfBu4lSJ5eWlE7AgsysyfTHEuwxFxJcUH/6XAgZl53QzinMwRbG1N+lK5fE00adWLiCeztZvgf2dmUvybzuHh1+jazHwQuKNc/5+69Wc0ep8GHjr3mmXUlENxEwRYSPFHxeHAeS2+jyR1Qv398IfAFyPiWoqxlwD7VTzW1Wy9jz0OeHLFfeDh97+p7mPNjNfcd69tUOfSzNyUmf+VmafWlP8kM2/MzAcy8/XARKvPf9fF8eay10WtfwXIzMOp7o0U94zaewhse+86B9hM8XfIq4EDgO+W9y5thx4xdRWpbe5qsf7vl8vnls31cylaDVpK9pskTg9MVCmXO9a973sj4liKVpqbgcfU7V9/PhODbSf6Ot9fF8eDEfEl4L3AGyi+ubq0wilMTARRb7pxTuZwYCgi3go8kqK1aBfgRRTfGk5m15qfN9Utd62r+7tymQ3Wd6Q1E+f+xrI74OMpzn3uRIXMvCEirgf+kKKV7g94eEIpSb3w0OdyRDwG+D8Un93PAuYD/87DP8snlZkPlMeZKKryedro/tf0PlZVk/tuo/tRffnEPaT+3jKXomdElWM2M3EP+fPy74vHUNxDHjlRITPvjohLKcaTHU2RYH56Gu+lWcKkSd1U39/4N+VyTrkcrtt+a7lcO/EBXI6vaXk67IjYn6IL1voK1W8Fng6szGJmoIlWlS119erPZwNFU/3Eeczl4c6kSJpeDTyB4tuu6ZpunNuIYjzVLZn5lzVlFwOvoLhRXN7gGDfX/Dy3bnkznXUrxR8X/5KZKwAi4nEUXTtqnU2RNL2GssWtw3FJUhW1n6m7U3Qfvi0zb4qIXXoTElDtPlZJFI/5WJSZl9cUN7of1ZffTPEZX39v2USRJO300I5FL4dWTfx98e3MPKaM91EU9+VaZ1MkTX8KrMnMH07jvTRL2D1PvTTRLe0p5fJ5ddu/RpFYLY6Ix5dlxwLLp/Fe+1PcCKo4q1z+KUBEPAL4BkWC0szXy+XEeexTXyEz/y/FVLS/Bwxl5ljFmNoZZ72jgQvqyiam6T6s7Ea4cWJDRAxHxPkU31R+oyx+ftllYglFK9LnW4yhVRPnfkBNF8LPU1znWl+h6Lf+GLZOQy5J/WTiy5zHRcTvUYzt6ZUp72MtWMTDP5OrOr1cPr9u+Y/TTJLqTdxDXlj+mwN8gIf3RrgQuI/iy936+6S2N70eVOVrdrwoEpy7KL4tup2tg0jfR/EHd1IkSX9Rs89jgW9RDFz9HFsHYt4OvKmssz/wXxSDR78JnAE8qkEM/wjcWR7jHuCqmtet5bE+Q/HHflL0kX5tXXzPA4aA9wM/pej3/W3gDeV7vIKtA2lvpxyUWm6bC/xzGcNFFP2hE/j3ujjfWJa/qcm/5zFlPLWDa59XV2dacdYd47UUk2ZcBSwoyx5J0Z99YpDt1eW1+gzFpBI/pLhxQZGMfIaiP/h/l9fqpQ1iOKZu/U316w1iPJO6iSDK8rcCP6aYZOJbwAkN9r+MoovJw35vcCIIX758tfnF9O6Hp1D8cX4JxeQ+SXGv+gzwtvI4E/vtV35mT3xGf4ytEzhkue3FNfeQ2ykmNahy/6t0H6uJ+68o7kET96ra++6PKMbivqkm/vXA8nLf59XEuBE4u+7Yr6EYG3VVeY9ZQXF/mlN3/pcDOze5HiuYfFKOw8rj3wSsBj4BPGKS/c8o93/qJNsWTcTR6987X51/RXnRJc1QRMwHHsjMu8v1t1HcpM7OzNfV1HsUxQx6T83Mjb2IdZCU0+X+JXByll3x2njs/SnGDtycmYvaeWxJGjRV72ODJCJWULQinZVlV7w2HnsR8D8AmVk/QYVmGbvnSe1zMMUUqhPPVHppWX5OWXZMRDybYmajb5swVXYXRf/2pRFxWrsOGhHHUHy7ezNb+7dL0vas6X1sQG2k+JxfEhFfm6JuZRHxZxQPUr+Zzo/jVR+wpUlqk7LV4uMU3R8eTdFV4ROZeXa5/a8oppK9D3h9Zt44+ZEkSeq+qe5j0vbMpEmSJEmSmrB7niRJkiQ1YdIkSZIkSU2YNEmSJElSEyZNkiRJktSESZMkSZIkNfH/A0LJbpfO3XrKAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1008x504 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(14,7)) # Increase the size a bit\n",
"plots.energy_scatter_histogram()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "92a3bc17-de4a-459d-8ccf-4b0e59283f80",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAGxCAYAAABMcAjCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABJGUlEQVR4nO3df5ycZXno/8/FsuAkWhdrFLKKINVgacRoWq2cYwVrU0Qlgj+q9lTO91Rqe3paLM1XUq2gtQUbbfGoteX026oFCyJxUVHTCqitLe0BlzQFSW0togtoUBaBLLIs1/ePeSZMJjO7M7Pzc+fzfr3m9czcz/PMXPMEdvd67vu+7shMJEmSJGmlO6jfAUiSJElSL5j8SJIkSRoJJj+SJEmSRoLJjyRJkqSRYPIjSZIkaSQc3O8AWvH4xz8+jzrqqH6HIUkj7YYbbrgrM9f0O45B5O8pSeq/xX5PDVXyc9RRR3H99df3OwxJGmkR8c1+xzCo/D0lSf232O8ph71JkiRJGgkmP5IkSZJGgsmPJEmSpJFg8iNJkiRpJJj8SJIkSRoJJj+SJEmSRoLJjyRJkqSRYPIjSZIkaSSY/EiSJEkaCSY/kiRJkkaCyY8kSZKkkWDyI0mSJGkkmPxIkiRJGgkH9zsASVJvTE3PsG3Hbm6fnWPtRIktm9axecNkv8OSJKlnTH4kaQRMTc+wdfsu5uYXAJiZnWPr9l0AJkCSpJHhsDdJGgHbduzel/hUzM0vsG3H7j5FJElS79nzI0kj4PbZuZbaJalfjjrnqr5+/q0XnNLXz1d32fMjSSNg7USppXZJklYikx9JGgFbNq2jND62X1tpfIwtm9b1KSJJknrPYW+SNAIqRQ2s9iZJGmUmP5I0IjZvmDTZkSSNNIe9SZIkSRoJJj+SJEmSRoLJjyRpRYiIWyMiqx6fKdpfFBFfiogLI+LLEXFi1Tlt7ZMkDSeTH0nSSnED8JNVj7Mi4gnAlcD1mXkWMA1cGRFr2t3X4+8kSeogCx5IklaKVcDLgKcDdwF/CJwMrAbuLI6ZAR5TtEeb+z5a/aERcSZwJsCRRx7Z+W8lSeoYkx9J0krxv4EdQAn4N+ClwJ8V++ZrtkdQTnDa2befzLwIuAhg48aNuaxvIEnqKpMfSdKKkJmfK57eHxH/Avw8cGjRNl6zvYNHEpxW90mShpRzfiRJQy8inhQRv1/VdBQwB3wIuB84vGhfC9wLfK54tLNPkjSkTH4kSSvBA8BPRcQfRcSVlBOf0zLzu8CpwMaIuBB4NnBqZu5pd1+vv5gkqXMc9iZJGnqZeRfw4gb7rgau7uQ+SdJwsudHkiRJ0kgw+ZEkSZI0Ehz2JkkDamp6hm07dnP77BxrJ0ps2bSOzRsm+x2WJElDy+RHkgbQ1PQMW7fvYm5+AYCZ2Tm2bt8FYAIkSVKbHPYmSQNo247d+xKfirn5Bbbt2N2niCRJGn4mP5I0gG6fnWupXZIkLc3kR5IG0NqJUkvtkiRpaSY/kjSAtmxaR2l8bL+20vgYWzat61NEkiQNPwseSNIAqhQ1sNqbJEmdY/IjSQNq84ZJkx1Jkjqor8PeIuLQiNgZERkRZ/QzFkmSJEkrW7/n/FwA3N3nGCRJkiSNgL4lPxFxCvAA8MV+xSBJkiRpdPQl+YmIw4FfA97exLFnRsT1EXH9nj17uh+cJEmSpBWpXz0/rwTmgPcDLy3a3hARb6g9MDMvysyNmblxzZo1vYxRkiRJ0grSl+QnMz+Qma/MzDcBnymaP5KZH+lHPJIkSZJWvn5Xezsd+Lni5Wsi4mf6GY8kSZKklauv6/xk5hXAFf2MQdLomZqecfFQSZJGkIucShopU9MzbN2+i7n5BQBmZufYun0XgAmQJEkrXL/X+ZGkntq2Y/e+xKdibn6BbTt29ykiSZLUKyY/kkbK7bNzLbVLkqSVw+RH0khZO1FqqV2SJK0cJj+SRsqWTesojY/t11YaH2PLpnV9ikiSJPWKBQ8kjZRKUQOrvUmSNHpMfiSNnM0bJk12JEkaQQ57kyRJkjQSTH4kSZIkjQSTH0mSJEkjweRHkiRJ0kgw+ZEkSZI0Ekx+JEmSJI0ES11LWrGmpmdcz0eSJO1j8iNpRZqanmHr9l3MzS8AMDM7x9btuwBMgCRJGlEmP5JWpG07du9LfCrm5hfYtmP3vv32CEmSNFpMfiStSLfPztVtr/QA2SMkSdLoseCBpBVp7USpbvtYxKI9QpIkaeUy+ZG0Im3ZtI7S+Nh+baXxMRYy6x7fqKdIkiStHCY/klakzRsmOf+09UxOlAhgcqK073U9jXqKJEnSyuGcH0kr1uYNk/vN45manmHvgw8dcFxpfIwtm9b1MjRJktQHJj+SRkJt6euKidI45738OIsdSJI0Ahz2Jmkk1Ct9DbD60INNfCRJGhEmP5JGQqOCBhY6kCRpdJj8SBoJjQoaWOhAkqTRYfIjaSQ0Kn1toQNJkkaHBQ8kjYTKvJ5tO3Zz++wcaydKbNm0zvk+kiSNEJMfSSOjtvS1JEkaLSY/kgbe1PSMPTaSJGnZTH4kDbTa9XlmZufYun0XgAmQJElqiQUPJA20euvzzM0vsG3H7j5FJEmShpXJj6SBNuP6PJIkqUNMfiQNrKnpGaLBPtfnkSRJrTL5kTSwtu3YTdZpD3B9HkmS1DKTH0kDq9HQtsRiB5IkqXUmP5IGVqOhbZMOeZMkSW0w+ZE0sLZsWkdpfGy/ttL4mEPeJElSW1znR9LAqgxtq13gFOCEC65x0VNJktQSkx9JA2FqeuaAJGfzhsl9j+rjXPRUkiS1w2FvkvquktDMzM6RPJLQTE3PHHCsi55KkqR2mfxI6rt3fPqmphOaRhXgXPRUkiQtxeRHUl9NTc9w9975uvvqJTSNKsC56KkkSVqKyY+kvlpsuFq9hMYKcJIkqV0WPJDUV4sNV6uX0DSqAGexA0mStBSTH0l9tXaixEydBGiiNN4woamtACdJktQMh71J6rqp6RlOuOAajj7nKk644Jr9qrg1GsZ23suP63WYGnIRcWhE7IyIjIgzirYXRcSXIuLCiPhyRJxYdXxb+yRJw8vkR1JXLVXGevOGSc4/bT2TEyUCmJwocf5p6+3ZUTsuAO6uvIiIJwBXAtdn5lnANHBlRKxpd18vv4wkqfMc9iapqxZbl6eS4DiMTcsVEacADwBfBH6maD4ZWA3cWbyeAR5TtEeb+z5a57PPBM4EOPLIIzv3pSRJHWfPj6Sucl0edVtEHA78GvD2ml1HFNv5mu0Ry9h3gMy8KDM3ZubGNWvsHJKkQWbyI6mrXJdHPfBKYA54P/DSou0NwB3F8/Ga7R3L2CdJGmImP5K6ynV51G2Z+YHMfGVmvgn4TNH8EeBzwP3A4UXbWuDeor3dfZKkIeacH0ld1eq6PFPTM67ho7ZExOnAzxUvXwP8J3Aq8PaIuBB4NnBqZu4pjm9rnyRpeJn8SOq6ZgsaVCrDVQokVCrDVd5DWkxmXgFcUWfX1Q2Ov7qdfZKk4WXyI6lnlurVaaYynCRJUrtMfiT1RDO9OlaGkyRJ3WTBA0k9sVivToWV4SRJUjeZ/EjqiWZ6dawMJ0mSusnkR1JPNNOrs3nDJOeftp7JiRIBTE6UOP+09c73kSRJHeGcH0k9sWXTuv3m/FTsffAhpqZn9iU4zVaGkyRJapXJj6RlaXZdnkrbeZ+6idm5+X3td++dt5y1JEnqCYe9SWpbpYLbzOwcySMV3KamZ+oev3nDJKsPPfCeS23hA0mSpG4w+ZHUtmYquNWynLUkSeoXh71JattSiUy9IXFrJ0rM1DnPctaSJKnbmk5+IuIFLbzvA5n5z23EI2mILJbINFrU9PTnTHLFDTP79RhZzlqSJPVCKz0/XwSyyWNvBY5pNRhJw6VeBbdKItNoSNy1t+zh/NPWN1UkQZIkqZNaSX5+CNzZ5LELSx8iaVhVD2ebWDXOoQcfxD1z8/slMm++7Ma6594+O2c5a0mS1BetJD/XZeaJzRwYEde2GY+kAVc7nO3uvfOUxsf449c8a7+Exrk9kiRp0LRS7e0XunSspCHSbIW3LZvWURof26/NuT2SJKmfmu75yczvLLY/IlYBP56Z1y91rKTh1Wyp6kovkHN7JEnSoGgq+YmIQ4EHMzMrSU7xOK54/DhwZCvvKWk4Tawa5+698we0Vyq81SY7XznnpD5EKUmSdKAlE5WI2Aq8A7glIh5NOcmJ6kOqnt/b2fAkDZKp6Rnue+ChA9rHx4ITj11Tt7Q1YG+PJEkaCM3M+TkH+CTwYuCo4pzvA38H/AWwtThue2Y+tgsxShoQ23bsZv7hAyverz7kYK69ZU9Tc4EkSZL6pZkhap8EXskjw9qScgJ0NXBhZt4bEecDD7bywRExAXwK+L/ATwBPBs7NzMtbeR9JvdNovs89c/PcM3fgULjFzpEkSeq1JXt+MvMM4PnAZuAVwM3AYcB5wH9GxO+2+dljwN9m5tnAKcARwEciwjlD0oBqVKZ67URp0X2SJEmDoKlS15n5L5n5ncy8Engm8EvArcDjKCdBCRzRSuKSmd/LzN8rXk4AjwK+Q80CqRFxZkRcHxHX79mzp9m3l9QFi5WvtrS1JEkadK2s8wNAll0MrAN+HbiTctGDFwA3tPp+EXEq8EXgPuCNmbnfhILMvCgzN2bmxjVr1rT69pI6aPOGSc4/bT2TEyUCmJwocf5p69m8YXLRfZIkSYOg6Z6aiPivwD9k5gJAZj4E/ElE/AXwm8BbKM/daUlmXhkRn6U89+eqiHhGZn6j1feR1BuVRAfYV9r6zZfdaGlrSZI08Frp+bkW+F5EXBERb4yIJwNk5gOZ+W7gaOD8Zt8sIp4ZEacX7zEP3AEcAjyxhZgkNWFqeoYTLriGo8+5ihMuuIap6ZmOvOfW7buYmZ0jeaS0dSfeW5IkqRtaSX7WAG8C7gHOBW6NiJsi4r0R8bPAXGa+rYX3mwd+NSK2RcRfA8cAWzPzH1t4D0lL6EaSMjU9w9kf32lpa0mSNFRaKVBwN3Bp8SAijgd+Dvh54H8CD0XEl4DPZeYHmni/rwE/207Qkpq3bcfuhklKM/NxKkPbbp+dY+1EiROPXcMVN8ywkAeu9wOWtpYkSYOr6Z6fiHh99evM3JmZ2zLzRZSrvr2WcgW43+hohJKWpVEy0kySUq/X6JLrbjsgmapmaWtJkjSoWllT530RcSRwSWbeVr0jM/cCny4ekgbI2okSM3USnWaSlHq9RvX7e8osbS1JkgZZK3N+/g34BvD+iLg6In4lIg7rUlySOmBqeob7f/jQAe3NJimtDGEbi7C0tSRJGmitJD+vyMzLMvNU4NXFudsj4pMR8aqIOLQ7IUpqR2XI2uzc/H7th60abzpJadQ7FDWvS+NjvPfVx5v4SJKkgdZ08pOZ36l6/r3M/FBmnghcBvwp8J1izR9JA6DekDWAVYcc3HSSsmXTOkrjY/u1lcbHeP3zjmSySIzGIvYVULDMtSRJGmStFDw4uOr50yPiHRHxb8AlwATwI8AvdTxCSW1ZTqGDis0bJjn/tPVMTpQIYHKixPmnreddm9fvS4wqVd9c50eSJA26VgoeXBcRlwCvBzYUbZXRLzdTToIu6WBskpZhOYUOqm3eMFm3p2i5JbQlSZJ6rZXk59mUk55KwnM75TV/Ls7MGzscl6Rl2rJpHVu379ovQelkNbZO9CxJkiT1UivJD8B9wHbgYuCazAarHErqu0rvS/UCpVs2retYr0ynepYkSZJ6pZXk56vACZn5w24FI6mzGg1Z64Ru9yxJkiR1WivJz0n1Ep+IeExm3tvBmCQNgW73LEmSJHVa08lPZv6g8jwiDgHeBbwR+H5EvBT4I+ANmfndjkcpqW+mpmcaJjjd7FmSJEnqtFbn/FS8G/jN4vndmfm1iPgA8D7gtR2JTFLfVBKemdk5AqhM7quUswZMeiRJ0tBpep2fGpuAXwaeT7nqG5l5FeX1fiQNsanpGbZu37WvmEFtVZNKOWtJkqRh027PzxxwaWbujYgHobzwKXBsxyKT1Bf11u+pZTlrSZI0jNpNfr4L3BUR3wLWRsQ3gCcD13YsMkl90UxiYzlrSZI0jNod9nY2cA/wNGA1cBTw/aJd0hBbKrGxnLUkSRpWbSU/mXkz8HTgdcBbgNcDT8/MXR2MTVIfbNm0jtL42H5tUWwnJ0qcf9p6ix1IkqSh1O6wN4q1fS7tYCySBoDr90iSpJWq6eQnIj6Wma/r9LGSemexNXuquX6PJElaiVrp+TkxIv6iyWN/op1gJHXP26Z2ccl1t7lmjyRJGlmtJD9PBN7AI8P/F3NrW9FI6oqp6Zn9Ep+Kypo9Jj+SJGkUtJL8vKOFY2dbjENSF23bsfuAxKfCNXskSdKoaDr5ycxWkh9JPdDsHJ7FEpy1E6Wm30eSJGmYtV3tTVJ/TU3PsHX7LubmF4DF5/CsnSgxUycBCuDEY9c0/T6SJEnDrN1FTiX12XmfumlfwlJRmcNTq9HaPa9/3pFce8uept9HkiRpmNnzIw2B2mFpJx67htm5+brH1hvittjaPUefc1XT7yNJkjTMTH6kAVdveNsl193W8Pi1E6W67Y3W7mk0JK7R+0iSJA2rjgx7i4jjI2JtJ95L0v627dh9wLC0RpXboDzErRX1hsSVxsdafh9JkqRB11bPT0RcDDwT+C/AXwEvBTIi/ntm/lUH45NGSr2qa60MPzts1XjLRQoWGxInSZK0krQ77O0ZwE8DTwdeBswD/wG8hXIyJKlFjaq3PbY0Xnd+T7B/D1BpfIxzX3ZcW5/daEicJEnSStLusLd7M/N+yokPwO9m5o9TToIktaHe8La5+QUiqDss7fXPO5LJiRIBTE6UOP+09SYwkiRJi2i35+eoiPht4H9Qvvm8vWi/vyNRSSOo0fC22b3z/PFrnuWwNEmSpGVqN/m5CvjD4vnfA9+JiHcAqzsSlbTC1ZvbM7FqnLv3Hth5unai5LA0SZKkDmg3+fkN4J+AxwJTxfYHwNs6E5a0ctWb27PlEztZWDiwhtv4WHS16lq9JMwkS5IkrVTtJj9jwE8AbwTOolzt7cVY7EBaUr25PfN1Ep9K+7Ydu/c7t3qh02tv2dN24tKowAJgAqShExETwKeA/0v599OTgXMz8/KIeBHwdmAaeHbRfm1xXlv7JEnDqd2CB+8Gfptyj09k5teA9wPv61Rg0krVSulqKHqGLt/Jlk/sZGZ2jizaLr7utv1eb92+i6npmabft1GBhepkSxoiY8DfZubZwCnAEcBHIuIJwJXA9Zl5FuVE5sqIWNPuvh5/L0lSB7Wb/GwCfhl4PnA7QGZeBUx0Jixp5Vo7UWr5nPmHs2HvUEWriUujJKzV5EwaBJn5vcz8veLlBPAo4DvAyZTno95Z7JsBHlO0t7tPkjSk2k1+5oBLM/M64EGAiHg6cGynApNWqi2b1h1Qunp8LBg/KJb93jMtJC6NkrB2kjNpUETEqcAXgfsoD80+otg1X7M9Yhn7aj/zzIi4PiKu37Nnz3K/giSpi9pNfr4L3BURu4GfjIhvADcBX+9YZNIKtXnDJOeftn6/NXq2vfJ4tr3qeCaXmXgEND30rV4SVhof62qBBanbMvNKYAPlnpqrgEOLXeM12zuKRzv7aj/zoszcmJkb16xxVJwkDbJ2Cx6cDVwNPK14vRrYU7RLWkKj0tWbN0weUIgAKPcKRePCCBVJeS5PMwULKsdY7U0rQUQ8E3haZl6RmfMRcQdwPOVeoPuBw4tD1wL3Ap+jfL+gnX2SpCHVVvKTmTcXw9xOoVxR59vAZzPznk4GJ42iRklJdVujNYGgtTk7rh+kFWQe+NWIeB7wJOAYYGtmfqkYCvf2iLiQctW2UzNzD+wbJtfyPknScGq354fMvBe4tIOxSCOn0To7i/UMAZxwwTUNkx/n7GgUFVVHf7bBvqspj1bo2D5J0nBqK/mJiJMpr+vzscy8PiKeDfw8sC0z6/9FJo2Y6sTmsaVxImB27/x+PTntrrOzWO+Oc3YkSZLqa7fgwRZgF/C14vU3gAXgg50IShp2lXk7lXV4ZufmuXvv/H5r8pz3qZvqrrNz3qduWvL9G/XuHLZq3GFskiRJDbSb/Mxn5l9m5v0AmTmbme8GjupYZNIQq7eAaLW5+QVm5+p3ks7OzS9Zsa1RpbZzX3Zc68FKkiSNiHbn/BwbEcdn5s5KQ1Fp55jOhCUNt+UuFLpUxbZmKrU1mk8kSZI0qtpNfr4GfLUoJfoD4EcoL/z22U4FJg2ztROlJRccPSjg4QaVq5tJnhar1FZbLruV+USSJEkrVbvD3t5MeaHTtcCxxfYOXOdHAuoPS6vVKPGB5Vdsqzfsbm5+gW07di/rfSVJkoZZuz0/Pwm8BXiQ8jo/twFXZeZ9nQpMGmaV3pWzP76ThVx8YdKgvDhpRWl8bNkV2xr1HC13OJ4kSdIwa7fn50Jgb2ZempnbMvMyEx9pf5s3TPLwEokPlBOfyYkSUWzPP239soemNeo5cg0gSZI0ytrt+fk74Iraxoh4fWZesryQpJWjmbk/kxMlvnLOSR393C2b1u035wc606MkSZI0zNpNfv4T+HJETAF38cionXMAkx+pUC8JqVYvIelElbZmqsFJkiSNmnaTn9+gnPA8v4OxSCtObRLy2NI4ETC7d75heepOVWlbrBqcJEnSKGo3+bkHuLFO+/HthyKtTNVJSKVXZ3Zv/QVOF6vSZiIjSZK0PO0mPx/KzN+pbYyIA9qkUVRv6BqwZK+OVdokSZK6p63kJzN/JyJWAS8BngLcCnw2M/+gg7FJQ6nR0LVDDz5oyV6dRgUSrNImSZK0fG2Vuo6IHwNuAi4D/hD4OPCvEXF0B2OThlKjoWuzc/WHus3MzjE1PQPUXxzVKm2SJEmd0e6wt/cAT6Jc9W0vsIpyD9B7gNM7E5o0mKamZzjvUzftS2YOWzXOuS87bsmha4upHf5mlTZJkqTOazf5OQpYm5l7Kg0R8QRgRyeCkgbV26Z2cfF1t+3XdvfeebZ8Yue+1wdFsNDE4qbVqoe/WaVNkiSpO9pNfgCizuvaNmnFmJqe4ZKaxKdifiF56yd3sffBBVpLex5hUQNJkqTuajf5uQ2YiYhv88iwtycBn+lUYNKg2bZj96KJzf0P1l/ItNZYg54hixpIkiR1V1sFD4CzgTspz/N5RrGdKdqlFaleFbZ2vPa5T7aogSRJUh+0W+r66xHxDB4pdf1N4DOZubeTwUn9UrtOz4nHriGg7SFtFYetGuddm9ez8SmPs6iBJElSjzWd/ETEC4qn/56Zt2fmfZRLXEsrSr11emqLHFRbNX4Qhxw81rCUdbW7985zwgXXsGXTOr5yzkkdi1mSJElLa2XY20eAF1Ke2yOtWPXW6VnMzb93Mue9/LgDhrI1Uln0tLK2jyRJknqjleTn1sx8Z2b+c0RcGxE3R8Q1XYtM6pNWqq5NFkUKNm+Y5PzT1nPYqvGmzquUtpYkSVLvtJL87JvukJknAt/JzP3G7UTEczsVmNQvrVRdqxQpmJqe4R2fvom79y499K3C0taSJEm91W61N6g/9/v8ZbyfNBCarbo2URpn84ZJpqZn2PKJnS0lPmBpa0mSpF5rpdrbCyLiB1WvSzWvAfxrTkOltqpbJfGJgDpL8exTGh/jvJcfB5TnCM0vtFYHztLWkiRJvddK8nMQ8OiattrXy60ELPVMvapuWy7fCQ0Sn0qp68ma0tRLDV+rLGpa2daeL0mSpN5oJfnZDVywyP4A3tLsmxXzg94D/BPwX4D7gN/MzJtaiElqW72qbvMP18/fI8rD3GbrDG1bO1FquADqWATvffXxJjqSJEkDoJXk54LM/MhiB0REKz0/q4EPZualEXE08A3K5bQ3tvAeUlumpmcaJiz1ZLJvTk+lVHXF3gcfanjeQua+Y02AJEmS+qvp5GepxKfZY6qOrS6TfVexXd3s+VK7KsPdlmNufoEtl9/IQw8vPdazUtba5EeSJKm/llPtrZPOAOaAN9fuiIgzI+L6iLh+z549PQ9MK89ii5iOHxSMj0VT7zPfROJTYVlrSZKk/ut78hMRvwK8GnhOZn6+dn9mXpSZGzNz45o1a3ofoFacxRKRba86nm2vPJ7JiRJBubjBRKm5hUsXY1lrSZKk/mtlzs+SIuKIzLyjyWOfCHwIuAc4G1gdEZ/OzJd1MiapVqMCBZMTpX1D0yrbqekZ3vrJ1obIVarCVVjWWpIkaTA0nfxExAuaOOxC4NlNvuXJwCuK52cU23uajUdq15ZN6/YrcQ31E5TaUtjNev3zjuTaW/bst3aQ830kSZL6r5Weny/SwXV8MvPDwIc79X5SsyqJSO3ipps3TO636OlBxbo8rSiNH8S7Nq/vRtiSJElaplaSnx8CdxbPHwU8kXKVtvuBVcCaqv3SQNu8YfKA3pjanp5WEx+AB+Yf7kh8kiRJ6rxWCh78aWYenZlHA5cDT83MJxRtTwSOAbZ3JUqpBxarAtcsCxtIkiQNrlbW+akuQ30S8I6aQ+4r2qWBUD2Ebam5N60uelqPhQ0kSZIGW7vV3hK4MyK+RXl9nhLwZOBrnQpMWo7aIWwzs3P7FjatToAq1dzuf7D1Hp+J0jirDz3YwgaSJElDot3k583AFHBUVdv9wFnLC0dqTaPena3b/4W5mvk3c/MLbNuxe19hg/M+dROzc/Ntf/ZLjz/C4gaSJElDpK3kJzO/EBFHAS8BjgDuAD6bmXd1MDZpUfV6d9582Y188NqvH5D4VMzMzrHhnX/DfQ88xPzDyyteeO0te5Z1viRJknqr7UVOi0TnoxHxmMy8t4MxSU2pV6Agga9/9/5Fz7t7b/u9PdVun51raV6RJEmS+quVam/7RMQhEfGHEXE3cGNEHBsRn4uIJ3Q4Pqmh25dZoGC5HlsaZ+v2XczMzpE8Mq9oanqmr3FJkiSpvraSH+DdwG8DjwUiM28BPgC8r1OBSUvpZlnppz1h9ZLHRHBAz1NlXpEkSZIGT7vJzybgl4HnA7cDZOZVwERnwpKW1o2y0gH84vOO5Nt3L92r1Gj43HJLZkuSJKk72k1+5oBLM/M64EGAiHg6cGynApOW0uzcmmjhPRO45LrbGhZMqDYW9d85wKFvkiRJA6jd5Oe7wF0RsRv4yYj4BnAT8PWORSY1YbKJoW+PGh/jhGMe1/R7NlsDbiHrH5ng0DdJkqQB1G7y89vAPcDTgNWU1/v5HnB2Z8KSmrNl0zpK42OLHjM3v8DNd/S2IGG/izFIkiTpQO2Wuv534OnAKcCTgW8Da4G7OxSXtM9i5aQr28r+Rr02nSpv3axuFmOQJElSe9pNfj6XmScBl1YaIuI1wIeBn+1AXBJQfyHTrdt3AeyXAFWen3DBNX0vOFAaH+tKMQZJkiQtT0vJT0T8UvH08KrnFauw4IGa0MrCoPUWMq2Uk653zpZN69jyiZ3ML+zfBzR+EDRRw2BRYxF15/lMlMZZfejBLnQqSZI04Frt+fkwj8wH/8s6+7+5rGi04jXTk1OtUS/OYnNqFhYOTFBaSXwmSuPc/+BD+yVQpfExTn/OJFfcMLNfMlYaH+O8lx9nsiNJkjQEWk1+vkw5+XkWcGNVewKzwIc6EZRWrlZ6cqamZwjqV19LykPcantZtu3YTbsdPBe+5ln73qtR79TGpzyu6V4rSZIkDZaWkp/MfCFARPxuZv5eVyLSitaox6Ze+7YduxctOz0zO8eWy3fyjk/fxOzeedZOlNqe7zM5UdoviameR1StUbskSZIGX1ulrk181K5GVdDqtTdTLnr+4eTuvfMkjYfILcUCBZIkSaOhreQnIk6OiD+KiI3F62dHxO9ExHhnw9NKU29dntrkY2p6hhMuuKbpxUaXY6I0zvmnrbc3R5IkaQS0W+p6C/BXwNeK198AFoAPAmd2IC6tULXr8tTOm6ktiNBNE6Vxbjz357r+OZIkSRoM7SY/85m5r9pbZs4C746Iv+lIVFrRGs2bmZqe4eyP76xbTrob7pnr7cKnkiRJ6q+2hr0Bx0bE8dUNEfFM4Jjlh6RRVOnxaSXxiWV+ZqP5R5IkSVqZ2k1+vgZ8NSK+HRE3R8S3gWng5s6FplFSrwR2I+MHBRe+5lnL/kyLHEiSJI2WdpOf3wK+C6wFji22dwBndygujZhmKrtVjI8FmzdMLqvn5rBV4xY5kCRJGjHtlrq+GXg68DrgLcBrKSdBh3UuNI2SVhKZvfPlZUy3bFrX1tC30vgY577suDbOlCRJ0jBrOvmJiGdExPOK578EvAI4BPgOcChwGvCXjd9BauzEY9e0fM7mDZM8/5jHNXXs6kPGCMqLmVraWlp5IuK5EfF3EfGeiLguIr4QEccV+14UEV+KiAsj4ssRcWLVeW3tkyQNp1aqvX0JeGxEPAn4MBywDEvUaZOacu0te5o+NqJcIGHL5TdSdAItae+DC/zxa55l0iOtXKuBD2bmpRFxNOUlGD4SES8BrgT+LDPPjoj3AVdGxDGUf2+1vC8zm/+BJUkaKK0kP1PAk4C7Kff2fL5mfwAumjJCpqZnGq7X08y57/j0Tdy9t/Vy05lw1mU3tnYO5aIKJj/SypSZ11S9vKvYrgZOLrZ3Fm0zwGOK9mhz30erPzsizqRY4+7II4/s1FeSJHVB08lPZu5bvDQi3pWZH6w9JiL+Z6cC02CrXYx0ZnaOrdt3ATRcw6eSKD22NM69P3yIhYd721HYSlEFSUPtDGAOeDPwrKJtvmZ7BI9UzG91334y8yLgIoCNGzc6AkKSBlhbi5zWS3wK25cRi4ZIvdLUc/MLB/Su1Ovhme3T4qKu6yOtfBHxK8Crgedk5tci4onFrvGa7R08kuC0uk+SNKSaTn4i4gVNHHYh8Oy2o9HQaNSLUt1e2zvUT6XxMdf1kVawIsn5EHAP5WUXVkfEp4H/AdwPHF4cuha4F/gc5QSnnX2SpCHVSs/PF7GggQprJ0rM1EmAqntXWlm4tNus8CateCdTrkIK5WFvAPdk5ncj4lTg7RFxIeUbdKdWiha0u0+SNJxaSX5+yCMTPx8FPJHypNL7gVXAmqr9WuG2bFp3QK9Obe/KoMyxaWctIEnDJTM/TLkSab19VwNXd3KfJGk4tbLI6Z9m5tGZeTRwOfDUzHxC0fZE4Bic8zMyNm+Y5PzT1jM5UWq4fs6gzLGpVHqTJEnSaGul2tubq16eBLyj5pD7inaNiM0bJtm8YXJfJbezLruRsz++k4VMJidKnHjsGq64YWYghr4NSi+UJEmS+qeVnp9qCdwZEd+IiJsi4hvA7cBDnQtNw6BS1KAy/2chy9PCZmbnuOKGGU5/ziSTA9ADNCi9UJIkSeqfdpOfN1OeA3QU8Ixi+wBwVieC0vBYrKjB3PwCf/1P32LLpnV9TYCCcjJ2wgXXMDU907c4JEmS1F/trvPzhYg4CngJ5cTnVuCqzPxexyLTUFhqONlCJlsu38l8jxc0rQgeKVG41EKskiRJWtnaSn4i4hDg/wXeCHwfeClwcUS8ITO/28H4NGAq83tun51j7USJ0vhB7J1/eNFz+pX4jEXsG4ZXUW8hVkmSJI2Gdoe9vRv4beCxQGTm14APAO/rVGAaPNXze5JyT8pSiU+/lMbHDkh8Kix+IEmSNJraTX42Ab8MPJ9yoQMy8ypgojNhaRAN0qKli6mU3W40z8jiB5IkSaOprWFvwBxwaWbujYgHASLi6cCxHYtMA2eQekwOWzXOfQ88tN+QuvGDgm2vOn6/IW1LLcQqSZKk0dFuz88e4K6I2A38ZFHq+ibg6x2LTAOnUY9J9DiO8bHglGceceAH17xuZiFWSZIkjY52e35+C7gaeFrxejXlhOjsTgSlwbRl07q6PSmnP2eSz+y8g9m5+Z7EsfqQg7n2lj3ML+w/p2d+IQ8oZlBZiFWSJElqN/nZCLwFeBB4MvBt4LOZeU+nAtPgqSQR1dXetmxax+YNk7xr83reNrWLi6+7retx3DM3zz0NEq1BGponSZKkwdJu8nMhcGZmfqKDsWgINOpJmZqe4dpb9vQkhsrwu5k6iY7FDCRJktRIu3N+/g64orYxIl6/vHA0jKpLYHdbACceu4YTj11zwJQfixlIkiRpMe32/Pwn8OWImALuAiqTL84BLulAXBoAtQuaVoa41eplCewELvvnb0E88h8dlJOi05/j/B5JkiQ11m7y8xuU//Z8fgdj0QCp9OZUkpqZ2Tm2bt/F9d/8PtfesofbZ+eYWDXOD+cXer7QaXV564qEng27kyRJ0nBqN/m5B7ixTvvx7Yeifqvu6TkogoXcP8mYm1/gkutu29fjcvfe3lR3a5bFDiRJkrSYdpOfD2Xm79Q2RsQBbRoOtT09tYlPRf3WwWCxA0mSJC2mpeQnIk4ATgV+GBE/kZn/Wr0/M/+gk8GpN6amZzj74zsbJjzDwGIHkiRJWkrTyU9EvBr4GOwrsrUlIl6cmX/XlcjUE5Uen0FNfMbqDL8DOGzVOKsOOXjJYgySJElSRSs9P79LuTT294vzfoTyQqcmP0Osl5XaWhXA8556GF+97Z79YiyNj3Huy44z2ZEkSVJLWlnn50jgZzPz8Zk5Afw34GnVB0TEhg7Gph4Y5CIBCXz1tns4/TmTTE6UCGByosT5p6038ZEkSVLLWun5+ZfMvKbyIjMviYg31RzzXuCkjkSmnlg7UerJ4qTtmptf4Npb9vCVc/zPSpIkScvTSs/PT0fED6ofwPNqXv/XLsWpLtmyaR3jY7H0gV0yPhZMlMZZLIJB7p2SJEnS8Gil5+cg4NF12qvbBnPWvBbXp3+1yZpCBSdccE3dXihLWEuSJKkTWkl+dgMXLLI/KBdA0BDZtmM38w/3NvtZfcgYN73z5w9o37Jp3X5rDYElrCVJktQ5rSQ/F2TmRxY7ICLs+Rky/RhS9opn1y9WUOkB2rZj974S1iceu4ZtO3bz5stutKS1JEmSlqXp5GepxKfZYzQYpqZn2LZjd19GvF17y56G+zZvmNyX3FTWIKr0BM3MzrF1+659x0mSJEmtaKXggVaISlLRrypvzfY21VuDaG5+gW07dncjLEmSJK1wrQx7U49UemUqQ786PdSr3wubNlvAoFGSNDM7x9HnXOUwOEmSJLXEnp8BU90rkzwy1GtqeqZjn9HP0tGtFDBYLEnq1rWRJEnSymXPz4BZbKhXox6OSk/RzOwcYxEsZO4rI115z+pepF4vbLr6kDH2PrjQck9NvepvtZa6NpIkSVKFyc+AadQr06i9tijAQpZLGMzMzrHl8p0QML/wSNvW7bs4/TmTXHHDTE+GvjUqa92M2upvjYozuAiqJEmSmmHyM2Aa9co0GgK22Pydeuv3zM0vcO0tezj9OZNcfN1tywt2CaXxMX7/Fesb7m9mblN19TcXQZUkSdJyOOdnwGzZtI7S+Nh+bYvNk2mn12Nmdo4rbuj+PJnzT1u/6FC9Vuc2tXptJEmSpGomPwNm84ZJzj9tPZMTJQKYnCgtmkS02+vRiyFvl1/fuGepnTLWrV4bSZIkqVrfhr1FxFOB84FXAx/JzDP6FcugqR7qVa3eMLETj13T9eFr7frKf3yfqemZut9lsTLWJ1xwTcOhcI2ujSRJkrSUfvb8nARc3sfPHyr1holt+cROLvvnb/U7tEU16slp1GMV0NUy35IkSRpdfUt+MvPPgbv69fnDpt4wsfmFrFvUYJDMzM7VTV7qzd8JOKCi21JD4SRJkqRmDfycn4g4MyKuj4jr9+zZ0+9w+maYyznX672pN3/HUtaSJEnqpoEvdZ2ZFwEXAWzcuHGwuzm6qNcLk3ZSo4VIa+fvWMpakiRJ3TTwPT8qqzdMbJg003tjKWtJkiR1U9+Sn4h4FfCrxcuNEfGefsUyDDZvmOT05wxvlbNmem8sZS1JkqRu6tuwt8y8nHK1t9f0K4ZBVq+s9Wd23tHvsNrSSu+NpawlSZLULQM/52cUVcpaV6q7VUo+92Jh0lasGj+I+YeT+YXGU7Em66zVI0mSJPWDyc8AqlfWetASn7EI/uC0ZwJw9sd3spAHJkCTEyW+cs5JvQ5NkiRJqsuCBwNoGEo7L2SydfsuAN776uMtVCBJkqSBZ/IzgBoVBzhs1TjjY9HjaBqrLmFtoQJJkiQNOoe9DaAtm9ax5RM795tLMz4WnPuy4wB4x6dv4u698/0Kbz+VXioLFUiSJGnQmfwMqtopNAnXf/P7fGbnHczODUbiAy5AKkmSpOFh8jOAtu3YzfzD+2c/8w8nF193W58iqs95PZIkSRomzvkZQINU8GByosQvPu9IJosenrGIfe3O65EkSdIwsednAK2dKDHT5wSoND5mciNJkqQVxZ6fAbRl07oDSkf3momPJEmSVhqTnwH1qHH/aSRJkqRO8i/sATM1PcPW7bv6Xsp6247dff18SZIkqdOc89NjU9MzbNuxm9tn51g7UWLLpnX7hpdNTc9w9sd3spC1da57r99zjiRJkqROM/npoUqvztz8AlBOMLZu37Vv/9btuwYi8YFHqrpJkiRJK4XJTw9t27F7X+JTMTe/MDC9PdUGLR5JkiRpuZzz00ON1u8ZxESjsq6PJEmStFLY89Nl1XN8hkVpfIwtm9b1OwxJkiSpo0x+uqh2js8gO2zVOLN75w8owiBJkiStFCY/HdCoglu9OT6DaPUhY5z7suNMeCRJkrSiOednmSq9OzOzcyTlCm5nXXYjG975NwNbLrp2/dT7H1xg6/ZdTE3P9CcgSVqmiHhqRFwWERkRH65qf1FEfCkiLoyIL0fEicvdJ0kaXiY/y9Sod+fuvfMMYrHo1YeMsfrQ8QPa5+YXXNhU0jA7Cbi8uiEingBcCVyfmWcB08CVEbGm3X29+jKSpO5w2NsyLVbIIIEotoPi/gcXgPpD8YapKIMkVcvMP4+IF9Y0nwysBu4sXs8Ajynao819H6397Ig4EzgT4Mgjj+zE15EkdYk9P8u0domS0MnwlI1e6rtI0pA5otjO12yPWMa+A2TmRZm5MTM3rllj55AkDTKTnzZNTc9wwgXXMDM7t+jwtsmJEl8556SBT4Asby1pBbqj2I7XbO9Yxj5J0hBz2FsDjSq4VfZt+cRO5hfKA9oaDWurTihOPHYNF193Wy9Cb8phq8ZZdcjBdb+fJK0QnwPuBw4vXq8F7i3ao819kqQhZvJTR+36PDOzc2zdvguAzRsmecenb9qX+FQ79OCDePyjD92XUJx47Bq27djNWZfdOFDFD0rjlraWtLJExKuAVxYvN0bEezLztyPiVODtEXEh8Gzg1MzcU5zT1j5J0vAy+amjXgW3SjW0zRsmuXvvfN3zfvjQw/t6UGoTqEEpehDA+aetN/GRtKJk5uWUq729pqb9auDqBue0tU+SNLyc81NHo6pnzVRDq5SLHtQFTv/4Nc8y8ZEkSdJIMvmpo1HVs0r7ROnAdXIqZmbnOPqcqwZygdNffN6RJj6SJEkaWSY/dWzZtI7S+Nh+bdXFC857+XGLnj8oQ9yqHbZqnHdtXt/vMCRJkqS+MfmpY/OGSc4/bT2TEyWCcrnq6nkymzdM8ovPO3KgihgsZnwsOPdliydskiRJ0kpnwYMGNm+YXHSI2Ls2r2fjUx63rxz2IPb27DPQwUmSJEm9Yc/PMmzeMMlXzjmJ/7zglEXnAfXb/MO5rxCDJEmSNKrs+WlRo8VPY8DHwDVTqU6SJElayUx+WlBv8dOzLruR8z51E7Nz9df+6aZg/xFtpfExDj34oLqxNKpgJ0mSJI0Kh721oNHaPf1IfErjY7z+eUceUJThvJcft2ilOkmSJGlU2fPTgn4PHTts1Tize+f3G27XSL2heZIkSdIoM/lpwdqJUl8WLz3hmMdxyRt/uunjl6pUJ0mSJI0ih701aWp6hr0PPtSXz/6H//g+b5va1ZfPliRJklYKe35oXMGten91oYNeS+CS625j41MeZ4+OJEmS1KaR7/mpJDYzxUKlM7NzbN2+i6npmX3HnPepm/qW+FQkuFaPJEmStAwjn/zUq+A2N7+wL9GYmp7pSzW3evpdcEGSJEkaZiOf/DRKKCrtg9Tb4lo9kiRJUvtGPvlplFBU2gelt8W1eiRJkqTlGfnkZ8umdYsuCjoIvS2VBUwtdiBJkiS1b+STn80bJjn/tPVMTpQIDkw06iVHvRTAV845ycRHkiRJWiZLXbP4oqCV9m07dvdlgdNB6HmSJEmSVgKTnwZq1/458dg1/PU/f4uFh7NnMTjPR5IkSeock586ahc1nZmd4+LrbuvJZ09OlBoutipJkiSpfSY/VSq9Pf0Y3gblxOcr55zUl8+WJEmSVjqTn0Jtb0+vOcRNkiRJ6i6Tn8K2Hbv7lvgctmqcc192nEPcJEmSpC4a2eSntqBBL4a6rT5kjPsfXGAsgoVMJp3XI0mSJPXMSCY/9QoaBNDtOm4Tqw7hpnc6p0eSJEnqh5Fc5LTeELdeFLC+vU+FFCRJkiSNaPLTryTEBUslSZKk/hnJYW+9muNTbfygsJqbJEnSgDvqnKv6+vm3XnBKXz9/pRvJnp8tm9ZRGh/r6Wc++lEHW9hAkiRJ6qORTH42b5jk9Of0NhGZ3Tvf08+TJEmStL+RTH4APvnVmZ5+nvN9JEmSpP4ayeRnanqG+x/s3YKmpfEx5/tIkiRJfTZSBQ8qC5v2stjBWATnn7be+T6SJElSn41E8tPPqh0PZ5r4SJIkSQNgxQ9763e5Quf6SJIkSYNhxSc//eRcH0mSJGlwmPx0SWn8IOf6SJIkSQPE5KdLHrf6UBMfSZIkaYCY/LTosFXjTR13ew8rykmSJElamslPizLLc3mWYqEDSZIkabCMRKnrTrpnbp4/fs2z2LZjN7fPzjGxapz7HniI+Ydz3zEWOpAkScOq35VypW4y+WnR2okSmzdM7jefp7J46u2zc6ydKLFl0zrn+0iSJEkDxuSnBY16dGqTIUmSJEmDp29zfiLiRRHxpYi4MCK+HBEn9iuWZli6WpIkSRpufUl+IuIJwJXA9Zl5FjANXBkRa/oRTzMefChNfCRJkqQh1q+en5OB1cCdxesZ4DFF+0BayFz6IEmSJEkDq1/JzxHFdr5me0TtgRFxZkRcHxHX79mzpyfB1TMW0bfPliRJkrR8/Up+7ii24zXbO2oPzMyLMnNjZm5cs6b7o+IOapDjvPa5T+76Z0uSJEnqnn5Ve/sccD9wePF6LXBv0d5zT3zMIfzTW1+87/Xbpnbx1//0LRYyGYvgtc99Mu/avL4foUmSJEnqkL4kP5n53Yg4FXh7RFwIPBs4NTM7Pq7t1gtOqbtY160XnNLwnHdtXm+yI0mSJK0wfVvnJzOvBq7uxWctluhIkiRJGg19W+dHkiRJknrJ5EeSJEnSSDD5kSRJkjQSTH4kSZIkjYS+FTyQJEnS/upVqJXUOfb8SJIkSRoJJj+SJEmSRoLD3iRJkgoOO5NWNnt+JEmSJI0Ekx9JkhqIiBdFxJci4sKI+HJEnNjvmCRJ7XPYmyRJdUTEE4ArgT/LzLMj4n3AlRFxTGbu6XN4klaoQRh6eesFp/Q7hK4x+ZEkqb6TgdXAncXrGeAxRftH+xVUNw3CH12S1E1DlfzccMMNd0XEN5fxFo8H7upUPF0y6DEOenww+DEOenww+DEOenww+DEuJ76ndDKQAXZEsZ2v2R5RfVBEnAmcWby8LyJ29yC2Thr0/1a7ze8/ut9/lL87LPL94909jqTzGv6eGqrkJzPXLOf8iLg+Mzd2Kp5uGPQYBz0+GPwYBz0+GPwYBz0+GPwYBz2+AXFHsR2v2d5RfVBmXgRc1KugOm3U/1vw+4/u9x/l7w6j+/0teCBJUn2fA+4HDi9erwXuLdolSUPI5EeSpDoy87vAqcDGiLgQeDZwqsUOJGl4DdWwtw4YhmEJgx7joMcHgx/joMcHgx/joMcHgx/joMc3EDLzauDqfsfRZaP+34Lff3SN8neHEf3+kZn9jkGSJEmSus5hb5IkSZJGgsmPJEmSpJGw4pKfiHhRRHwpIi6MiC9HxIl1jlkdEX8aEZdGxMcj4kMRsWqA4jsjIrLm0bNShBHx1Ii4rPjcDzc4pp/XsJn4+nYNI+K5EfF3EfGeiLguIr4QEcfVOa6f17DZGPtyHSNiovj/470RsSMibo6IV9U5rp/XsNkY+/3/86ERsbP43DPq7O/bNVR/RMTji5+hfxkRn4qId0XEWINj10fEVRHxvyPioxHxxR6H21GtfPfi+B+NiJni/58X9i7S7mj2+0fEyyPimoj4o4i4MSI+GRGT/Yh5uZr8u2vF/hxs8vtfFBEfi4j/LyL+IyLe2o9YeyYzV8wDeAJwH/De4vX7gB8Aa2qO2wYk8CPAYcXzCwYovjOAXwE2Vj1W9fA6/jLwyuK6fLjBMX25hi3E17drCJwE/ELx/OgizusH7Bo2G2NfriPwo8DvFs8PBu4G9gIHD9A1bDbGfv///MfAF4trc8Yg/Xfooz8P4HLgruL5huLf/E11jns05TWNfreq7SX9jr8X373q+I8B1xXHvbDf8ffw3/4XgRcUz08sjvtEv+Nv4/sO9N+FA/T9PwSMFc8/Unz/l/Y7/m49VlrPz8nAauDO4vUM8Jiivdorgb2Z+YPMvBuYA149QPEBPIvyD59zgGdk5t4exAdAZv45S6943K9r2Gx80KdrmJnXZOalxctKnKvrHNrPa9hsjNCH65iZ38vM3yteTgCPAr4DLNQc2s9r2GyM0Kf/FiPiFOAByslPI327huq94i7/Zsr/rUL59xDU/zd/CeU1jo6JiG0RcRnw/a4H2SUtfnci4teALwO3dD24Hmjl+2fmxZn55eLlUr8jBtmg/13YbU19/8z81cys/O4a5n/vpqy05OeIYjtfsz2iznHzVa/n6xzTDc3G9/fAhZl5VvH8oxHxpu6H15J+XcNmDco1PIPyD9E319k3KNfwDBrH2NfrGBGnUv7D/T7gjVnclqrS92vYRIx9uYYRcTjwa8Dblzi079dQnRcR364z3DKBLZR7Kpf6PQRwVLG9PzO3AEcCfxMRa7oZ+3J14rsXw4D/a2b+aW+i7pwO/dtXO4Ny0juMQ6EG/e/Cbmv2+wMQEY8BTgP+Bvhkd0Prn5WW/NxRbMdrtnfUOW686vV4nWO6oan4MvPfM3N38fIfi+1Luhxbq/p1DZsyCNcwIn6F8p2j52Tm5+sc0vdruFSM/b6OmXkl5aEZM8BVEfHUmkP6fg2XirGP1/CVlJPa9wMvLdreEBFvqDmu79dQXfE8ykNaax8fAh5i6d+TUB7KCfCNYvsflO8aH9+FeDupE9/9dcDDEfGnwE8Xbb8VES+tc+yg6cT3JyIOioh3AMcCz8zMr3Yz6C4Z9L8Lu63Z709EPAm4EvhT4OTMfLD74fXHSkt+PgfcT7mbHmAtcC/wuYi4PCJeUbR/AlgVET8SERNACfj4oMRXTDD80eKYo4vtzT2Ir6EoT+4ehGvYVHz9vIYR8cSI2E75F9DZwOqI+PQgXcNmY+zXdYyIZ0bE6QCZOU/5B/UhwBMH6Bo2FWO/rmFmfiAzX5mZbwI+UzR/BLhyUK6huiczv52Zt9Z53ANMsf/vISj+zSNiS0T8SdH2t8CDwOOK1z9KeVjnv/fkS7SpE989M9+ama8v/v+p3LT4o8z8DAOuE98/In4M+AKwCjgXOCIiPtHTL9IZg/53Ybc1+3fn64BPA39GeVHn10fEWb0PtzcO7ncAnZSZ3y2GoLw9Ii4Eng2cSvl/3p8GKnctzqM8qe0iICj/Y79zgOL7T+DPIuLbwIuBP+9FfBVRrlj1yuLlxoh4D+W7x32/hi3E189reDJQ+YF6RrG9B3gsA3INW4ixX9dxHvjViHge8CTgGGArcDuDcw2bjbHf/z+fDvxc8fI1RTyDcg3VH78GfDAi/pJyQvP7wP8p9j0b+PGIGMvMWyPi1cBZEfEBysPg/ntm3tqHmDul2e++ABARv0y5SAmU/3//Xmbu6nXQHdTU96c8R/HE4vHbxf6dPY512Qb978Jua+H7/wHwFODSqtPrDYVfEeLA4emSJEmStPKstGFvkiRJklSXyY8kSZKkkWDyI0mSJGkkmPxIkiRJGgkmP5IkSZJGgsmPJEmSpJFg8iOpLRHx4Yj4QUT8Tr9jkSRJaobJj6SWRcTxwKuAHcA7I6LU55AkSWqbN/RGh8mP+ioibomILxaPuyIiI+LOqrYv9jCWM4p4MiIWqmOIiFsj4oW9imU5IuK8qut46RLHPjYibiiOz4j4akQcUuw7PCL+MSK+FxH/rebU7wD/Cvwv4BbgwapzvhgRDxTv98KOf0FJkjrIG3qjxeRH/XZnZr4wM18I/H3R9vmqtp7JzA8DFxQv5yoxFHF8uJexdMjnM/MXFjsgM+8B/gtwb9F0SWY+WOy7E3gf8EeZ+Vc1pz4X+CngDuDRmblQOae4Xnd27FtIUod1+8ZbRFwUEXsi4rhuntNGXIvd5LslIs7o1me3EGNXb+BFxOOK7/4zVW/lDb0RYvKjfrtgmft75fPAv/c7iG7IzDlge/Hy9TW7XwdcUt0QEQcB76pqOjIiHt29CCWp47p94+3JwGHAY7t8TkuWuMk3KL9vK7p1A+/ngPuBf6hq84beCDH5UV9l5ueXOORnImK2uOPyvoj4VETcXdy9en/13ZiIeF3VsWcARMRxEfH54m7Q1yLiwoh4VCsxRsQXM/O6zPx28frpRRw7i8eVEfG0Yt/5i8T740Ust0XE30bEtRFxylJxRsTBEfHBiPhmRHy5OOaSxhE3/B6LXYuLi+2GiDi2OP7xwGMy89aat3od8BPALPA9IIAfbzUeSeqjbt94ezmwNjP/Yckjl3dOJ/1z8Rgqrd7AAzYBV2fmPHhDbxSZ/GigZeZW4Mbi5UbgFcCvAPdn5v+i6m5MZn6s6lgi4keALwAvBH4GeA/wm+z/Q66RUtXQh8Or3vMxwNXAKcDPAy8unn8hIh69SLxZnLcJ2JyZL6accLy4iThfD/wa8MHMfAHwAuD4Jr7DPk18xjXA7VWfB/Bq4OM17zMOvKN4eSFwU/Hc5EfS0FjOjTeA4vXfF8Oq/j2qJslHxK8D3wK+U9z4emvVe/2fiPholCfWfywixto9pzjvZyPiXyPipoh4b0TcXpxzY0RMNns9ipt8N2fmzYvcxLtjkZt7bd0UbDa+4n06dQPv5yiP5qjwht6IMfnRMJnKzIXM/HhmXt7E8adQTly+lZn38sgf6m9s4ty5qqEA1d3dLwGeBHw7M+/IzO8C3wSOLPbVjZfy+OHDgTsy86vF/o8DH2sizoli++sRcS7wdMrd/K1Y9DMy82GgMrb6tcX2gOSnOP6plH9JXAh8vWjv2hh1Seq1xW68FW3XA/81M3+a8o2t34+I1xTnfoCqP64z8/er3isy85eAf6T8s/Zl7Z4TEWuAKeAZwInAB4AjinPOysyZJb5m9U2+ZzXx3X+jQfsC7d0UrFzLJXXwBt7xwFqKa+0NvdFk8qNhcleLxz+52K4tfrj/EeVE5e6IaHpMdc3476cU271VbXtr9lVUx1uJ5QdV73tvZv5zE3FeDHylOO484Abgo0VXfbOauRaVO2fHRMRrgXsy83uVN4hy9Zu3FS8vLMZam/xIWunq3Xj7JvDFiLiBco8+wAlNvNf1xbZyU+0ZyzjnJcBqyje1vpuZ/0lrvyerb/Ld2OCYRjcda2/utXxTsMmbmBWduoG3CbglM79Zdb439EbMwf0OQGpB1mn7YbGtDAOoLk/57WK7p5LAREQAzyj+cG9H5Qfmqqq2VTX7Kqrjva3Y/kilISIOo/xDd9E4I+LJlH/wPxE4DXgn5Tt/xwPTTca95LXIzOmIuJnyHa8/Ad5U8x6/wSN3Fc+LiPOq9nmXTNJKtV9CEREvoFwB9OvAM4FzgHOp+vm+iAeKbeX3w6HLOKfy83iu6tj7gcc38Z77WaTIQ6Nkqrq93ZuCrai9gXcIxe/ciHhs8XvsYuC3aHADr/DzPNLrc8ANvYgw+RkB9vxo2N1SbA+PiNXAsVX7PgvsAZ4cEeuKtpcAf7yMz/sM5UTmSRFxREQ8gfIP928CVy1y3lWUu+SPiIhnFW2/ApzcRJyvAc7OzH/LzAuA/6D8S3BPC3E3ey0qE0PHgE9VGoveobcUL78MXFY8Plm0OUFU0kpVe+PtucX2/2bmA/Tvb6k7im31Tb9V9Q5sRkQcFQeWcq5307G2vd2bgq3Y7wZeZj4fOBp4SfUNPODm4rg/oTysfJ/ib4QTeGR4Ye0NveSRQhfe0FvBTH40EKJcy78yj+XnI+L9RftbeWQs8jlx4GKbbwe+Bvwe8DvA7sqxwDGUxx5fC/xNROwAfgl4Q4MYzijOg0fGQv909TGZeT/wIspJ0A7gb4vnL8rM+xvFW3TTv4hyEvLJiPgC8GPAtsycXSLOW4BTI+IfIuJGyr88/p9K9blmNPEZFZcU7//JooJOxf9LuQTrTcCLM/MXihKkp1MuMeoEUUmj4jvFtvKHc796CT5LuafnyRHxhIg4GlizjPc7ivKcmla1e1OwFcu6gVc4ifL8pC95Q2/EZaYPHz5W0IPyvKAEPtzHGG4tYnhhv6+HDx8+fDR6UJ4nclfx8+pO4P1F+1spzwNJyjeg/lvVOSXKvQf3AR+i/Edz5fz/Afx68bxybu17vbJq/62UhzW3fE4Ry89SXpzzFsq9HZVjfqbB9/1lHhk9sABcV/W4ufj9Ufe7L3FNfgy4EvgXYCflQgzHLHVegxjr/g6jPNT7C5STqh3FdT+85pinAA8DH6nzvh8EPlc8//3iM/4VOKTqmKA8NzeBn6pqvxV/p62YRxT/qJJWiIg4CziL8i/mf80lFonr8GcfTvmPiSdRnlP4C5l5Xa8+X5JGSUT8RGb+a9Xru4AfBZ6WmUO5MHcxn/RcygnMGR1833+nnNy+r41zb6WcWJ2YmV/sVEzqD5MfSZKkIRQRtwAnZOb3ImID8FXK1eF+Kof0D7x+3sCrE4s39FYgkx9JkqQhFBF/Afwk5WFlTwT+AfidzLx9sfOkUWbyI0mSJGkkWO1NkiRJ0kgw+ZEkSZI0Ekx+JEmSJI0Ekx9JkiRJI8HkR5IkSdJIMPmRJEmSNBJMfiRJkiSNhP8fHkM3aJD7HBQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1008x504 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(14,7))\n",
"plots.force_scatter_histogram()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "6bc97148-4858-4493-b527-e57037a9f7cb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAGxCAYAAACp7s2uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABI0ElEQVR4nO3dfZxkVX3g/8+XpjA140OTiEK3jBATGyUjjE4iCRsjGO0oUSbjAzHmgd1NyCabNRDsBNQVMJoZM0aHqGtC8jPoigEfxkZEM66AkjWLCdiDk1EmDwaRGpBBpxFmGmh6zu+PutVUV1d1V1XXc3/er1e9qu+591Z96zJ09feec74nUkpIkiRJ0mp3RLcDkCRJkqReYHIkSZIkSZgcSZIkSRJgciRJkiRJgMmRJEmSJAFwZLcDaKWnPvWp6YQTTuh2GJK0qt122233p5SO6XYcvcjvKUnqDbW+qwYqOTrhhBO49dZbux2GJK1qEfHtbsfQq/yekqTeUOu7ymF1kiRJkoTJkSRJkiQBJkeSJEmSBJgcSZIkSRJgciRJkiRJgMmRJEmSJAEmR5IkSZIEmBxJkiRJEmByJEmSJEmAyZEkSZIkASZHkiRJkgSYHEmSJEkSYHIkSZIkSQAc2e0AJEntNzlVYNvOveybnmFkOM/E+BibNox2OyxJknqKyZEkDbjJqQIX79jNzOwcAIXpGS7esRvABEmSpDIOq5OkAbdt5975xKhkZnaObTv3dikiSZJ6kz1HkjTg9k3PNNQuqbedcNH1XX3/O7ee1dX3l9rJniNJGnAjw/mG2iVJWq1MjiRpwE2Mj5HPDS1oy+eGmBgf61JEkiT1JpMjSRpwmzaMsmXzekaH8wQwOpxny+b1q64YQ0TcGRGp7PHZrP0lEfHliNgeETdHxBll5zS1T5LUn5xzJEmrwKYNo6suGariNuA1ZdvTEfE04FrgL1NKF0bE5cC1EfEsIJrZl1La39FPJUlqGZMjSdJqsQZ4JfBs4H7gT4GXA2uBe7NjCsCTsvZoct9Hyt80Is4DzgNYt25d6z+VJKllTI4kSavFnwM7gTzwL8AvAn+Z7ZuteD6OYgLUzL4FUkpXAFcAbNy4Ma3oE0iS2srkSJK0KqSUPp/9eDAivg78AvCErC1X8XwPjydAje6TJPUpkyNJWqUmpwps27mXfdMzjAznmRgfG9h5SRHxDOB3UkpvyZpOAGaADwITwLFZ+wjwIPB5ignQwSb2SZL6lNXqJGkVmpwqcPGO3RSmZ0hAYXqG86/ZxYa3f4HJqUK3w2uHh4Gfioj3RMS1FBOjzSml+4CzgY0RsR14PnB2Sml/s/s6/cEkSa1jz5EkrULbdu5lZnZuUfuBQ7NcvGM3wED1IqWU7gdeWmPfDcANrdwnSepP9hxJ0iq0b3qm5r6Z2Tku/Pjtg9qDJElSTSZHkrQKjQznl9w/lxIX79htgiRJWlVMjiRpFZoYHyOfG1rymJnZObbt3NuhiCRJ6j6TI0lahTZtGGXL5vUM53NLHrfU8DtJkgaNyZEkrVKbNoyy65KXsf2cUxmKqHrMcsPvJEkaJCZHkrTKbdowyp+97pRFw+zyuSEmxse6FJUkSZ1nKW9J0nzZ7tWyKKwkSdWYHEmSgGKCZDIkSVrNenZYXUS8MCL+PiLeHRG3RMQXI+LkbsclSZIkaTD1cs/RWuADKaWrI+JE4FvAh4GN3Q1LkiRJ0iDq2eQopXRj2eb92fPabsQiSZIkafD17LC6CucCM8AFlTsi4ryIuDUibt2/f3/HA5MkSZI0GHq256gkIn4beB3wgpTSNyv3p5SuAK4A2LhxY+pweJK0YpNTBavESZLUA3q25yginh4RO4DTgAuBtRFxXZfDkqSWmpwqcPGO3RSmZ0hAYXqGi3fsZnKq0O3QJEladXo2OQJeDvwSxSF1XwX+CfjZbgYkSa22bedeZmbnFrTNzM6xbefeLkUkSdLq1bPD6lJKVwJXdjkMSVqxpYbN7ZueqXpOrXZJktQ+vdxzJEl9b7lhcyPD+arn1WqXJEntY3IkSW203LC5ifEx8rmhBfvzuSEmxsc6FqMkSSrq2WF1kjQIlhs2VxpeZ7U6SZK6z+RIktpoZDhPoUqCVD5sbtOGUZMhSZJ6gMPqJKmNHDYnSVL/sOdIktrIYXOSJPUPkyNJarPyYXOlst4XXLPLREmSpB5jciRJHVIq612qXlcq6w2YIEmS1AOccyRJHbJcWW9JktRd9hxJUocsV9a7HqVhec5fkiSp9ew5kqQOKS/fXU97pdKwvML0DInHh+VNThVaGKUkSauXyZEkdchKy3o7LE+SpPZyWJ0kdchKy3q3YlieJEmqzeRIkjqovKx3o0aG8xSqJEL1DsuTJElLMzmSpA4pL6bwlHyOCJg+NFt3D9LE+NiCUuDQ2LA8SZK0NJMjSeqAyjWOpmdm5/fVu97RSoflSZKkpZkcSVIHVCumUK5UWGG5RGclw/IkSdLSrFYnSR1QT9EECytIktRdJkeS1AH1FE2wsIIkSd3lsDpJarHywguleUHViimUs7CCJEndZ8+RJLVQqfBCYXqGxMJiC1s2r2d0OE8Aw/kcR6/JATAUMT/naHKq0L3gJUla5UyOJKmFqhVeKC+2MDE+xshwngeyanW5I4K5lIDHEykTJEmSusNhdZLUQrWKKhSmZ9jw9i/w0MOPMXu4mAwdODS76Lh6q9ZJkqTWs+dIklpoqaIKBw7NzidGS7FqnSRJ3WHPkSStUHkBhqfkc+SGgtm55ZOgWqxaJ0lSd9hzJEkrUFmAYXpmFhLzxRYaZdU6SZK6x+RIklagWgGG2cOJNUcdyWgdPUC5oWA4nyOA0eE8Wzavd76RJEld4rA6Saqicq2iM046hpvu2E9heoahKFaYGx3OU6gxP2jf9AzvPefURWsb5YaCtUcdyQMzs/NrIJkMSZLUG0yOJKlCaahcKakpTM/w0Vvumt9fXno7gGqzi0aG8/NJT+WCsCZDkiT1JpMjSapQbahcLQkWJUjl84Y2bRg1GZIkqU+YHEla1SqHz02MjzVcSjtRnC9k75AkSf3N5EjSqlVt+NzFO3YzvCZXdYHWWoYi+MpFZ7YrTEmS1CFWq5O0alUbPjczO0dKxaFx9SrNQZIkSf3N5EjSqlVr+NwDM7Ns2byeoYi6Xqeekt2SJKn3OaxO0sCqNp+ofC7QSI1S3OWV5ipLcVdzxknHcPrWG51zJElSnzM5kjRwJqcKXHbdngXzhkrziYD5xGVifGxR8lNZaQ6Kw+9qrWeUzx3Bp24rLJq3VH6+JEnqDw6rkzRQSkUWqhVUmJmdY9vOvfPbmzaMsmXzekaH8wTF4XFbNq9fkNRs2jDKVy46k+3nnLpoHlI+N8QP5Yaqzlsqfx9JktQf7DmSNFCWW6Oosgeo3nWIai3oesE1u6oe32g5cEmS1H0mR5IGSq3hbyX1FFmonKt0xknHcNMd++e333vOqcsOuRuxSIMkSX3H5EjSQBmKWLK09nJlt6utffTRW+6a318+pwjg0KOPLXqN8nlLkiSpf5gcSRooyyU/lWW3K3uJDj362LLV6WZm53jzjq8zM3uYyncbzue49FUnW4xBkqQ+ZHIkaaCM1ijPDYt7dCanCkx84nZmDxdTnOWG5JU7NHu4avvaJxxpYiRJUp+yWp2kgTIxPraoqhzA0WtyiyrRXfqZPfOJUatYiEGSpP5lz5GkgVKrqly13pzpmcXlvlfKQgySJPUvkyNJA6cyQSqtOVSeIE1OFRp+3aCY/Bx85LGqiVWAhRgkSepjJkeSBs5bJ3dz1S13zRdLKK8wV544NWJ0OM9XLjoTWFzRDoqJ0RtOW+d8I0mS+phzjiQNlMmpwoLEqGRmdm5BQtRI8YXKQg6bNoyyZfN6RofzBMXE6b3nnMo7Nq1fYfSSJKmb7DmSNFC27dy7KDEqKRVLeOvk7hpHVFdZyAGKCZK9RP0nIp4A/CPwPOA/p5SujIiXAG8DpoDnA5eklG7Kjm9qnySpP9lzJKkvTU4VOH3rjZx40fWcvvXG+TlES1WLS8Cpl31hwaKu9TAJGihbgQOljYh4GnAtcGtK6XyKic61EXFMs/s6+WEkSa1lz5GknlO5MGtltbnKOT/lc4qG1+Q4cKh2FbpGK9RVLhpbT3zqTRFxFvAw8CXg57LmlwNrgXuz7QLwpKw9mtz3kTZ+DElSG5kcSeopSyU+5cUUyoshQHFO0WXX7VkyMWpGZfW5euJT74mIY4HfBTYBbynbdVz2PFvxfBzFBKiZfZXvfR5wHsC6deuail+S1BkOq5PUU2olPuXFFGoNnWt1YpTPHbEo4aknPvWk1wAzwPuAX8zafgO4J/s5V/F8zwr2LZBSuiKltDGltPGYYxx1J0m9zJ4jST2lVuJT3j4ynG+o2lyzHp49vGQc9bSrN6SU3g+8HyAiLgVeAHwY+DxwEDg2O3QEeDBrjyb3SZL6lD1HknrKSJU5PpXtE+Nj5HNDLXm/oQiG87mq+6rFUk986l0R8WrgZdnmOcBzgLOBjRGxnWLVubNTSvtTSvc1s6+Tn0eS1Fr2HEnqKRPjY4sWWM3nhjjjpGM4feuN80UQXv2CUW66Y/+Ke5AOp8QvnnJc1Qp2Z5y0eAhUrfgq5yapN6WUPgV8qsquG2ocf0Mz+yRJ/cmeI0k9pdoCq69+wSifuq1AYXqGRLEIwqduKzAxPjY/K75ZI8N5brqj+s3+au3V4qu2DpIkSeo/9hxJ6jmVC6yevvXGmkUQVjr/aGJ8jAuu2VV1X615RC4AK0nSYLLnSFLPW6oIwkrnH23aMOo8IkmSBNhzJKkHVS6y+pR8rurirYliae1Xv2CUz95+T1MLvE5OFTj4yGOL9jmPSJKk1aene44i4kcj4pqISBFxZbfjkdR+pUVWy+cX/eDh2klPaf5Ro0pFHi7esXtRUnX0mpzziCRJWoV6OjkCzgQ+0e0gJHVOtUVWD6elz5mZnWuo12gogi2b13PTHfsXvRfAmqOONDGSJGkV6unkKKX018D93Y5DUvtNThU4feuNHVnc9XBKbNow6oKukiRpgb6fcxQR5wHnAaxbt67L0UhqRmkoXbVenHY4IoITL7qeIyKYS4u7pSzEIEnS6tT3yVFK6QrgCoCNGzcuM/hGUi+oLLhw4OAjzMwe7tj7lxKiaolRtQVnJ8bHHGYnSdIq0PfJkaT+UtlL1IlhdMsZiuBwSowM5znjpGP41G2FBfFdvGM3gAmSJEkDrqeTo4h4LfCabHNjRLw7pfSmbsYkqX6VPUQT42NVCy5021xKbD/nVDZtGF1ywVmTI0mSBltPJ0cppU9QrFZ3TrdjkVS/yakCl35mz4IKcqUemE4kRrmh4IlPOJIDh+qvYFfqHbJIgyRJq1dPV6uT1H9Kw+aqldbuRGK0JncE215zCpe88mTyuaEF+3JDQe6IqHpeqXeoVjEGizRIkjT4TI4ktVQ3h80dEfAnm5/Hpg2jbNowypbN6xkdzhPA6HCeba85hW2vPaXm+fumZ5gYH1uUVOVzQ0yMj7U5ekmS1G11D6uLiBc18LoPp5T+sYl4JPWh8rlF3SwZeTixYG5QKUmqtG3n3qqFIEaG8/PHV86Vcr6RJEmDr5E5R1+Cuv/uuRN4VqPBSOo/rVqjKAKqVNZuWD1zgybGxxbFXN47VCupkiRJg62R5OgR4N46j+2tUlSS2qZVw+hakRhBfXOD7B2SJEnVNJIc3ZJSOqOeAyPipibjkdRnluupGYrgqCOjI4u85o6IuucG2TskSZIqNVKQ4ZfbdKykPrZcT81cSh1JjNbkjmDba08x4ZEkSU2rOzlKKX13qf0RsSYiNtZzrKTBUa26W6cN53N8449fbmIkSZJWpK5hdRHxBODRlFKKiDXAc7PHydnjucC6Rl5T0mConL/TjWp1D1RZU0mSJKlRyyYyEXExcBlwR0Q8kWISVL6KYvnPD7Y2PEm9rLyE98hwnveec2rNMtnt5AKtkiSpFeoZVncR8GngpcAJ2TnfB/4e+BBwcXbcjpTSU9oQo6Qe9NbJ3VxwzS4KWW9RYXqGi3fs5oyTjunoMDsXaJUkSa1ST3L0aeAsYDLbTtl5NwB/kFJ6V9b+aMujk9STJqcKXHXLXYuG0M3MznHTHft59QvaM/cnNxT86mnrGB3OE8DocJ4tm9c710iSJLXEssPqUkrnRsR7gO8CpwHvoDjP6FLg9yPi8rZGKKnnbNu5t+bcon3TM9x0x/62vO/ao47kHZvWt+W1JUmS6qpWl1L6ekrpuymla4HnAb8O3An8MMUkKQHHRYTFGKRVYKm1jUaG88uufdQsCy9IkqR2amSdIwBS0UeBMeD3gHspFmV4EXBba8OT1IuWKoBQmJ7hiIia+1ciAadvvZHJqUJbXl+SJK1udSdHEfGzETE/yzql9FhK6X8Bz6JYlOEB4CdaH6KkXrPc2kZzqX0FvUuFH0yQJElSqzXSc3QT8L2I+FRE/FZEHA+QUno4K8pwIrClHUFK6g2TUwVO33ojF1yzi0dm57oWx8zsHNt27u3a+0uSpMHUSHJ0DPDfKPYQXQLcGRF7IuLPIuLngZmU0lvbEaSk7pucKnDxjt3zpbsPdzmeds1rkiRJq1fdBRRSSgeAq7MHEXEK8DLgF4D/DjwWEV8GPp9Sen8bYpXUQZULvB585DFm2thbNDqc59Cjj3HgUH1FF1z4VZIktVojc47eUL6dUro9pbQtpfQSilXrXk+xgt0bWxqhpI6r7CUqTM8w3eZKcYXpGR56+DFyQwuLOeSOiEVtLvwqSZLaoZHS25dHxDrgqpTSXeU7UkqHgOuyh6Q+t23n3rb2EtUyezgxnM+x9glHzvdYlZKg8l6sifExF36VJEkt10hy9C/At4D3RcQTgY8DH8+G20kaIN2cz/PAzCy7LnnZonaTIUmS1G6NFGT4pZTSNSmls4HXZefuiIhPR8RrI+IJ7QlRUqd1cz6Pc4kkSVK31J0cpZS+W/bz91JKH0wpnQFcA/wF8N2I+FAbYpTUYRPjY7RnGdelOZdIkiR1U93D6iLiyJTSY9nPzwbeQLEIw7NKhwC/DvyXVgcpqTPKK9S1bxnX6obzOS591ckOn5MkSV3TyJyjWyLiKopJ0YasrXRz+RvAVdlDUh8qVajrRiEGgEce6/bKSZIkabVrJDl6PsWkqJQQ7aO45tFHU0q7WhyXpA7rVoW6kpnZObbt3GvPkSRJ6ppGkiOAh4AdwEeBG1NKnR55I6lFKhd5LXSxQl1JN6vkSZIkNZIcfQ04PaX0SLuCkdQalYlP5VpBw2tyPPTwY8weLt7f6IXECKxUJ0mSuquR5OjMaolRRDwppfRgC2OStAKVc4cK0zNMfOJ2CJidKyZDBw7NdjNEoDg+t7zr2Up1kiSp2xop5f2D0s8RcVRE/GlEHAB2RcRzIuLzEfG0tkQpqS6TUwUu/Pjti+YOzR5O84lRt40O57lz61m895xTGR3OE1nbls3rnW8kSZK6qtE5RyXvAn4/+/lASumbEfF+4HKK5b0ldVipx2iuh6cCBsz3Dm3aMGoyJEmSekrdPUcVxoHfBH6GYtU6UkrXA8OtCUtSo7pdbW45AbzhtHXzCdHkVIHTt97IiRddz+lbb2RyqtDdACVJ0qrXbM/RDHB1SulQRDwK8wvDntSyyCQ1ZLlKb0NHBHOHF/YqHTUUPNrG4XZrjxri0KNz80UhyhOjynlRF+/YDWBvkiRJ6ppmk6P7gPsj4jvASER8CzgeuKllkUlqyHLluCsTI6CtiRHA8Jqj2PP2Mxe1V+vlcp0jSZLUbc0Oq7sQeAD4cWAtcALw/axdUhdMjI+Rzw11O4wFaiVrtXq5XOdIkiR1U1M9Rymlb2TD6M6i2GN0N/C5lNIDrQxOUv1KPS7nX7Oru4GUGYqo2l6rl8t1jiRJUjc123NESunBlNLVKaVtKaW/NTGS2queAgabNowy2kMJxlxKVeOs1svlOkeSJKnb6k6OIuJj7ThW0vJKBQwK0zMkHi9gUCvxyA1V77HphmpxbtowypbN613nSJIk9ZRGhtWdEREfqvPYn2gmGEnV1VPAYHKqwLade9k3PcORTfcJt16tQguucyRJknpNI8nR04HfoLhcyXLubCoaSVUtVcBgcqrApZ/Zw/TM7Hz77OFORVYfCy1IkqR+0EhydFkDx043GIekJdQqYDC8JrdgvaBeZaEFSZLUD+pOjlJKjSRHklpoYnxsURKUzw3x0MOzPddLVMlCC5IkqV/00MwESbVUK2Dw/HVP6UpiVDmu9ohgUQGI0paFFiRJUj9pap0jSZ1XSjBKRRdqLbDabu8959T5GEaG8/O9QpVtJkSSJKnfmBxJfaJUzrub84uGIuarzJWq411wzS4TIkmSNBBMjqQ+Ua2cd6e9/oXHA4sTtdK6S4AJkiRJ6lstmXMUEadExEgrXkvSYpNTha4Noys5/Vk/zDs2rQeWXndJkiSpXzWVHEXERyPi6xHx5Ii4FvgacFdE/Fprw5M0OVVg4hO3dzWGXz1tHVf91k/Pby+17pIkSVK/arbn6DnATwPPAl4JPAb8C/BHLYpLUubSz+xh9nDqagw33bF/wXatdYtcz0iSJPWzZpOjB1NKBykmRgD/M6X0XGC2NWFJKpme6f7/VpU9QhPjY+RzQwvaXM9IkiT1u2YLMpwQEW8C/iuQgB1Z+8GWRCUNuFKlt+VKX09OFboQ3WKVPUKlWC/9zJ755O2Hci6bJkmS+luzf81cD/wpcDzwFeC7EXEZsLZVgUmDqlTprTA9Q+LxSm+ViVDpuG5bqkfokcceX4X2wKHZqp9D6gURMRwRN0fEn0XEzoj4RkS8Ntv3koj4ckRsz445o+y8pvZJkvpTs8nRG4Fzgd8H3gA8BfgB8NbWhCUNruUqvU1OFTh9642cf82urpXuHh3OE9nzls3rq/ZqWbFOfWYI+D8ppQuBs4DjgA9HxNOAa4FbU0rnA1PAtRFxTLP7Ovy5JEkt1OywuiHgJ4DfAs4HfhF4KfC/WxOWNLiWqvT21sndXHXLXXSz/MJwPsdXLjpz2eOsWKd+klL6HvDH2eYw8EPAvcDLKY56uDfbVwCelLVHk/s+Uv7eEXEecB7AunXrWvq5JEmt1WzP0buAN1HsMYqU0jeB9wGXtyowaVDVqug2vCbX9cQIYHbu8PIHYcU69aeIOBv4EvAQxRt8x2W7Ziuej1vBvgVSSleklDamlDYec4wdS5LUy5pNjsaB3wR+BtgHkFK6nuLdOElLqFXpLSW6nhgBHHy0vqF8VqxTP0opXQtsoNjTcz3whGxXruL5nuzRzD5JUp9qNjmaAa5OKd0CPAoQEc8GTmpVYNKg2rRhlC2b1y+a19MLJbsbUetzVJufJHVbRDwvIl4NkFKapZjEHEWxF+kgcGx26AjwIPD57NHMPklSn2p2ztF9wP0R8R1gJCK+RbFy3U0ti0waYJs2jC5IInqpwttwPrf8QZnKzyH1sFngdyLiNOAZFBcxvzil9OVsqN3bImI78Hzg7JTSfpgfhtfwPklSf2o2OboQuAH48Wx7LbA/a5e0jMmpApddt4cDh3qrt+iIgEtfdXK3w5BaLpsb+/M19t1A8TutZfskSf2pqeQopfSNbBjdWRR7jO4GPpdSeqCVwUXES4C3USyR+nzgkpSSvVPqa5NTBSY+eTuzc92dYXT0mhwpMT+c7+g1OS555cn2BEmSpFWr2Z4jUkoPAle3MJYFytaQ+MuU0oURcTnFNSSe5bAF9bNtO/d2PTHK54ZMhCRJkio0VZAhIl4eEe+JiI3Z9vMj4s0RUf9kheUttfZEeSznRcStEXHr/v3mTOp9vbAOkIUTJEmSFmu2Wt0EsBv4Zrb9LWAO+EArgsrUtYaE60eoH0xOFTh9642ceNH1HBHR1VhGh/MmRpIkSVU0O6xuNqX0N6WNlNI08K6I+EJLoipyDQn1vcmpApd+Zs+CMt1zqXtD6gJch0iSJKmGZpOjkyLilJTS7aWGiHgexdKoreIaEupLk1MFtu3cS2F6hqA3FnYtecNp6+w1kiRJqqHZ5OibwNci4h7gB8CTKQ53+1yrAksp3ecaEuo3k1MFLt6xm5nZOaB3EqOgmBi9Y9P6bociSZLUs5pNji4AbqTYmzOSte2jxescuYaE+s22nXvnE6Ne8t5zTrXHSJIkaRnNJkc/CfwR8CjFdY7uAq5PKT3UqsCkflTogUp0lSzAIEmSVJ9mk6PtwHkppU+2MBapr01OFXpujlE+N2QBBkmSpDo1W8r774FPVTZGxBtWFo7Uv7bt3Nv1xCgo9hSVnl3PSJIkqX7N9hz9B3BzREwC9/P4zfKLgKtaEJfUd3phcVeLLkiSJDWv2eTojRQTop9pYSxSTymV5N43PcPIcJ6J8bEle2FGhvNdm3M0FMHrX3i8iZEkSdIKNJscPQDsqtJ+SvOhSL2jsiR3YXqGi3fsBphPkCqTpxN+pDvJ0ehwnq9cdGbH31eSJGnQNJscfTCl9ObKxohY1Cb1o2oluWdm59i2cy+bNoxWTZ66MayukYILjfaESZIkrTZNJUcppTdHxBrgFcAzgTuBz6WU/qSFsUldUyvRKbVXS566UYyh3oIL9fSESZIkrXZNVauLiB8D9gDXAH8KfBz454g4sYWxSV0zMpxfsr0Xii9A/YnNUj1hkiRJKmq2lPe7gWdQrFq3J3tel7VLfW9ifIx8bmhBW/kQtlrJU7Q9suYs1xMmSZKk5pOjE4CRlNKPpZSel1L6MWAU+NGWRSZ10aYNo2zZvL7mmkFnnHRM1fN+7GlrOxbj0WtydR+7XE+YJEmSmi/IAItvkkeVNqlvbdowWnPY2k137K/a/q/3HWxnSAtc8sqT6z52YnxswZwjaKyYgyRJ0mrQbHJ0F1CIiLuBQ8AaisPsPtuqwKReNTlV6Np6RuUaKaRQOtZqdZIkSbU1mxxdCGygWKmu5K6sXeo79Za5LlV967bhfP1D6kqW6gmTJElS86W8/zUinsPjpby/DXw2pXSolcFJndBImetqVd+6IRzAKkmS1HJ1J0cR8aLsx39LKe1LKT1EsYS31NeWW/C1pFeG0wFMH5rtdgiSJEkDp5Geow8DfwM8DOxrTzhS5y1X5npyqsBl1+3hQIcTkqEI5lL1pWWtMidJktR6jSRHd6aU3g4QETcBTwfuTSmd2ZbIpA4ZGc5X7REaGc4vGnLXKfncEFs2rwewypwkSVKHNLLO0fwt7JTSGcB3KxOjiHhhqwKTOmWpBV+7MceofE2l5dZbkiRJUuusZJ2jauN9tgD2JKlvlKrUzczOzQ9jGy2rVnfBNbs6Gs/Ra3J85aKF/wtZZU6SJKkzGkmOXhQRPyjbzldsAzgRQn2jcsjcXEoExWp123buBWoPuWuXRhZ2lSRJUms1MqzuCOCJZY+hiu0nNvh6UldVGzJX6g4tlfM+4Uc6m+/bQyRJktQ9jfQc7QW2LrE/gD9aWThSay21uGutKnUlM7NzfOXfv9+JMIHifCJJkiR1TyPJ0daU0oeXOiAiqtcdlrpgucVdOz1kbim5obACnSRJUpfVnRwtlxjVe4zUKbUWd33zjq+zbedeCtMzBNUri7Rb+fsevSbHJa88uakhdUv1jEmSJKkxK6lWJ/W0WsPmDs0e5lC2L0HHE6TR4fyiinTNWK5nTJIkSY2xgIIG1kidc3g63XO03FynetXqGStV2pMkSVJjWpocRcRxrXw9aSV6dQ5PvUnbcmolWa1KviRJklabuofVRcSL6jhsO/D8pqORWmjThlEuu24PBw7NdjuUefncUMuStloFJVqVfEmSJK02jcw5+hLdmbsuNaS8SMFT8jlyQ8HsXPf/6Y62uGDCxPjYgjlH0NrkS5IkabVpJDl6BLg3+/mHgKcD9wMHgTXAMWX7pa6oLFIwPTNL7ojg6DU5pg/NMjKc58DBRzg0e7ijcQW0pAhDuVKSZbU6SZKk1mgkOfqLlNIFABHx58B7Ukp3lnZGxInAha0NT2pMtSIFs4cTa446kqm3vQyAt07u5qpb7upoN2i7hrpt2jBqMiRJktQidRdkKCVGmTOBBysOeShrl7pmuSIFk1MFPnVboaOJkUPdJEmS+kOz1eoScG9EfCsi9kTEt4B9wGOtC01qXK0emlJ7tZ6ldiuV156cKnT0fSVJktSYZpOjCyjOQToBeE72/DBwfiuCkpo1MT5GPje0oK2856ZbZa5LC7SaIEmSJPWuRuYczUspfTEiTgBeARwH3AN8LqV0fwtjkxq2XJGC4TW5rpX2LvUgOUdIkiSpNzWVHAFkidBHIuJJKaXK+UdS19QqUvCGv/p/XV/zyAVaJUmSeldTyVFEHAW8A/gt4PsRcRbwXuA3Ukr3tTA+aUmlNY0K0zMMRTCX0vx6QvB4D9Kao4Y4+Gj75hqV3ns5LtAqSZLUu5qdc/Qu4E3AU4BIKd0BvB+4vFWBScsprWlUyHpjSslJYXqG86/ZxR98fBeF6RkStC0xyg0F2885lcN1JEZWrZMkSeptzSZH48BvAj9DsUodKaXrgeHWhCUtb7nKc4c7UK/7nJ88nk0bRmv2CA1FEMDocJ4tm9c730iSJKmHNTvnaAa4OqV0KCIeBYiIZwMntSwyaRm9MH/nU7cV2PjMH2ZifIyLd+xekKzlc0MmRJIkSX2k2Z6j+4D7I2Iv8JPZOkd7gH9tWWTSMnph/k55Bbotm9czOpy3p0iSJKlPNdtz9Cbgi8CPZ9trKSZMF7YiKKke1XpruqHUg1WrSp4kSZL6Q7PJ0b8BzwbOAo4H7gZGgAMtikta1qYNo9z67e/zt1/9Tl2V4tqlF3qwJEmStHLNJkefTymdCVxdaoiIc4ArgZ9vQVzSst46uZurbrmL7qVFVqCTJEkaJA0lRxHx69mPx5b9XLIGCzKoQyanCl1JjIbzOdY+4Uj2Tc8wkq2n5FA6SZKkwdBoz9GVMP/36N9U2f/tFUUj1Wnbzr1d6TG69FUnmwxJkiQNqEaTo5spJkenArvK2hMwDXywFUFJyyl0qYy3iZEkSdLgaig5Sim9GCAi/mdK6Y/bEpFUh6GIjhdhGLXwgiRJ0kBrqiCDiZFWYnKqwLade1c0b6fTiZGFFyRJkgZfU4vARsTLI+I9EbEx235+RLw5InKtDU+DZnKqwMU7dlOYniFRHB538Y7dTE4VGnqdtUcNtSfAMsP5nAu6SpIkrSLNlvKeAP438M1s+1vAHPAB4LwWxKUBtW3n3kWLts7MzrFt596ayUe1nqaDj7Z34dej1+SYetvL2voekiRJ6i3NJkezKaX5anUppWngXRHxhZZEpYG1r0YhhVrtpZ6mUkJVmJ7h/Gt2tSs8oDiE7pJXntzW95AkSVLvaWpYHXBSRJxS3hARzwOetfKQNMhGahQ1qNVeraepnRxCJ0mStHo123P0TeBrEXEP8APgycBxwOdaFZgG08T42IKeIFhc7KB8GF0nyy6MDuf5ykVndvAdJUmS1EuaTY7+ALgBGMkeAPuAC1sRlAZXqUemfA7RGScdw7ade7ngml0Mr8nx0MOPMXu4vWlRPje0ZIImabBExAuBdwNfBf4T8BDw+ymlPRHxEuBtwBTwfOCSlNJN2XlN7ZMk9aemhtWllL4BPBv4FeCPgNcDJwFHty40DapNG0aZGB9jZDhPYXqGq265a7563YFDs21PjEpD50aH81ajk1aPtcAHUkpvovid9RLgwxHxNOBa4NaU0vkUE51rI+KYZvd1+HNJklqo7p6jiHgO8JSU0i0R8etlu74LPAHYDFwEPLe1IWrQVBZZaGcqFFVe/9CjjwE4hE5aRVJKN5Zt3p89rwVenj3fm7UVgCdl7dHkvo+05UNIktqukWF1XwaeEhHPAK5k8d+c1f4OlRbpZJGFRHG9oumZ2fm2A4dmmfjE7QD2Fkmr07nADHABcGrWNlvxfBzF77Vm9i0QEeeRLXOxbt26FQUuSWqvRpKjSeAZwAGKvUV/V7E/gJYsDBMRTwDeCLwZGE4pxTKnqI/UKtvdDqPDeQ4+8tii9tnDiUs/s8fkSFplIuK3gdcBL0gpfTMinp7tylU838PjCVCj+xZIKV0BXAGwceNGbyJKUg+rOzlKKc0v7hoR70gpfaDymIj47y2K64XAPwAPAMMtek11UXkFuiMimEud+ftgYnys5rpI5b1JkgZblgR9kOL3yoXA2oi4DvivwEHg2OzQEeBB4PMUE6Bm9kmS+lSzBRkWJUaZHSuIpfz1b04pfaWeYyPivIi4NSJu3b9/fyveXi1WmmNUKrrQqcTo6DU5e4Yklbwc+CWKQ+q+CvwT8LMppfuAs4GNEbGdYtW5s1NK+5vd19FPJUlqqUYKMryojsO2U/yCqOf17gaq/eX6n1NKV9Ybl8MVel+tOUZDERxOqS0T1QK45JUnA8Uk6cChxb1ER6/JLWqTNJiy75Ura+y7geLyFC3bJ0nqT43MOfoSrS24cFqN97+/Spv6WK05RodT4j+2nsXpW2+k0OJ5SInHiy1c8sqTmfjk7czOPf7PNzcU88mTJEmSBI0Nq3sEuCt73Efx5vz3su37s+3v1vtiKaW7U0p3Vnk81EBM6gMjw/kl2yfGx8jnhlr6nqNl77lpwyjbXnPKgnWNtr3mFIfcSZIkaYFGeo7+IqV0AUBE/DnwnpTSnaWdEXEixUmuKxYRJwC/R7aobES8G7g6pXRrK15fnTUxPrZgXSOAfG6IifGx+UINrSztHdl7ltu0YdRkSJIkSUtqpFrdBWWbZwKXVRzyUNa+YlnS9absoT5XSkpK1epGhvPzyUtl0rRSAbzhtHUmQpIkSWpYIz1H5RJwb0R8h+JCenngeOCbrQpMg6Vaz83pW29saWI0miVdJkaSJElqRrPJ0QUUF4U9oaztIHD+ysLRalLvYrDD+dyyaxJtP+dUkyJJkiStSFPJUUrpi9m8oFdQTJDuBK5PKX2vZZFp4I0M55etUpfPHcHaJxy5ZHLkekaSJElqhaaSo4g4CvhD4LeA7wO/CHw0In4jWxhPWqBUeKF8zlG1Qg2VHp1LyyZQZz3vuFaHK0mSpFWo2WF17wJ+P/v5QErpmxHxfuBy4PUtiUwDY3KqsCAJKkzPcP41u1h71BCvfsEoN92xv2YCNHd4+aW1brrDBeklSZK0co2sc1RuHPhN4GeAfQAppeuB4daEpUFSq1T3wUfnuOafvsPE+Bixgtevd+6SJEmStJRmk6MZiusO3QI8ChARzwZOalVgGhxLJS+zc4ltO/fWXCi2His5V5IkSSppNjnaD9wfEXuBn4yIbwF7gH9tWWQaCJNTBY6IpfuF9k3PMDE+Rj43tKA9d0SQG1r63NJispIkSdJKNZsc/QHwAPDjwFqKFeu+D1zYmrA0CCanCkx88nbm0tLzhkaG82zaMMqWzesZHc4TFNcs2vbaU9j2mlMWtP3qaesWbG/ZvN5KdZIkSWqJZgsybAT+iOKQuuOBu4HPpZQeaFVg6j3VKs4Bi9pKycqbd3yd2bmlE6PcUMy/TrWFYkvtkiRJUrs1mxxtB85LKX2yhbGoh1WrODfxidshmE+ASm2XXbeHA4eWXrQVYO1RQ7zzl+z5kSRJUm9odljd3wOfqmyMiDesLBz1qmoV52YPp0U9Q7OHU12JERSr1W3buZfJqULL4pQkSZKa1WzP0X8AN0fEJHA/UPoL+SLgqhbEpR7TrnLZhekZLt6xG3D4nCRJkrqr2eTojRQTop9pYSzqYSPD+ZoLta7UzGyxB8nkSJIkSd3U7LC6B4CbqzwsyDCgmi21XS8XcpUkSVK3Ndtz9MGU0psrGyNiUZsGQ6lXp1q1ujfv+DqHZg+v6PVdyFWSJEnd1lByFBGnA2cDj0TET6SU/rl8f0rpT1oZnHpLtVLbk1OFFSdGlQu5VisZ7pA7SZIktVvdyVFEvA74GFAaRzURES9NKf19WyJTX7jsuj1NnTcUwVxKjJYlP5NTBS79zB6mZx6vdmfBBkmSJHVKI3OO/md2/AHgQeAoigvBahWrt2x3uQD+fcsr2H7OqQBccM0uTr3sC0x88vYFiVFJqWCDJEmS1E6NJEfrgJ9PKT01pTQM/Brw4+UHRMSGFsamPnf0mlzV9pHh/PyisoXpGRIwPTO7aM2kchZskCRJUrs1khx9PaV0Y2kjpXQVcF/FMX/WkqjUdZNTBU7feiMnXnQ9p2+9seZCrcP56gkQwFnPO25RhbvS/KJqi8ouxYINkiRJardGkqOfjogflD+A0yq2f7ZNcaqDJqcKTHzy9vlencL0DBOfvL1qgnTpq06u+Tp/+9XvMDM7x1AUp6mNDufZsnk9mzaMNtQTVFmwQZIkSWqHRqrVHQE8sUp7eVvtcVHqG5ddt2fRELfZucRl1+2ZL4pQXlGulrmU5p9LCU7p/HoXlT16TY5LXnmyxRgkSZLUdo0kR3uBrUvsDyzQMBBqFVkotZfmCzUyLK5UVKGU5EyMjzHxiduZPVw9nx61hLckSZI6rJHkaGtK6cNLHRAR9hytAo3OFyop72XatGGUy67bUzURGx3O85WLzlxRjJIkSVKj6p5ztFxiVO8x6n1LFVmYnCosO1+oNMeoUmVRhekaPVRWppMkSVI3NFKQQavEUkUWtu3cu2TluAD+7HWn1KxSV67W61iZTpIkSd1gcrTKVSvZvdQ8n8L0DIcefazm/pHhPJs2jLJl83pGh/MEC6vUlZsYH6sriZIkSZI6oZE5RxowlYUVCtMzXLxjN1BMaGpVkztwaJahI4K5imIK5YnNpg2jyxZTKO0vVb0bsQiDJEmSusjkaBWrVlihVFVuYnxsyYp0c4cTR6/JseaoI5dMbMpLflc7pp4kSpIkSeoEk6NVrFbhg33TMwt6dWr1IE0fmmXqbS+r+fpL9UyZEEmSJKnXOOdoFVuuIMKmDaN85aIzGW2ycMJSPVOSJElSrzE5WsXqLYjQbOGEpXqmJEmSpF7jsLpVrN6CCM0WThipUdTBUt2SJEnqRSZHq1xl4lMa8lYtQWp0nlC1og6W6pYkSVKvMjla5dpZNMFS3ZIkSeonJker3FJFE1qRxFiqW5IkSf3C5GiVW65ownLrFEmSJEmDwmp1q9xS5bxLQ+4K0zMkHh9yNzlV6GyQkiRJUgeYHPW5yakCp2+9kRMvup7Tt97YcOKyVJlu1ymSJEnSamJy1Meq9eycf80uNrz9C3UnSZs2jLJl83pGh/MEMDqcZ8vm9WzaMOo6RZIkSVpVnHPUx6r17AAcODTbUMW5WkUTXKdIkiRJq4k9R31sqR6cVgx/W2rInSRJkjRoTI762HI9OCsd/rbUkDtJkiRp0Disro9NjI8tWMC1UiuGv7lOkSRJklYLe476WKlnZzifW7TP4W+SJElSY0yO+tymDaPsuuRlbD/nVIe/SZIkSStgciRJkiRJOOeoL0xOFdi2cy/7pmcYGc4zMT7Gpg2j8+2F6RkCSNnxhemZhkp5S5IkSTI56nmlhV5LRRdKic+t3/4+n7qtMN+eKs4rlfJuJDmqlYRJkiRJq4HD6npctYVeZ2bn+NuvfqdmlbqSRkp5l5KwwvQMiWISdv41uzj5bX/H5FShmdAlSZKkvmJy1ONqJThzqbKvaLFGSnlXS8IADj46x8QnbzdBkiRJ0sAzOepxtRKcoYglz2u0lPdSvUyzc4ltO/fW/VqSJElSPzI56nET42Pkc0ML2vK5IV7/wuMXtZfSpWZKeS/Xy9TIED1JkiSpH1mQoceVEpxqhRI2PvOHW1ZAYWJ8jAuu2bWosENJI0P0JEmSpH5kctQHNm0YrZr01Gpv9j1u/fb3+egtdy3alxuKhoboSZIkSf3IYXWa945N69l+zqkM53PzbUevybHtNadY0luSJEkDz54jLdDK3ihJkiSpn9hzJEmSJEn0aM9RRFwP3AOsBZ4PvDul9Ffdjaq7JqcKXHbdHg4cmgVgOJ/j0ledbC+PJEmS1CK92nNUSCn9Zkrp9cC9wBURsb7bQXXL5FSBiU/ePp8YAUzPzDLxCRdnlaR6RcSPRsQ1EZEi4sqy9pdExJcjYntE3BwRZ6x0nySpP/VkcpRSOq9s8/7seU03YukF23buZXZucZHt2cMuzipJDTgT+ER5Q0Q8DbgWuDWldD4wBVwbEcc0u69TH0aS1HpdS44i4u7s7l3l49yyY0aAlwJ/k1L6ao3XOS8ibo2IW/fv39+h6DtrqQVYXZxVkuqTUvprHr/hVvJyikO47822C8CTsvZm9y2wGr6nJGlQdHPO0Wk13v9+gIh4LvAh4PyU0odqvUhK6QrgCoCNGzfWWsO0r40M5ynUSIJcnFWSVuS47Hm24vk4IJrct8Bq+J6SpEHRtZ6jlNLdKaU7qzweiogLgCuBPwa+HhF/GBGbuhVrt02Mj5EbikXtuSNcnFWSVuie7DlX8XzPCvZJkvpUT1arA96TPX+2rO2XuhFILyhVpLNanSS13OeBg8Cx2fYI8GDWHk3ukyT1qZ5MjlJKi7tJVjkXZ5WklYmI1wKvyTY3RsS7U0pvioizgbdFxHaKy0ecnVLan53T1D5JUn/qyeRIkqRWSyl9gmK1unMq2m8AbqhxTlP7JEn9qSdLeUuSJElSp5kcSZIkSRImR5IkSZIEmBxJkiRJEmByJEmSJEmAyZEkSZIkASZHkiRJkgSYHEmSJEkSYHIkSZIkSYDJkSRJkiQBJkeSJEmSBJgcSZIkSRJgciRJkiRJgMmRJEmSJAEmR5IkSZIEmBxJkiRJEgBHdjsALTQ5VWDbzr3sm55hZDjPxPgYmzaMdjssSZIkaeCZHPWQyakCF+/YzczsHACF6Rku3rEbwARJkiRJajOH1fWQbTv3zidGJTOzc2zbubdLEUmSJEmrh8lRD9k3PdNQuyRJkqTWMTnqISPD+YbaJUmSJLWOyVEPmRgfI58bWtCWzw0xMT7WpYgkSZKk1cOCDD2kVHTBanWSJElS55kc9ZhNG0ZNhiRJkqQucFidJEmSJGFyJEmSJEmAw+okSZLqdsJF13c7BEltZM+RJEmSJGFyJEmSJEmAyZEkSZIkASZHkiRJkgSYHEmSJEkSYHIkSZIkSYDJkSRJkiQBJkeSJEmSBJgcSZIkSRJgciRJkiRJgMmRJEmSJAEmR5IkSZIEmBxJkiRJEmByJEmSJEmAyZEkSZIkASZHkiRJkgSYHEmSJEkSAEd2OwBJkiT1jxMuur6r73/n1rO6+v4abPYcSZIkSRL2HAEwOVVg28697JueYWQ4z8T4GJs2jHY7LEmSJEkdtOqTo8mpAhfv2M3M7BwAhekZLt6xG8AESZIkSVpFVv2wum07984nRiUzs3Ns27m3SxFJkiRJ6oZVnxztm55pqF2SJEnSYFr1ydHIcL6hdkmSJEmDadUnRxPjY+RzQwva8rkhJsbHuhSRJEmSpG5Y9QUZSkUXrFYnSZIkrW6rPjmCYoJkMiRJkiStbqt+WJ0kSZIkgcmRJEmSJAEmR5IkSZIEmBxJkiRJEtCjBRkiYgvwTOAB4BeBzwJvTCnNdjUwSZLUVSdcdH23Q5A0wHoyOQKGgHNTSo9GxBzw34G/Bz7W3bAkSZIkDaqeTI5SSn9Ytvn07PmebsQiSZIkaXXoWnIUEXcD1RYX+s8ppSsj4jjgcmBz9vylGq9zHnAewLp169oTrCRJknpCLwytvHPrWd0OQW3SzZ6j02q8//0AKaV7gNdFxB8C7wL2A++sPDildAVwBcDGjRtT26KVJEmSNNC6Vq0upXR3SunOKo+HIuKyskO/nT3bLSRJ6ikR8ZKI+HJEbI+ImyPijG7HJElqXk/OOQJOiIi/Bg4BLwU+CVzS3ZAkSXpcRDwNuBb4y5TShRFxOXBtRDwrpbS/y+G1TS8MaZKkdunJ5Cil9BvdjkGSpGW8HFgL3JttF4AnZe0fadebmpxI3ef/h93VzjlfPZkcNeu22267PyK+vfyRXfNUsjlVWpLXqT5ep+V5jerT6uv0zBa+Vi87LnuerXg+rvyg8sJBwEMRsbeFMfhvfDGvyWJek8W8Jov1zTWJd7XkZap+Vw1UcpRSOqbbMSwlIm5NKW3sdhy9zutUH6/T8rxG9fE6Na20xESu4nnB0hPlhYNazf92i3lNFvOaLOY1WcxrUtS1ggySJPW5zwMHgWOz7RHgwaxdktSHTI4kSWpCSuk+4GxgY0RsB54PnD3IxRgkadAN1LC6PtCWYRUDyOtUH6/T8rxG9fE6NSmldANwQxdD8L/dYl6Txbwmi3lNFvOaAJGS66ZKkiRJksPqJEmSJAmTI0mSJEkCTI46LiKuj4i/joi/jYi9EfFb3Y6p10TEEyJiIiIORITjPitExEsi4ssRsT0ibo6IM7odU6+JiB+NiGsiIkXEld2OpxdFxAsj4u8j4t0RcUtEfDEiTu52XKotIp6a/bv+m4j4TES8IyKGljj+RyKikP1/8OLORdo59V6TiHhVRNwYEe+JiF0R8emIGO1GzO1Sz3dDRKyNiL+IiKsj4uMR8cGIWNONeDuhzmtyRUR8LCL+v4j494h4Szdi7ZRG/oaIiF/Ofn/c2cEQu86CDJ1XSCmdBxARXwauiIhbUkq7uxxXL3kh8A/AA8Bwd0PpLRHxNOBa4C9TShdGxOXAtRHxLCtkLXAm8Angdd0OpIetBT6QUro6Ik4EvgV8GFj1a1z0sA8CZ6SUnhoRG4CvAXcDf1Hj+PcB36FYYnxQ1XtNngxcmlIq/TF4IzAHvKaj0bZJA98NlwK/DTwFGAK+T/G79qIOh9x2DVyTOeDXUkpzEfFh4B0RcXtK6bPdiLudGvkbIiJOAM7pQphdZ89Rh5USo0xpFeKBvWvTjJTSzSmlr3Q7jh71cop/1N6bbReAJ2XtyqSU/po+WeW7W1JKN6aUrs42S9dqbbfi0dKy3pBNwHezpkL2XPUGQET8LnAzcEfbg+uSRq5JSumjKaWbs81B/Pde73fDa4BDKaUfpJQOADMM7k2kuq5JSul3Ukpz2eYg/tsoV9c1yf7feh/wex2NrkeYHLVBRNyddUNWPs4tO2YEeCnwNymlr3Yt2C6p5xqpquOy59mK5+OqHCvV61yKfyRd0OU4Vr1avxuBCYqjPZb9fz8bHvmzKaVaPUp9pRXXpMK5FHtMBmn4VL3fDceV7SsdN6jfHw19X0bEk4DNwBeAT7c3tK6p95pcAnwopVRgFXJYXXucRvVrez9ARDwX+BBwfkrpQ50MrIcseY1U0z3Zc67i+Z4qx0rLiojfpnjn+AUppW92Ox7V/N14APhj6vt//1eAwxHxF8BPZ21/EBFP7NOhQq24JkTEERT/6DsJeN6A/eFX73fDPcDTyrZzVY4ZFHV/X0bEM4CPUByOuS2ldLj94XXFstckIvLAGcDTImI8a/6R7PfJW1JK3+tIpF1kctQGKaW7a+2LiAuA1wOXAd+NiD8E/iWlNNmh8HrCUtdIS/o8cBA4NtseAR7M2qW6RcTTKc7XeAC4EFgbEdellF7Z3chWt2W+PyYpzqeDx+cRfTzbNwGcmFL63ZTSW8rOuRJ4NvCelNKX2hBy27XimkTEj1Fc4PI2ignScRFxeUppIOYcscR3Q0R8AvhYSunTwCeBN0XEkymOHsqTXa8BVNc1iYhfodgLuRX4d+ANEfEjKaXtXYi53er9d/KzpROyG2jfSyn9t04H2y0mR533nuy5/O7dL3UjkF6VTQL8PeDobPvdwNUppVu7GVcvSCndFxFnA2+LiO3A84GzLcawUES8lscnWm+MiHenlN7UzZh60Mt5/HfPudnzA90JRXX6XeADEfE3wI8A7wT+Ktv3fOC5ETFUmj8REb/J4wU2ficivjeAxX/quibAr1K8G34GUPpdcHuHY22bWt8NFOc0/zTFQhVQLMjwZIqJYgB/Cby90/F2QgPX5E+AZwJXl50+kEOMG7gmpWGGl2SbR0fEO8tvvAyySMlKyZIkSZJkQQZJkiRJwuRIkiRJkgCTI0mSJEkCTI4kSZIkCTA5kiRJkiTA5EiSJEmSAJMjSW0UEVdGxA8i4s3djkWSJGk5JkeS2iIiTgFeC+wE3h4R+S6HJElSU7zZt3qYHKnnRcQdEfGl7HF/RKSIuLes7UsdjOXcLJ4UEXPlMUTEnRHx4k7FshIRcWnZdbx6mWOfEhG3ZceniPhaRByV7Ts2Iv5fRHwvIn6t4tTvAv8M/A/gDuDRsnO+FBEPZ6/34pZ/QEmSWsSbfauLyZH6wb0ppRenlF4M/N+s7e/K2jompXQlsDXbnCnFkMVxZSdjaZG/Syn98lIHpJQeAP4T8GDWdFVK6dFs373A5cB7Ukr/u+LUFwI/BdwDPDGlNFc6J7te97bsU0hSC7X7plxEXBER+yPi5Hae00RcS90AvCMizm3XezcQY1tv7kXED2ef/efKXsqbfauIyZH6wdYV7u+UvwP+rdtBtENKaQbYkW2+oWL3rwBXlTdExBHAO8qa1kXEE9sXoSS1VLtvyh0PHA08pc3nNGSZG4C98l1b0q6bey8DDgL/UNbmzb5VxORIPS+l9HfLHPJzETGd3bW5PCI+ExEHsjtg7yu/oxMRv1J27LkAEXFyRPxddkfpmxGxPSJ+qJEYI+JLKaVbUkp3Z9vPzuK4PXtcGxE/nu3bskS8z81iuSsi/k9E3BQRZy0XZ0QcGREfiIhvR8TN2TFX1Y645udY6lp8NHveEBEnZcc/FXhSSunOipf6FeAngGnge0AAz200HknqknbflHsVMJJS+odlj1zZOa30j9mjrzR6cw8YB25IKc2CN/tWI5Mj9b2U0sXArmxzI/BLwG8DB1NK/4OyOzoppY+VHUtEPBn4IvBi4OeAdwO/z8JfhLXky4ZXHFv2mk8CbgDOAn4BeGn28xcj4olLxJuy88aBTSmll1JMSF5aR5xvAH4X+EBK6UXAi4BT6vgM8+p4jxuBfWXvB/A64OMVr5MDLss2twN7sp9NjiT1hZXclAPItv9vNmzr36JsEn9E/B7wHeC72U2xt5S91l9FxEeiOPH/YxEx1Ow52Xk/HxH/HBF7IuLPImJfds6uiBit93pkNwC/kVL6xhI3+O5Z4sZfUzcM640ve51W3dx7GcWRICXe7FtlTI40aCZTSnMppY+nlD5Rx/FnUUxsvpNSepDH/5D/rTrOnSkbblDepf4K4BnA3Smle1JK9wHfBtZl+6rGS3EM87HAPSmlr2X7Pw58rI44h7Pn34uIS4BnUxxK0Igl3yOldBgoje9+ffa8KDnKjv9Ril8k24F/zdrbNk5ekjppqZtyWdutwM+mlH6a4k2vd0bEOdm576fsj++U0jvLXitSSr8O/D+Kv2df2ew5EXEMMAk8BzgDeD9wXHbO+SmlwjIfs/wG4Kl1fPY31mifo7kbhqVruawW3tw7BRghu9be7FudTI40aO5v8Pjjs+eR7AvgPRQTmQMRUfe47oox6M/Mng+VtR2q2FdSHm8plh+Uve6DKaV/rCPOjwJfyY67FLgN+Eg2HKBe9VyL0t23Z0XE64EHUkrfK71AFCv4vDXb3J6N9zY5kjTIqt2U+zbwpYi4jeJoAIDT63itW7Pn0g2356zgnFcAayne8LovpfQfNPYdWX4DcFeNY2rdkKy88dfwDcM6b3CWtOrm3jhwR0rp22Xne7NvlTmy2wFILZaqtD2SPZeGGpSX4Lw7e95fSnAiIoDnZH/YN6P0S3VNWduain0l5fHelT0/udQQEUdT/MW8ZJwRcTzFL4enA5uBt1O8e3gKMFVn3Mtei5TSVER8g+Jds/8F/LeK13gjj9+ZvDQiLi3b5502SYNoQcIRES+iWL30X4HnARcBl1D2u30JD2fPpe+GJ6zgnNLv4pmyYw8CT63jNRdYoghFrWSrvL3ZG4aNqLy5dxTZ921EPCX7Dvso8AfUuLmX+QUe7zVadLMvIkyOVgF7jrQa3JE9HxsRa4GTyvZ9DtgPHB8RY1nbK4D3ruD9Pksx0XlGRBwXEU+j+AXwbeD6Jc67nmK3/3ERcWrW9tvAy+uI8xzgwpTSv6SUtgL/TvGLcn8Dcdd7LUqTV4eAz5Qas96lP8o2bwauyR6fztqcxCppEFXelHth9vxPKaWH6d7fWvdkz+U3BNdUO7AeEXFCLC5VXe2GZGV7szcMG7Hg5l5K6WeAE4FXlN/cA76RHfe/KA5Zn5f9fXA6jw9frLzZl3i8EIc3+waYyZH6RhTXMyjNo/mFiHhf1v4WHh8PfVEsXoz0bcA3gT8G3gzsLR0LPIvi+OebgC9ExE7g14HfqBHDudl58Ph47J8uPyaldBB4CcUkaSfwf7KfX5JSOlgr3mwowEsoJimfjogvAj8GbEspTS8T5x3A2RHxDxGxi+IXzH8pVc+rRx3vUXJV9vqfzqoAlfwhxTKze4CXppR+OSuz+mqKZVSdxCppNfhu9lz6w7pbvQyfo9hTdHxEPC0iTgSOWcHrnUBxTk+jmr1h2IgV3dzLnElxftSXvdm3yqWUfPjwscoeFOclJeDKLsZwZxbDi7t9PXz48OGj2oPiPJX7s99V9wLvy9rfQnEeSqJ4c+rXys7JU+x9eAj4IMU/qkvn/1fg97KfS+dWvtZryvbfSXHIdMPnZLH8PMXFS++g2FtSOubnanze3+TxkQdzwC1lj29k3x1VP/sy1+THgGuBrwO3UywU8azlzqsRY9XvL4rDyL9IMenamV33YyuOeSZwGPhwldf9APD57Od3Zu/xz8BRZccExXnBCfipsvY78ftsYB6R/UeVtIpExPnA+RS/vP85LbOQXovf+1iKf3A8g+K8x19OKd3SqfeXpNUiIn4ipfTPZdv3Az8C/HhKqS8XLc/msl5CMcE5t4Wv+28Uk9/Lmzj3ToqJ1xkppS+1KiZ1h8mRJEnSAIqIO4DTU0rfi4gNwNcoVrf7qdSnfwB28+ZelVi82TeATI4kSZIGUER8CPhJisPWng78A/DmlNK+pc6TVjOTI0mSJEnCanWSJEmSBJgcSZIkSRJgciRJkiRJgMmRJEmSJAEmR5IkSZIEmBxJkiRJEmByJEmSJEkA/P9ZcS1HeJjZSQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1008x504 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(14,7))\n",
"plots.force_scatter_histogram(axis=0)"
]
},
{
"cell_type": "markdown",
"id": "42b4825a-9f46-4cf2-9ab6-3ab2da665eba",
"metadata": {
"tags": []
},
"source": [
"### Short Test"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "e233952f-ff1d-42d9-bb61-ea94c4461368",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Al was saved and received the ID: 738903\n"
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
]
}
],
"source": [
"lmp = pr.create.job.Lammps(\"Al\", delete_existing_job=True)\n",
"lmp.structure = pr.create.structure.ase.bulk(\"Al\", cubic=True)\n",
"lmp.potential = job.lammps_potential\n",
"lmp.calc_minimize(pressure=0)\n",
"lmp.run()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "822bae18-b13c-4de6-949b-beb34ffe60b8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Al: [0. 0. 0.]\n",
"Al: [0. 1.98553722 1.98553722]\n",
"Al: [1.98553722e+00 1.21579090e-16 1.98553722e+00]\n",
"Al: [1.98553722e+00 1.98553722e+00 2.43158180e-16]\n",
"pbc: [ True True True]\n",
"cell: \n",
"Cell([[3.9710744457956384, 2.431581804609739e-16, 2.431581804609739e-16], [0.0, 3.9710744457956384, 2.431581804609739e-16], [0.0, 0.0, 3.9710744457956384]])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lmp.get_structure()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "a1eb8451-356b-4768-b903-fc4843db40d5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job AlMurn was saved and received the ID: 738904\n",
"The job AlMurn_0_9 was saved and received the ID: 738905\n",
"The job AlMurn_0_92 was saved and received the ID: 738906\n",
"The job AlMurn_0_94 was saved and received the ID: 738907\n",
"The job AlMurn_0_96 was saved and received the ID: 738908\n",
"The job AlMurn_0_98 was saved and received the ID: 738909\n",
"The job AlMurn_1_0 was saved and received the ID: 738910\n",
"The job AlMurn_1_02 was saved and received the ID: 738911\n",
"The job AlMurn_1_04 was saved and received the ID: 738912\n",
"The job AlMurn_1_06 was saved and received the ID: 738913\n",
"The job AlMurn_1_08 was saved and received the ID: 738915\n",
"The job AlMurn_1_1 was saved and received the ID: 738916\n"
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
]
}
],
"source": [
"ref = pr.create.job.Lammps(\"AlRef\")\n",
"ref.structure = lmp.get_structure()\n",
"ref.potential = job.lammps_potential\n",
"\n",
"murn = pr.create.job.Murnaghan(\"AlMurn\", delete_existing_job=True)\n",
"murn.ref_job = ref\n",
"murn.run()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "bce8a797-d906-4c0b-b674-eeb7f09169d3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEcCAYAAACI1cAtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABNHElEQVR4nO2dd5gUxdaH30OWpAKKBHHNYkKJYgTT5zVdRUVFUFRAUQETIibQa0QMGFARvRhABK4YwHTVRVQMgIoBRL1KUlRQgpLD+f6oaqd3mJmd3Z3dntk97/P0011VXTWne2b615VOiapiGIZhGFFTKWoDDMMwDANMkAzDMIwswQTJMAzDyApMkAzDMIyswATJMAzDyApMkAzDMIyswAQpRxGRU0XkcxFREemSIL2OiKwQkfkicnMUNqZCRJqJyEciYvMO4hCRNiIyUUTeEJHPROR5EamX4vw8EckXkfdEZIqI7BxKqyIiw0TkUxGZJiIvisgOobR+Ps+7IvKhiBwVV/YvPj3Ybg2lvR6X9oGIrPRptURkkC93qk9vGVd2N/+Z00VkkohsH0oTEbnbp80UkW5Jrv38RL8hETnH55shIveIiITSGorIBH+/vhSR8+PyHuDtel9EXhGR+qG0E/338o6/p32T2NXB/zfzQnGD/W8+fM9Wxd+XdBGRq/w1zhSR/nFpB/vPmurt7F6czyhzVNW2HN2ADsBq4KMEaZf5tFujtjOF/XnuJxi9Ldm0AbcCPfxxZeAdYHiK8z8EzvfH5wOfhNIuAb4HtvLhp4Cxofv/I7C1Dx8D/AU0CeUfleJzh8eFTwX+7Y87eLuq+3BP4OeQHYcDvwLb+fADwKuhsi72110JaODP3T/u82oAX8X/hoB9gV98vkpAPnBpKP1tYJA/bgasBA7y4WrAfKCjD98MjA/l/R440B/vAPwO/DPBvfkvoEBeKO5aoFkovB3wLSDF+I0cB3zj70ENf3yCTxN//T19eHdgPbB31L/twjarIeU+Y4HWItI2iPBvg8cA0yOzyigJTwGjAVR1EzATJx5bICItgAOD8/1+PxFp5cP7AJ+r6hof/sifD/AncJOqrvCf9V9gLXBwOkaq6iVxUecAz/rjxcC/VHWdDz8HNMKJBcC5wCRVXeLDjwP/EJGmPnwRTgw3q+pSYBJO1ML0wf3+47kQJ25LVXUz8CRO4PDlH+njUNUFOPG40Of9B7BJVfN9eCTQSUS28+GHVfUzn/cXnNgdG/5wETkDeDfeKFW9039ewJnA8+pVo4hcBIxR1bWquhb3vV/s0xoADXEvBKjqd8AyoEUxPqdMMUHKfRYALwHhpoNjib2hASAiXURknoiM8uHevjlmsA/38uljReRxEZnjmxSGi8hyEfmXiIwXkbkicnuo3H1E5LVQk0+vsHEicp2IfC0ib4rIAN+MMUVEqoXOOU9E3vJlHxyK7yWumekdEXlbRPb28W3FNVfOE5H+/rO/EJE90r1pItLKN2e868veqwj34QUR+c03wYi34SPfxPOkiNTxZSXMU5htqvpdICAi0gg4AXgiyeltgB9Udb3Pux73Ft/ap78GtBORBiJSBffA/dif+7uqPhO6J4KrISwJld/cf7/vi8gIEWmQ5H5uDRyAe0CjqnNV9dXQKTX8fqnfNwkdg6sBAbQQkerA/ri3/oDZoWtCRLbB3ZcxSe5JfN59RGQr/7lhO4LPPiBRXlVdiGtpaOnD98V9Vg1C98vf4z5A/HmJCAs4IrK9/51M9b/7U1LkTXSNrb2NS3Avoyf7ctsB2+JebLKbqKtothV/wzWLDAaOANYBO/j40UBtYAqhJjt/7qhQeBQwOC79F1xTQmXgLh8/BZiMawpoBGwAGvu0dkA7f1wVmAPs7sPH496U6/nwPYSaV/BNdkBnH74GeCOUfhGxJp8OwHtx174eONSHhwOPhdKHAQ8kuW9b4x4iR/rwCcBcoFIa9+FNH7cX0APoBnwN1PTnjASeCH1WojxNgd+ApoV8v+NxtZgbU5xzPTAtLu79cB7gStwDeCHwMlArxe/py+A++Lgngbr+u78bmEGCJibgguA+JSm7OzA5FH4ceDYU3t//FrriREOBPULpPYD/hcJ3+e8tjy2b7L4DeoXCu/nydgyVvVso/QXg+5BdY+LKWwR0S3BNdXFitlMorje+eZC4Jru4vLsQ19Tufye3+ONGuObAZPk3AMeGwkfjanZBuCkwC/e7XgKcXNTnSxSb1ZDKAar6Lk4ILhaRXYFfVPWvYhb3oaouUdVNqjogFP+GOhbj/yg+/jvgQhH5AFcra0SsSegMXNPJHz48msS87vezgJ1D8bOBV0TkPeBOoFVcvr9U9X1//EVc3oW42mMiTvR53wFQ1cm4/oB2oXOS3YfJPu4bVR2Ja3p6XlVX+/R/A938m3KyPKtxb7erSYGqnoG7n+1FZGiqcxMgACLSFdevtDuwE7ACGLDFySI1gNtxfVGbQzZcoKor1T3lBuO+27bx+Yl7248ruz7QD9efFfAUcKKI7OZrZn2BTbgmw8KuqQlwgP/eioKo6k/AW8DlvnbbHDiqkM/9+7PjuAsnIPO9XbVw92FEGrZ0pWDtqAmumf0JAP8/ex84O42yChrqWh9exzUv7om7vntFpFlRyyprqhR+ipEjPIjrDK+Pqx0UlxVJ4leGjtfimnYA7gW2AQ5X1U0iMgWo6dMa4UQm4A8SoKpB2euCcn0T0CTgQlWdIG600o9p2oSqpnqANwXqeVsDluDuXUCy+xAf35SCTVxLcDXF7XGd+Fvk8QJ9eAr7wuf+JSJ3APkicoO6/oIwv+Huf5itfTy45qNnVHUZgIjcD3wkIncGIuoFYQRwn6rOSGHLKhH5AydsHwfx/mG6jap+GZ/HN789A/QJHty+rPd98+5I3MP+37iH73xcbW5z3HWFr+lmvyUj/p5sjautBN/TWbja3ge4l5aRuNprkPdAChL+7OC6egEbVPXhUPQVOBHYkMK2gDNwfVkBQd/Z0xIbNdgA+FJEDgDu93Gfq+rlSa4xuL6jcC+MjwOo6hciMgfXx3RdGrZFhglS+WE07o0tT1W/T3LOeqB6KLxNBj63LW601SYfrhpKW4xr9goIP/ALY09ck0hQe6qa4tyishBYpKodgggRqUvhb8nJygpf43a45pRfE59eOCLSS1XDb9mrcE1+NRLYOB3YWUSqqep6/3a8K7EBLdW8PQEbcP/7WsRqaENxI/PGewFpqKoLRORIYGUgUr7sbYgJbcDZJOjLEZFKuJrQY16AtsY1wf4GoKrjgHH+3B1xLySfq+oGEfkS9xv4xBe3d+iaWgK7OR11fVP+5eJdVR3kz9szZMrewNfq++VU9XdcE2Ng5xO4EX3B/TwrlLYj7gVrZijuVKAjrjaEiOyubuBAe+AYEbko9NljRWSWql4Uyt8amKexAR3gfkcApwfxvtZaxbd2dIi7vYmuMfydb/K12oANONHKaqzJrpzg35wvAG5IcdqPwN6+qaIeBZuoisv3QTm+A37/UNo44HiJzePoXIRy5wMbQzYeVxSjRORqEbk6SfIkoL6ItPHn1sJ1xhfnDzsK6Ow7zAHOw9VINiXLICL1fcd1srlFZ4vIIf5cwfWfzFTV5T7ufhE5G0BVPwc+J9a0czbu4Rs8QN8CTpPYIJKuPj146A3Aif0oEamNE7PgYd0M6O1tAFfb+oFQ7chzFokHFzyEe0i+7cs+GNeviIgcKiI3hK5xEHBnqHbxKNDd/1br4/qLRvprbqmqHfwLxVk+roMXI/x5x/v7XAnXf/VoYJSIPBMMzhA3UObQoGzcIJAqInKED18AvBC6X4fjmhcvA2r667rB23CCqh4Rsg3grLAYec7B1Rr/RlV/xvUhhedbPYoTvkQ8ivud1PDC1SV0jR8BlUQkuNeNfDnvJCwpm4i6E8u24m249ubPgXlA/wTpTwPLcQ/2a33cVrgax6fAY7ghs/NwQ167+ONfgKdD5Qzx5XyDewMcjntL/xz3VrYXrqP7Q1wH+Bf+3GDAwHW4vqDXcX9k9fH1cH8cxY0SbObLXBt8Pq6JYR5OQO7z577pPzc49zFcLe0bb+cQn/dBYFiK+9cKN+DgXWAqcKKPT+c+XBlX1tX++t/HNT3VSZUH17m+hCSDGnB9XO/4bTrwIrBLKP2VuPLy/Lnv+WvaOZRWy9+jGcA0f//29Gl7+Hsavw326c38d/o+rnnrdUIDDfw5exMaiBL3+0xUdvdQvun+vn2Ee6hLKH8wiGI6rnaSaFBBL2K/oSmEOu5xD/2ZPv89cWXfgRuI8r6/pr3jyj0w9H2+AtQPpf2U4JqmxOU/2duj3r7wAIvK/vdQI8H1bA9M8N/je8B1hTwDrvLf60zingG4kbYf+3I+BwZE/cxKZxNvvGFkHN+xX1N9H5GvkUxS1YbRWmYYRjZiTXZGaZKHezsP6Aq8EY0phmFkOzaowShNlgLVRWQarglmIQWH/hqGYfyNNdkZhmEYWYE12RmGYRhZgTXZFZMGDRpoXl5egbhffoFataBOnZKX/+efsGoV7LBDycsyDMPIFmbOnLlUVbdLlGaCVEzy8vKYMaPgpPb8fOjcGR59FDommz2QBkE548aVrBzDMIxsQ0TmJ0uzJrsM0rGjE5HOnZ2oFAcTI8MwKiomSBmmJKJkYmQYRkXGBKkUKI4omRgZhlHRsT6kUiIsSoWJjImRYWSWDRs2sGjRItauLY6/XCMT1KhRg6ZNm1K1avp+kU2QSpF0RMnEyDAyz6JFi6hTpw55eXnEfMMaZYWq8vvvv7No0SJ23nnnwjN4rMmulEnVfGdiZBilw9q1a6lfv76JUUSICPXr1y9yDdVqSGVAWJTuvhu++cbNL7rtNhMjwygtTIyipTj33wSpjOjYEc44A84/34WrV4fXXjMxMgzDCLAmuzLk4otjxxs3QsuW0dliGEZ20aVLF0SEwYMHR2rHvHnzaNq0KQ8++GDK895++2123HHHjNZEIxckEakuIv1FZFloLfkg7Q4RGSMij4jIQr/fYsiGiFQSkXtF5EsReVxE5opIt1C6xm0PhdLOEpF3RGSYiEwRkRalda2//w6VK7vjTZvglltK65MMw8g1evXqFbUJAGy99dZ06NCBPffcM+V5Rx11FLvuumtGPztyQcItUT0NWJEgrTJuhcneuFVFLwbOSHDe/wFXAB+oak9gG+Bxv0AcuBVH24S2IQAish8wGpioqv28DS+LSPXMXFqMYADDRaHFjB94oPgeHQzDSA+R0tuSMXDgQESE5s2b06NHD5o2bUq3bt1Yt24dgwYN4ogjjuDKK6/koIMOYsqUKVvkHz16NNWqVWPbbbflk08+4aOPPqJ58+bcfPPNNGvWDBFh4MCBHHHEEey222589dVXAMyfP5+TTjqJbt26cdppp9G1a1f++OMP/vvf/7LDDjsgIgwYMIA999yTNm3aMGbMGE4//XS23XZbnn76aQCGDh3K6NGjGTPGrUp/zz33cMYZZ3DFFVew5557MnLkyC3szRhRL1kbWnJ3Hn556yTp43FLAndMkNYW2AyMwq27swz4MJQ+DbjVl3EnfkliYJAv8wwfHu7Dhxdmb6tWrTRd3nlHtUEDt//1V9UqVVTBbdtu6+INw8gcs2fP/vs4+K+VxpYKQHfbbTdVVR02bJgC+sADDyigjz32mKqqtm/fXuvWravLly/X/Px8BXTQoEGqqtq1a1cFdNasWbpw4UIdOHCgqqqed955CugHH3ygs2fPVkD79u2rqqqHH364VqpUSdesWaNz585VQM8777wC+d5//319+eWXFdAePXqoqmr9+vV1v/32U1XVH3/8sUC+iRMn6po1a1RV9ZRTTtHKlSvrqlWrVFX1iCOOUFLciPD3ELovMzTJc7VMakgisihBs5mKSPc08jYSkXFAJ2AYbq36AqjqJ8A9wEnA8zhRGRY65TZVvQHoC/QDJvv4Rn6/IW7fiASISC8RmSEiM5YsWVKY6cCWQ7u33x7+8Y9Y+gknlMz3nWEY2Uvjxo0L7OfMmQNA/fr1AahXrx4rV67k+++/3yJv//79AVdjGTFiBD179tyi7K222gqAFStcA9PMmTOpWbMmNWrUoF69en/HhWnSpAl1/JIETZo0AaB27dqsXLky4TXUqlWLc889l169evH999+zadMm0n3+FZWyarI7CNg5wTahsIyqulhVOwMDcWJyXfw5ItIHuBoY6M/9BhgtInm+jMlBWbiaWDsRqQcs9kVUjdsH8fG2jFDV1qraervtEnpPL0CyeUbdu8eOp06FsWNNlAyjtCjNOlJh/PzzzwX2++yzDwBLly4F4Pfff6du3brsvvvuW+Tdf//9OfbYYxk7diwLFy5Ma4Jp69atWb16NWvWrOH3338HoFWrVmndp2ScccYZfPHFF4wYMYJ9990XIGh5yjhlMuxbVRcVJ5+I3Kyqg3wwcFnezKf1B3ZW1UuAHX3aX36/Cie2VUWkPXCAqj7i+4Ya4QRnGfACcBMQrDrUGFgAfFwce8OkmvR6wglQrx788QcsWACVKqXvZsgwjNyhSpUq9OjRg9dff51zzjmHHj168Ntvv/Hss8/y9ddfs3nzZl588UXq1q3LiBEjAHjzzTfp1q0bu+66K1dffTVvvvkmZ511FgCffvrp38vePP/8839/zowZM5gxYwajRo2iT58+XHDBBaxZs4YuXbpw7733Fsg3fvx4FixY8Pdn7bfffixbtuzvMr/++uu/y/zkk0/o3Lkz48aN44477vg73yOPPMKxxx7L//73v7/DvXv3LvkNS9aWV1YbkAcMxQ0oUH/c2qc9BYwEHgDm4PqAdvBpzwGzcAMfGvi0D4AHga+Ai/15zYE3gbuBt4D3gbahzz8byCfWHNgiHbtT9SGF+4yScemlsfesc89NP59hGIWTqO+irAH0iCOOKHb++fPnq6rqoYceqps3b86QVWVLUfuQIhekXN2SCVK6ovLJJzFBqllTdeXKouU3DCM5UQvS8OHDFdAmTZroSy+9VKwy2rZtq/369dOJEydm1rgypKiCJC7dKCqtW7fWZCvGptPspgr77Qe+dswTT8AFFxS9HMMwtmTOnDk0b948ajMqPIm+BxGZqaqtE52fDfOQyg3Tp6cvIiIxN0IATz4ZOw58302fnnkbDaOiYC/b0VKc+281pGKSqIZUVH79FZo2dW6EAObOhT32yIBxhlHB+fHHH6lTp455/I4IVbf8xJ9//rnF6MBUNSRzrhohDRu6EXcvveTCo0bB7bdHapJhlAuaNm3KokWLSm2+jFE4wQJ9RcFqSMUkEzUkcGJ0yinuuHFjNww88HdnGIZR3rA+pCzm+OOd9waAn3+GN9+M1h7DMIyoMEGKmKpVoVu3WPjf/47OFsMwjCgxQcoCwqPtXnoJvFcRwzCMCoUJUhawzz7Qrp07Xr8enn02WnsMwzCiwAQpS+jRI3Y8cmR6jhsNwzDKEyZIWcKZZ0KtWu7466/h4xK7dzUMw8gtTJCyhDp1wDv0BVwtyTAMoyJhgpRFXHhh7HjsWPjzz+hsMQzDKGtMkLKIgw6Cvfd2x6tWOX92hmEYFQUTpCxCpODghscfj84WwzCMssYEKcvo1s1NlgU3sOHLL6O1xzAMo6wwQcoyGjSATp1iYb+qsWEYRrnHBCkL6dUrdvzMM7B6dXS2GIZhlBUmSFlIhw6w227ueMUKGD8+UnMMwzDKBBOkLKRSJejZMxa2ZjvDMCoCkQuSiFQXkf4iskxENC7tDhEZIyKPiMhCv6+aoIxKInKviHwpIo+LyFwR6ebTuouIxm3LQ3nj0x4q9YtOg+7dY4Mbpk2Dr76K1BzDMCoAQ4ZAfn5mysrPd+UVhcgFCWgHTANWJEirDHRX1d7AS8DFwBkJzvs/4ArgA1XtCWwDPC4iwYq4twAn+e1WYFYo7ySgTWgr4i0sHbbfHk49NRa2WpJhGKVNmzbQuXPJRSk/35XTpk3R8kUuSKo6VVU/SJJ2jaqu98GGfr84wam/AwrUEBEBqgGfqepGYDJwn6pOUtVJwCHATaG89YFTgAHA6cCqEl5SxggPbnj6aRvcYBhG6dKxo5uQXxJRCsRo3DhXXlEoE0ESkUUJmsZURLqnkbeRiIwDOgHDgCnx56jqJ8A9uBrQ8zhxGubTlqjqcl9WB2CTqr4byn6bqt4A9AX64QQsmS29RGSGiMxYsmRJ4RdeQjp2hF13dccrVsDzz5f6RxqGUcEpiSiVRIwAUNVS34CmQF6CrXbonHnOnKRlXIMTmusTpPXxab18eBqwCciLO+894KAUnzHHl1OvsGtq1aqVlgVDhqi6xShU27Qpk480DMPQd95RbdDA7TN5PjBDkzxXy6SGpKqLVHVegu2vVPlE5OZQcL7fN/Np/UVkuI/b0e+D8lbhan9/D4AQkf8DVqjqR6G49iLS2x9XBxrhmgSXFetCS4Hzz4fq1d3x9Okwc2a09hiGUTEoSk2pxDUjT+R9SCKSJyJDgW19eKiItPbJeSIyUkQeAAYDE4BBPq0lcIiIVMYNRJgAXCoiD+KEpbeqfhf6qJsp2HcEsBw4VUTuxjXVfQWc4lU8K2jQAM4IDeN45JHobDEMo2KRjihlSowAJIuevTlF69atdcaMGWXyWdOmwSGHuOOttoKff4ZttimTjzYMw/hbdJ5/Hg4/HKpUKRhfFDESkZmq2jpRWuQ1JKNw2reH/fd3x2vWuBF3hmEYZUVQUzr1VMjLg+eeg7ffzlzNKMAEKQcQgd69Y+FHH3XDHAzDMMqKI46AevXgp5+gSxc4+eTMihGYIOUM55wDtWu74zlzYMqUSM0xDKOCMX48zJsXC198cWbFCEyQcoY6deDcc2Phhx+OzhbDMCoWGzfCoEGx8CGHuK6DTLkZCjBByiEuuSR2/OKLsGhRZKYYhlGBGD0a5s51x7VqwSuvlNyjQyJMkHKIffaJVZE3bYLHHovWHsMwyj/r18O118bC11wD226bGTdD8Zgg5RiXXho7HjEC1q2LzhbDMMo/114Lv/zijuvVg8svj6VlWpRMkHKMf/4TmjZ1x7/9Bv/5T7T2GIZRfnnjDRg2LBYeMADq1i14TiZFyQQpx6hSBS66KBZ+KCtWbzIMo7yRnw+nnQabN7tww4YFW2jCZEqUTJBykJ49Y4v3ffih+bczDCOz5Oc7l2WVK8fibrjBDWhIRiZEyQQpB2nYsKB/uwcfjM4WwzDKF4E7oJNOgpUrXVyzZu5FuDBKKkomSDlK376x4+eec/1JhmEYJSEQo8cfhxdeiMUPHhxbdaAwSiJKJkg5Srt20LatO16/3pY4Nwyj5Eyf7sTkww9jtaM994Ru3YpWTiBK06cXLZ95+y4mZentOxljxjiXQgCNGjm3HtWqRWqSYRg5zs8/w267OUfO4IQl3EVQUszbdznl9NNhhx3c8eLFNgTcMIySc8stMTE68EA30q6sMEHKYapVK+gF/IEHorPFMIzc59tvYeTIWPjOO6FSGaqECVKOc9FFsWa6jz6CTz6J1h7DMHKXG290bsnA9QMdc0zZfr4JUo7TsCGcdVYsfN990dliGEbuMnOm6y8KuOMOtxZbWWKCVA4I+5YaPx4WLozMFMMwcpTrrosdd+rkRvKWNSZI5YADD4QOHdzxpk3mTsgwjKLx1lvw5pvuuFIluPXWaOyIXJBEpLqI9BeRZSKicWl3iMgYEXlERBb6fdUEZVQVkeEi8rGIjBCRiSLSJJR+loi8IyLDRGSKiLRIJy2XuOKK2PFjj8Fff0Vni2EYucPmzc5pasD550Pz5tHYErkgAe2AacCKBGmVge6q2ht4CbgYSDQi/mKgN/C4qvbyZT4JICL7AaOBiaraz3/Oy14Ik6Zl8gLLghNPdHMHAFasgFGjIjXHMIwc4fnn4dNP3XGNGnDzzdHZErkgqepUVf0gSdo1qrreBxv6/eIEp+7l98v8/g/gaC8snXDX6Vf04CegGU60UqXlFJUqFexLGjYsNlrGMAwjEevWwfXXx8KXXw5NmiQ9vdQpE0ESkUUiogm27mnkbSQi43DiMQyYkuC0D/1+J9+k1xh3bXWBRj5tQ9y+USFpiWzpJSIzRGTGkiVLCjO9zDnvPNhmG3f8/fdumWHDMIxkPPYY/PijO65Xr2DTXRSUVQ3pIGDnBNuEwjKq6mJV7QwMBPoB1yU4bTTQFzgEuBFYAKxW1SXEalRV4/aLC0lLZMsIVW2tqq232267wkwvc2rXLrhW0j33RGeLYRjZzYoV8K9/xcI33BB7oY2KIgmSiNQRka2L+iGqukhV5yXYUna9i0i4NXO+3zfzaf1FZLiP2wF4T1VPAwYBtfB9SMALwGZ/Drja0wLg40LScpI+fWJrJb3/vpssaxiGEc+dd8LSpe54p53gkkuitQfSECQRaSMiz4nIMmA58IeIrPAj2Q4rqQEikiciQ4FtfXioiASO9/JEZKSIPAAMxtWoBvm0lsAhIlIZ2B4YISIP42pLk4EBAKr6JdAV6CQiw4BtgJNVdV2qtJJeV1kzZIhz9d6kCXTpEosfOrToZeXnu/IMwyifLFwI998fC99+e/rLS5QmKb19i0hf4D4g2XxdBa5V1btLwbasJhu8fYcJ1jEZNw4aNID993fxIvDdd7DrrkUvp2PH0rPXMIzoOO88ePppd9yqlXM5VlY+64rl7VtEjsH1x9wEtAbq4fpYqgMNgLa4fp0rROSUDNtsFJHwolhLl8Jxx7l41fTdCZkYGUb557PP4JlnYuGhQ8vWgWoqUpnxD+AgVb1NVT9V1eWquklVN6jqH6o6Q1WHAK2Ao8rGXCMVYVE6+uhY/JNPxtqKk2FiZBjlH1W4+mq3B7dMeeDlJRtIJUiNVfV/hRXgR8H1yaBNRgkIROnOO2MTZdesgYcfTp7HxMgwKgavvQbvvOOOK1eGu+6K1p54UgnSsd4Vz40ikmYPhJENBKL066+xuAcfhFWrtjzXxMgwKgYbNsBVV8XCPXtG5yIoGakE6SngMGA2cLf383aZiDQoG9OMktCxI7zwQqxt+PffXdNdGBMjw6g4PP44fPONO65TJ1oXQclIKkiqeoWqrlfV/6hqJ+CfwFpgjIi8IiJni0jNMrPUKDJHHw2XXRYLDx3q3pLAxMgwKhLLl8OgQbHw9dfD9ttHZk5S0h5boaorgDnA/3A1p2eJ+YAzspQ77oCt/VTmBQtg7FgTI8OoaNx+e8FJsP36RWtPMlIN+z7R7/cVkdtF5EdgKtAL5yNOgellYqVRbGrWdKNqAq66ysTIMCoSP/zgnC0H3Hmn8+qdjaSqIT0mIrOAWTivBzvhJsh+GYRV1YZ75wCXXur83AEsWQJHHWViZBgVhf79Yb1fM6FdOzjzzGjtSUUqQWoE7IcToUXAEGA/VT1AVe9W1Z/KwkCj5Gy7bWyiLMB//hMb+mkYRvllyhQ3uCng/vud95ZsJZUgrQaeADqq6k6qeq2qfl1GdhkZJD/fCVCVKi68cSN06uTiDcMon2zaVHCNtHPOgYMOisyctEglSA+oak9VfbfMrDEyTjCAYcIEuPDCWPwuu7h4EyXDKJ/8+98wa5Y73mor13eU7aQa9l1g3SE/uOE+EXlMRBqKSBa3RBqw5Wi6AQPc7Gxw/qwGDzZRMozyyMqVBVeCHTAAmjaNzp50SWvYt4j8E/gctwjeMcA63JIN15SeaUZJSDS0e+edCy5N8frrMd93JkqGUX7417/gt9/c8Y47uoENuUC685BuBqYBI4CV3tHqmcCRpWaZUWxSzTMaODDWqTlpklu22ETJMMoP33xTcK2ju+5y0z9ygXQFaa2qHq6qvYE/AEREcCusGllEYZNemzd3AxoCbr21oJdwEyXDyF1U3UCGjRtd+LDD4KyzIjWpSKQrSDVF5BkRGQjsKCI3AflA5dIzzSgq6XpgCLctT5gAX31lomQY5YFJk+CNN9xxpUrwwAPZPcw7nnQFaRhwDnArsAtuGfHDgQdLyS6jiBTFHdCBB7p1UAJuvdXtTZQMI3dZtw6uuCIW7tULDjggMnOKRVqCpKpPAGcB/wW+Ad4Cuqrqo6Vom1EEpk8vmjugm26KHY8bB7Nnu+NAlKabUyjDiIQhQ4r3QnjPPfA/v4Ldttu6gQ35+a68XEE0WDrQKBKtW7fWGTNmRG1GiTjhBHj1VXfcpQuMHh2tPYZhFM/58YIFsNdebjFOcOuf7bNPdvqtFJGZqto6UVoq56rjROTQNArfX0ReKOw8I/sIu6MfOxbmzo3OFsMwHMVpOr/qqpgY7b+/E6dsFKPCSNVkdxvwuog8KSKdRKSFiOwsIruJSEsROV1EHsUNBx9aXANEpLqI9BeRZSKicWl3iMgYEXlERBb6fdUEZVQVkeF+hdsRIjJRRJr4tJNF5B0RuVdEPg+n+XSN2x4q7rXkGm3bxnzcbd7sqviGYURPUUTprbfc4KSACy+Es8/OPTECQFWTbsApwF/ApiTbWuCMVGUUtuEGRxwCzHPmFEgbAlTzxw/hlrzokqCMPj6thw//DLzhj7sCh/vjjv68CaG8rwCtQ1uzdOxu1aqVlgemTVN1g0VVRVRnz47aIsMwAt55R7VBA7dPxLp1qnvtFfsPH3NM6vOzAWCGJnmuphzUoKovAnsCd+OWnVjpBWo28DCwr6qOL7IKFvyMqar6QZK0a1TVO06nod8vTnDqXn6/zO//AI4Wkeqq+qyqTvXxfokqaoXy1scJ7wDgdGBVMltFpJeIzBCRGUuWLEl1WTlD+/axWpJqdi5rbBgVlcJqSvffH1uWfKutYObMHK0ZBSRTqkxuuOUrNMHWPXTOPOJqSD6+ETAOVyO7Hz8QI+6crr68K4GqOEFSYLu48+4BfgdahuJOCH3OGuCjdK6pvNSQVFU/+ST2hgWqX3wRtUWGYYRJVFNasEC1Zs3Y/7ZWreyuGQVQ3BpSBjkI2DnBNiFVJgBVXayqnYGBQD/gugSnjcb52TsEuBFYAKxW1SUAIlJJRG7G1aT2V9VPQ+VPDj4HJ4rtRKRe8S4zN2nTBk4+ORYePDgyUwzDSECimtLll8Pq1e64cmWYODGHa0aeMhEkVV2kqvMSbH+lyudFJGC+3zfzaf1FZLiP2wF4T1VPw03arQU86c/bDTdvqqZPayQiE3xaexHp7Y+r42pJi4k1/VUYwk11L7zgvIEbhpE9hEXpjjsKLrx3771wzDHR2ZYpqkRtgIjkAZcB2/rwUGCsqs4A8kRkJG6xwGNwNapgsHJLYG8RqQxsD4wQkem+nMnEalJdcYMZOgJX+zi/SgjLgVNFZBfgQOAr4EpfraxQHHAAnHaaW00W4MYbnRsSwzCyh44d4Zln3BzCgOOOg759o7Mpk6Q1MdYPDlhXBvbkDOVhYmw8X33l5jAEP4kPPoCDD47WJsMwCnLTTbEpGjVquEmx220XrU1FoVgTY+P4UERqZ9AmIwvZd9+C6yVdd11MnAzDiJ5vvoHbb4+Fq1RxL5LlhXQFaVtgjIiMFZFTRaRaaRplRMfNN7sfOcC778J//xutPYZhOFThzDNh0yYXPuggePHF8uUMOV1B6qyqJwOXAzsBr4rISBHpUEp2GRGx667Qo0csbLUkw8gOrr0WvvjCHVeuDI89BkcdVb489KcrSH/6fW1gO9xk2fOBt0VkkYgMEZHtS8NAo+y58UbXNg1uot0L5qnQMCLlxRfh7rtj4SuvdP29UL6WjUlXkF4XkanAXOBaoAmwELc+0mHAq8DEUrHQKHMaN4Y+fWLh66+PrUBpGEbZkp/vVn0NWip22qmgY2QoP6KUriA1Aw7F+a57DjhGVfNUdZCq/ohzK1ShJpOWdwYMgLp13fHcufDkk9HaYxgVkfx8OPVUt/hewEMPQa1aW55bHkQpXUH6DbgYaKSqXVX17bj0HsDYjFpmREr9+q7NOmDwYFiV1MufYRiZJlgXqWbNWFznznDiicnz5LoopStIN6vqCFVdmShRVe9SVXPLWc7o18813wEsXuwcORqGUfoEYnT00e6/B7DNNjBsWOF5c1mU0p0Y+zPweoIkBX4C/qOqsxKkl1vK48TYRIwcCT17uuM6ddwSybk0Cc8wco1AjG6/HXr3jg3zfvzxgiNg0y0n27x/p5oYm64gbcaJj4Siw+ENOK/Zb5XQ1pyhogjSxo1uNM+cOS7ct296b2mGYRSPIUOgZUvXZD5zpos74ggnMCKp88aTnw/Tp8M112TezuKSCUF6ATc5djpuvaCaQFt/PAfoAKxV1cMyZHPWU1EECeCll+CUU9xxlSowezbsvnukJhlGueauu2J9uNWrw6xZsOee0dqUKVIJUrrOVdeoaqcEBY9X1f5+WfFPE+QzygEnnwyHHQbvvedqTAMG2Nwkwygt5s4tOKx78ODyI0aFke6ghqNE5HIROVxE2vj9Fbg5SKjqBtzCd0Y5RATuuScWnjgRpk5Nfr5hGMVj82bXTxQM827ZEq6+OnWe8kS6NaRpwL24fqMwE0WkBnAOsHUmDTOyizZt4JxzYPRoF77ySvjkE6hUVks8GkYF4JFH4P333XGVKm7+X5XIFwkqO9J9nPQExuOWERe/Hw9chFvUbjfg9qS5jXLB7bcXdCk0Zky09hhGeeLHH11zeMCAAdCiRXT2REG6gnQp8CFQAydANVT1LFX9XVV/VNWBqjq+1Kw0soJmzeCKK2LhgQNjSygbhlF8Nm+GCy6ITT5v3tz5lKxopCtIFwMfqupmVf1VVTeXplFG9nLttbC9d6O7aJEbomoYRsl49FGYMsUdV6oEo0a50XUVjXQF6QNiy37/jYhclVlzjGynbt2CC4TddZdbsdIwjOLx448F5wldcw20bRudPVFSlOUnvhKRB0VkkIjcJCI34ZryjApG9+5u9A/A2rXZNenOMHKJ+Ka6vfd2w7wrKkXx1AAFR9kJoKpauTQMy3Yq0sTYRLz/vpubFDB1asGwYRiFM2wYXH65O65UCT78sPzXjlJNjE23hvQr8BTwdNz2awaMqy4i/UVkmYhoXNodIjJGRB4RkYV+XzVBGVVFZLiIfCwiI0Rkoog0CaVr3PZQKO0sEXlHRIaJyBQRqWDjWorHoYe6NVoC+vaN+dwyDKNwvvmmoEf9a68t/2JUKKpa6Ab0TRJ/QTr5Cyn7cOAQYJ4zp0DaEKCaP34IV0PrkqCMPj6thw//DLwRSn8FaB3amvn4/XBD2Pv48EvAfKB6YXa3atVKKzrz56tutZWqWzpMdfjwqC0yjNxgwwbVtm1j/50WLVTXrYvaqrIBmKFJnqtp1ZBU9QERqSYi/xSR80Wktog0VdUSL9umqlNV9YMkadeo6nofbOj3ixOcupffL/P7P4CjRSQYp1IfOAUYAJyO88EH0AlXS/zFh3/CLUbYLpE9ItJLRGaIyIwlS5YUdmnlnmbNCr7hXX89LF0anT2GkSvcdZebWA5QtSo8/TRUqxatTdlAWoIkIs2B74EXgBtxXhneEpF/pJl/UYJmMxWR7mnkbSQi43DiMQyYkuC0D/1+J9+k1xh3bX7NU25T1RuAvkA/YLKPb+T3G+L2QXwB1K0J1VpVW29nazAAbkDDLru442XL3NwkwzCSM3NmwYELt9ziPOob6fchPQQ0AL4F1qvqT7imr75p5j8I2DnBNqGwjKq6WFU7AwNxYnJdgtNGe1sOwQnmAmC1qi7xZUwOysI1DbYTkXrEaltV4/aJamFGAmrUgAceiIWfeCL25mcYRkFWr3YuuDZudOH27aF//2htyibSFaR6QANVbY5/WKvqX0DtdDKr6iJVnZdg+ytVPhEJr0I73++b+bT+IjLcx+0AvKeqpwGDgFrAk/689iLS2x9Xx9V+FuOa914ANvv84GpWC4CP07kuw02MrVkTTjrJhVXh0kuLN8AhP98m2hrlm2uucd68AWrXhmeegcoVcpxyYtIVpMrA2SLSHqjtvX3/C2hSSL5CEZE8ERmKW28JERkqIsGQwDwRGSkiDwCDcTWqwDF7S+AQEakMbA+MEJGHcbWlybj+IoDlwKkicreP/wo4xfevfQl0BTqJyDBgG+BkVV1X0uuqKLRp41alPPPM2MzyGTPczPOiEKxu2aZN5m00jGzg1Vfh4Ydj4fvvh113jcycrCTdeUhDgKvZ0tv3MFW9sjQMy3Yq+jykMIGYnHiic3kCzqPDN99Ao4S9cYnzZ9tSy4aRKX77zfUT/eonypxyiltTrKgrwJYHMjEP6SbgUWAdbkLseuAJ4IaMWGjkNB07OjGZNAmaNnVxK1cWdMSaDBMjo7yjCuefHxOjhg1hxIiKKUaFke6w77Wqegmub6YhUFNVe2FrIBmeQJT+/DMW9/zz8MYbyfOYGBkVgYcecs11AaNGgQ3STUzay6uJSH2gLdAcOExEDic2fNow6NjRrSYb9lJ8ySWwZs2W55oYGRWBL74oOIruiivguOOisyfbSXce0pU47wfTgPzQZm52jAJ07OhWlQ2aI374AW6+ueA5JkZGRWD1ajj77Nhy5C1awB13RGtTtpNuDel6XL/RQtyw6GCz0WjGFpx2mlviPGDoUPjsM3dsYmRUFPr1g9mz3fFWW8Fzz1XMNY6KQrqCNB3YRlXzVHXnYMMJlWFswd13x5Zf3rQJevSAt94yMTJyhyFD3AtUcRg7FkaOjIUvuQReeSUzdpVn0hWkD4HOIrKHiDQLNpL4fDMMERg/3vnpAvj0UzfU1cTIyBWCOXZFFaXvv4devWLhjh3hqadsjl06pCtIg4BngTnAj6HtjFKyyygH7L6789MVsG4d7LhjdPYYRlEIRo4WRZTWrXPLsgSjTRs3dgMb7EUsPdIeZYebfxS/GUZKWrWKuUbZuBE6dXKrZBpGLlBUUbrySuc8FdzvfvVq11JgYpQe6QrSBFWtFL8B/ylN44zcJj8funRx7lICUfryS9fZaxi5QrqiNHYsDB8eC9eo4bwxmBilT7oTYzsHxyJSJ1G8YYQJj6a76CK4LuSj/aGH4Nlno7PNMIpKYaI0dy707BkLV6sGL79sYlRU0p2HVE1EhojIMuBzEWkuIq+JiM03NrYg0dDuG26A/faLnXP++fD229HYZxjFIZkorV4NZ5wBf/m1CypVggkT4Mgjo7Ezl0m3ye4unHPVrXEOWefg1kh6IGUuo8KRbJ5RtWrOZUq4P+mf/yz+sFrDiIJ4UVJ1LQBffhk759FHY8uxGEUjXUH6P6AHcDDOY0Ow6N02pWOWkYsUNum1ZcuCK8quX+8m0ZooGblEWJT69SvY/Hz11QWb7oyika4grQHGqupHOI8NiMgewF6lZZiRW6TrgeHGG+HAA93xhg1Qr17x5noYRpR07Ag33QQPPhiLO/54NyHcKD7pCtJvwFIRmQu0EZEfgK+B70rNMiNnKIo7oGrV3Btl4ELlf/+DY481UTJyi19+gTvvjIUbNYL/2JjjEpOuIF0FrAB2xy1BkQf84eONCkxxfNPtvXdBJ5Njx7q3TRMlIxdYt841Nf/8swvXqOHiPvwwWrvKA+kO+54N7AF0wS0Nfg6wh18C3KjATJ9evFno/frF8mzeDPfcA08+6cozjGxFFfr0gWnTXFjEDe+eMMFeqDJBWkuYG1tiS5iXnAULnAPW5ctd+KyzYMwYW0nTyF4efRR6946Fhw6Fq3w7kXmyT49MLGFuGBmnWTN4/PFYeOxYePrp6OwxjFRMnQqXXhoLn3NOwWVWiuP7zihI5IIkItVFpL+ILBMRjUu7Q0TGiMgjIrLQ76smKKOqiAwXkY9FZISITBSRJj6tu4ho3LY8lDc+7aFSv2jjb04/HS68MBa+9FL4zobKGFnGDz+4uUWBH8aWLd3LVHxt3kSpZEQuSLglLKbhBk3EUxnorqq9gZeAi0nsYfxioDfwuKr28mU+GUq/BTjJb7cCs0Jpk4A2oW1ISS7GKDr33w977OGOV62CM8+EtWsjNckw/mblSud1YeVKF27YECZOdIvuJcJEqfhELkiqOlVVP0iSdo2qrvfBhn6/OMGpwXyoZX7/B3C0iFQHJgP3qeokVZ0EHALcFMpbHzgFN1jjdGBVMltFpJeIzBCRGUuWLCn84oy0qF3braZZrZoLf/ZZrF3eMKJk0yY3LWH+fBeuVs2JUbNmqfOZKBWPMhEkEVmUoGlMRaR7Gnkbicg4oBMwDJiS4LRgwOVOvkmvMe7a6qrqElVd7svqAGxS1XdDeW9T1RuAvkA/nIAlRFVHqGprVW293Xbmxi+TtGzpRtoFDB/u/tCGESWdO8PHH8fCTzwB7dunl9dEqeiUVQ3pIGDnBNuEwjKq6mLvVXwgTjCuS3DaaJygHALcCCwAVqtqfDXmXz49XP7k4HOAeUA7EamX7oUZmePSS938joAePdzqm4YRBX36uOUjAgYOhK5di1aGiVLRKBNBUtVFqjovwfZXqnwicnMo6CvNNPNp/UUkWH1kB+A9VT0Nt7ptLQr2ISEi/wes8O6Pgrj2ItLbH1cHGuGaBJdhlDki7g10l11c+M8/nUCtXh2tXUbFY9Ikt45XwGmnwa23Fq+sQJRsjl3hVInaABHJAy4DtvXhoTi/eTOAPBEZCawGjsHVqAb5rC2BvUWkMrA9MEJEpvtyJrNlTepm4JK4uOXAqSKyC3Ag8BVwpdrkrMjYemv35z34YOd89YsvnDflp5+2+UlG2fDpp25OXPAUaNcOnnnGLStRXDp2tLlJ6WATY4uJTYwtXUaOLOg1+eGH4ZL41wnDyDA//uj6iH791YXz8uCjj9zIOiMz2MRYI+fo0aPg/KTLL4+5azGM0mDpUjjuuJgYbbMNTJ5sYlSWmCAZWctDD0GrVu54wwbo1AkWLYrWJqN8smYNnHwyfPutC1ev7nzU7b13tHZVNEyQjKylRg3ntLJ+fRf+9Vc45RT38DCMTLFhgxsFF3jrFnFLpBx2WLR2VURMkIysJi8Pxo+PLX0+c6ZrzrOuTyMTbN4MF1zgRtUF3H+/c2lllD0mSEbW07EjDBsWC48ZA3fdFZ09RvlA1TlHDS9Bfu210LdvdDZVdEyQjJzgkksKjrobONA15xlGcfnXvwq+6PTsCbffHp09hgmSkSOIuEEOhx8ei+vWraBbF8NIl3vugUGDYuHTToNHHrG5blFjgmTkDNWqOVcuu+/uwmvXupFR8+ZFapaRYzzyCFx9dSx8zDEwenSsn9KIDhMkI6eoX9/NDannvQ3+9hscfzz88UfJys3PhyG28Ei5Z9SoghOsDzsMXnzRDfM2oscEycg5dt/dPUSqeMdXc+a4xdOKOxw8WHq6TZuMmWhkIU895UbUBbRt60bX1awZnU1GQUyQjJzksMOcf7GAadPg7LNh48ailROI0bhx5mssGxkyJDNesp95Brp3j00XaNECXnsN6tYtedlG5jBBMnKWs86C++6LhV96CXr3Tn+OkolR9tOmTcmXbnjmGTj33Fh4//3hrbdizb5G9mCCZOQ0l19esIN65Ei45prCRcnEKDco6XpCjz++pRi9/TY0aJA5G43MYYJk5Dx33eWGgAcMHQq33Zb8fBOj3KK4ovTgg9CrVyy8334mRtmOCZKR81SqBE8+6fzcBdx4Y8FJjwEmRrlJUUXprrsKelxo1crlMzHKbkyQjHJBlSowdiwcfXQs7vLLC676aWKU26QjSqquyfbaa2Nx7du7mlHgpNfIXkyQjHJD9epuOPjBB8fiLrvMTYQ0MSofpBKljRud+5+7747FdegAb7zhViI2sh8TJKNcUauWG8570EGxuEsucR4dTIzKB4lEac0aF37iidh5//yn+y3UqRONnUbRMUEyyh1168Lrr7uJjwF//QWzZkVnk5FZwqL04otw1FEwcWIsvXt353y3Ro2oLDSKgwmSUS7Zemu44YaYNweAK66AW2+1tZTKCx07xtYuChbXA7jqKldTCn/3Rm4QuSCJSHUR6S8iy0Qk4aNCRAaKiIrIlBTlnCUi74jIMBGZIiItSppm5C75+c5NzAsvwKGHxuJvvNF1eJso5T7TprmXjE2bYnH33++G/VeK/MlmFIds+NraAdOAFYkSRaQt0CFVASKyHzAamKiq/XxZL3uxK1ZaZi7NiILwAIaTTnLNd+HRd0OGOLHasCE6G42SMXq0qyEtWeLClSu7vqL994/WLqNkRC5IqjpVVT9IlCYidYBbgKsKKaYT7lp+8eGfgGY4sStuWiJ7eonIDBGZsST4JxhZRaLRdLVqwSuvuIENAaNGwamnwurVkZhpFJPNm11TbNeusH69i6tbF6ZMca6jSupmyIiWMhEkEVnkm9zit+6FZB0G3AT8Vch5jfx+Q9y+UQnStkBVR6hqa1Vtvd122xViklHWpBraXaOG6+Q+//xY3OTJcOSR8OuvZWunUTyWL3cvFWEvHDvtBJ995pplS+pmyIiesqohHQTsnGBLugi1iOzkz7kACH6Ce4jIowlOX+z3VeP2i0uQZuQQ6cwzqlrVdXZfd10s7uOPoV07+OqrsrHTKB6zZ7tRk5Mnx+Jat3YjJ3fZJRZnopTjqGpWbMA8Z07CtDxAgSmhuP7AcH+8H7AJ6OPDLwLzgerFTSvM3latWqmRHbzzjmqDBm6fLg8+qCqi6oY3qNapo/raa6Vno1F8nntOtXbt2HcFqmeeqbphQ/I8xflNGGUDMEOTPFcj70MSkTwRGQps68NDRaR1KL0ZELzT7ioiQX9SS+AQEamsql8CXYFOIjIM2AY4WVXXFTetdK/ayBTF9cBw2WWuXymYp/Lnn3DCCW6Wv43Ayw7WrXOTms8+280jC7jxRucmKtWwbqsp5Sai9u8rFq1bt9YZM2ZEbUaFJhPugGbNciPwli6NxXXu7Jy11qqVGTuNovPtt06IPv00FlepEjz2GPTokX455jIq+xCRmaraOlFa5DUkwygu06eX/EHTogV88QXss08sbtw453rom29KbqNRNFTdy8CBBxYUo2rV3Ci6oogRWE0p1zBBMnKWa67JzFtvo0bu4de7dyzuq69cp3l4mXSjdFm61AnHhRfGhuNXqRLzT3jiicUr10QpdzBBMgzcG/jw4W4UXnU/LXrVKrfa6Pnnuz6mgCFDMvdgy8935VV0XnzR1VInhMbd7rUXXHqp6+s78siSlR+I0vTpJSvHKF1MkAwjxAUXuKHge+wRixs1yjXtvf++C7dpk5m37aB/o02bkpVTFpSWCC9d6lb7PfVU+O232DkXXwwzZzpXQJnq++nY0dWqjezFBMkw4mjRwj0Mu3aNxf34Ixx+uPOD1759yZuAcq2zPdMiHDSHNm8Ozz4bS2/c2M01euQRqFmzZJ9l5CDJxoPbZvOQKjqbN6s++6zq1lsXnAOz556qU6cWf65Lrs6RKandQf5Ro1SPPrrgPQXVbt1U//gjszYb2Qcp5iFF/mDP1c0EqeKwYIHqkUdu+QC9+GLVl14q2kM6V8UooCQiXL++aufOqlWqFLyPzZqpTppUOvYa2UcqQbImO8MohB13hP/+Fx5+GGrXjsU/+qgbEXbuuek1Z+VaM10iijNi7a23nA+6zZtd3o0bXXylSm75iK+/dpOSDcMEyTDSoFIl5zVg9uyCw4+XLoV774V69VzHfLKHdHkQo4B0RUnVLYh43HHO08KyZbG0Qw91/XT33ltQ5I2KjQmSYRSBHXeEl1+G8eOhWbNY/LffwooV7uH7xBMF85QnMQpIJUqq8OqrbsDCjTcWXECvcWO3ltHUqXDAAWVqspEDmCAZRhERcctmz5kDN90Um7cEbo2eHj3cA/vLLzMrRtk2/ylelDZtgokTnZeLE06AuXNj59ap45aN+O476NLF3UPD2IJknUu22aAGIz3mzVM999yC3sODrVo151k8E2RqQESmB1a8+qrzxt2kyZbXX726ar9+qr/9lpnPMnIfbFCDYZQeO+0ETz0Fn3++Zef8+vXQp4+rNYwdG1vltDhkwgVOJmts337rBiV06eL6iH76KZZWtSr07Qs//OAmt9p6lkY6mLfvYmLevo1kPPaYexgnEp/ttnOj8i680PWxFIfiikomxGjFCtd/9vTT8N57ic85+GDnAqhRwnWXjYqOefs2jDIiPx9uuAFef915ET/uuILpS5bAPffA3ns7bwVDhsC8eUX7jOLUlEoiRitWuIEInTrBDjtAz55bilHjxs4J6jXXuJqTeUo3ikWytjzbrA/JKBrJ+mYmTFCtWdOlxfexBNsBB6hed53q+++nXgk1nc8r7nkBmzerzpqlOmSI6lFHuX6wRDZXrqx68smqd91VsPxcn/xrlC6YpwYTJKN0KewhHKTfcYdqp06qVasmF6datVSPOUb1lltU33gj9YCAdD83lTj88Ydqfr4ToJNPdh4VktkGqi1aqN57r+rixcnLN1EykpFKkKwPqZhYH5IRkG5zWPi8Aw90C849/7zzZLBhQ+rPaNLELc+w++6w225uDlSjRq4J7auvnJfy+M8PPu/JJ2HffeGXX9y2YAF8/73bZs924cJo1co12Z12Guy5Z3rXXR7nXxklJ1UfUuQ1jVzdrIZkqBa9JpDo/JUrVSdOVO3Z0/l1S1U7KWyrVcs5g61Zs2TlBH7nnnhCdeHC4l+31ZSMeLAaUuaxGpJRWqPd5s93gwY++MCtZPvFF7B2bebsjqdaNVf7OuAAN0Lu0ENdLSjZ5NWiXrfVlIwwqWpIkQuSiFQH+gLXAduo6hZ/AxEZCNwOvKuqHZKUcxbQC/gSaAH0U9VZInIycDnwOXAk8CNwmar+5PPF34CHVfWywuw2QarYlPQhW5T8Gzc6Dwfffuv233/v5vz88gssXuxGwa1a5eo28Yi40W9bbx1r4mvc2DX7Bdtee7l5Q6V53SZKRkBWN9kBhwOHAPOcOVuktwXeABSYkqSM/YBNQB8ffgmYD1QHugKH+/iOvpwJobyvAK1DW7N07LYmu4pLNnpM2LRJdfJk19TWv7/bT57sRsxlikyth2TNdxUbstlTg6pOVdUPEqWJSB3gFuCqQorphJtT9YsP/wQ0A9qp6rOqOtXHL/X7WqG89YFTgAHA6cCqol6DUbGYPj0zb/rBfKLp00tu07vvwnnnuUmrQ4a4/XnnwZQpJS8bMlPDyYSnCaN8UyaCJCKLREQTbN0LyToMuAn4q5DzgjnhG+L28XPFuwN/ANeH4m5T1RtwzYb9gMkprqOXiMwQkRlLliwpxCSjvHLNNZlrdurY0ZVXEhKJRaYf/tkowkb5o0oZfc5BST5raYI4AERkJ2Bn4AKgjo/eQ0QeVdWL405f7PdV4/aLfVmVgEHAXsD+6vuPAFR1st8vFpF5QDsRqaeqf8TbpKojgBHg+pCS2W4YZUWqmktYlEoqJiUVzXi7rB/JSESZ1JBUdZGqzkuwJa35qOp8Ve3oxSeo0XwbiJGI9BeR4T7+BWAzsIMPNwYWAB+LyG7AW0BNnCg1EpEJvoz2ItLbH1fH1agWA6GlxAwjO0mnGc2ayYxcIvI+JBHJE5GhwLY+PFREWofSm+FG4AHsKiJBf1JL4BARqayqX+IGL3QSkWHANsDJqrrOx3cErgam+203X8Zy4FQRuRvXVPcVcIrveDOMrKUofTomSkauEPmw71zFhn0bUWFDr41cxrx9G0Y5oSSiYjUlI9sxQTKMHMGGXhvlHWuyKyYisgQ3+TYRDUgxgjAHyHX7IfevIYH9jRvCqtWw4s+SF791HahVE37+teRlJSXXvwPI/WvIRvt3UtWEawibIJUCIjIjWRtpLpDr9kPuX0Ou2w92DdlArtlvTXaGYRhGVmCCZBiGYWQFJkilw4ioDSghuW4/5P415Lr9YNeQDeSU/daHZBiGYWQFVkMyDMMwsgITJMMwDCMrKCtv3+US7x18p1DUZFU90fvfuw/4DXePW+IWCcy6tZZSXMO1uOU63gb+D3hUVYeWvYWpSXavcR7mbwI+83GDVDUrp4ImuYYrgVuBj4FDcUuw9FPVr6OyMxWpfvPecfEnwP7A+ao6KjJDk5Did1Q/UXyW/peTXUMfcuC/DES/Ymwub8B/KLja7G64Wucs4InQeUcD1aK2twjX0By3su7r/pyPfXjHqO2Nsz3Zvd4e9wC/x8cNA1YC20VtcxGu4VjgLB/e2d//pCttZuk1VPPH9wFT/DV0j9reotifK//lFNfQIhf+y8FmTXYloyZwEm5F2/OAdbiH+v5AfRG5VUReAKqr6vrozExJomv4E1gP1PDn1AB+AH6PwsAUJLzXwD9wqwKHVxCu4+OzjWS/lzdVdaw/J9FKx9lE0t+8iJwArMUJUraS7Hd0QKL4LP0vJ7uG38mN/zJgfUgl5QHgZqAHbhn1qbhFAAGqqluJdh3wkojsG42JhZLoGpbilnRvJSJP42pND6rq6sisTEye3xe418COPr6wFYSzgTy/T/V76Q6sAa4oW9PSJs/v46/hUOASXNNpNpPn9/G/o+MSxWfpfznP7+OvYRty478MmCCVCFV9TVU3q2tP/gL3owgeej/4/f+Ayrg+jawjyTUMwDWzPKiq5+J+2PeJyOHRWZqQYCHF+Htd2YcTriCcZSS7hoMAROQioDPQSlVfL3vz0iLZNRyAE9IHgRN92nkicl6ZWlc4yexfnCQ+G//Lya6hI7nxXwZMkIqNiDQVkdtCUXm4P99zuOpwPR9f3++/KTvr0iPFNQQ1imBF36ADt3oZmZYuH5P4XufjbA6vIPwn8FqZWpceya7hO9/schCuObWWiLwSgX3pkOwaPlfV09Wt8jzJxz2lqk+VtYGFkMz+uUnis+6/TPJr2Nbvs/2/7Ii6EytXN5wX3f8C9+LeOj4FjvNph+DazO8HZgP9o7a3KNcAbAU8Dsz01/AlcFPU9ia5hoT3GjgKeNfHTwU6Rm1rUa4B10yncdvyqG0t6vfg004DpvlreA04Imp7i/A7yon/corfUc78l1XVPDUYhmEY2YE12RmGYRhZgQmSYRiGkRWYIBmGYRhZgQmSYRiGkRWYIBmGYRhZgQmSYRiGkRWYIBmGkTYiMkpEVorIdQnS9haReSKyTkR+EJHTorDRyF1sHpJhGGkhIi1wE1xfBU4F6qjqmlB6U5wvx9+Bp3F+1fZKVJZhJMJqSIaRJiKytYjMFBH126ciUs2n7SAiH4rI7yLSrZByrheR5b6M7mVifBERkTwRmSAitUPRvwJf4dbX+QbnRfpvVHWRqr7lz1kBzPFlnSwig4N7ZRjJMEEyjDRR1RW4xfL+9FGj1S9FoKq/4NZduldVnymknNuAz0vR1BIhIu1x9k1U1b9CSe2Atjino7VVdVOCvJfg/KW1BSb46Mm4pRHeFpFsXULDyAJMkAyjCPgmqhd88Jy45C7A6LK1KLOISE3c9c1S1dGh+Eq4FWwDmsXVngJGA21wTXuPiIh44boCOBgYUmrGGzmPCZJhFJ1n/f5AEdkLQEQa4PpU5vnwHiLysojM8ttLIrJ7osJE5EERWeub8DqISJf4Jr24Zr4nRWS8iKwWkcdFZD8Rec4PNngorux9ROR137w4R0TuF5EaiezwnIvzkh7vWbwLsC+wHNdHJMDecZ91CG614cBj/Fr1ndSqOh/n8PN8EamPYSTABMkwis47wM/+OKgldQbGAYhIHeBt4ASc9/Rj/PFbiWoVqtqH2Oq2qOoY4pr04pr51qrqGcB83MKK56jq2biVcS8VkVbejrrAW0AH4AhgKNCPgjWdeIJVdf8XRIhIVdwijuA8Rn/tjwsIErAL8DJuXa1GuBWIw/yA8z6dlWvxGNFjgmQYRURVNwPB8uJn+/3fggQcDzQFFqnqYlX9DScezXxaSfnU73/z++/jwnv4/Qm42s5CVf2TmJD0TFH2Tn6/MhTXEyc2y3GC9J2P3yecUVWfUdXtVbWGqu6rqvHrTwV9b81SfL5RgTFBMoziETTb7SoiZwMrVPV3Hxc81MPLRK+OSysJG/1ek4SDxdeCpdwbi8gU3LpX84FlIrJ1krKDZ0JlABHZCrjBx93vB3YkFKQ0qBS3N4wCVInaAMPIRVT1MxGZjWu2Gg5cHEqe7/c1Q3E149LiWef3wfLrW2XAzEV+v0RVOwCIiADNvbAkYgGwH1DXh/vimt8ABovI4NC58U12hVEn9BmGsQX2pmIYxScYhVYZ13cSMAn30G0qIo1EZHtczWg+bgh0IoJlsXfwQ6MzMaH0VWAJsKOI7OnjjgfuS5En3+938bWoAT48FXjebxN9XLKRdsnYBTfYYVoR8hgViaiXrLXNtlzdcCKzGXgqQdpuuGXhvwBmAS8Cu/q063H9MYoTolZAC9wotB+A24BP4tLj83SPC18YX6b/rBa4gQ3zgTdwgrJDimvaBlgGvOntUNxE12qhcwTXx6RA2zTv1Q7AJuDfUX9vtmXvZq6DDMMogIgchhOv01X11QyVOQrX59RRC062NYy/sSY7wzAKoKrv4TwtXJIJzwoi8k9c0+FRJkZGKqyGZBiGYWQFVkMyDMMwsgITJMMwDCMrMEEyDMMwsgITJMMwDCMrMEEyDMMwsgITJMMwDCMrMEEyDMMwsoL/B+0v0AaMp0GtAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<AxesSubplot:title={'center':'Murnaghan: error: 3.082572904090247e-08'}, xlabel='Volume ($\\\\AA^3$)', ylabel='energy (eV)'>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"murn.plot()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "f82f8b1e-bc91-4c16-a508-784f6ba1a5be",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'poly_fit': array([-6.99807253e-05, 1.71831609e-02, -1.32879944e+00, 1.89910998e+01]),\n",
" 'fit_type': 'polynomial',\n",
" 'fit_order': 3,\n",
" 'volume_eq': 62.622371605280996,\n",
" 'energy_eq': -14.022341476671993,\n",
" 'bulkmodul_eq': 80.98975711851953,\n",
" 'b_prime_eq': 2.257384373924286,\n",
" 'least_square_error': 3.082572904090247e-08}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"murn.fit_polynomial()"
]
},
{
"cell_type": "markdown",
"id": "af0bb904-c780-4aeb-a975-a4b800c10c2b",
"metadata": {},
"source": [
"### Improving the potential:\n",
"- try with different starting parameters / global optimization\n",
"- change weights of structures and fit properties\n",
"- change functions used"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c654e1d-8c92-4b43-a78a-b0222b5f6128",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 5
}