Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "25d5b0d5-f330-4dcb-9b7c-f57c4bea9596",
"metadata": {},
"source": [
"# **Workshop: From electrons to phase diagrams**\n",
"\n",
"# Day 2: Validation of the potentials\n",
"\n",
"Once we have the fitted potentials, it is necessary to validate them in order to assess their quality with respect to applications.\n",
"\n",
"In this exercise, we use the fitted potentials and perform some basic calculations."
]
},
{
"cell_type": "markdown",
"id": "4756d4c9-304a-4ccc-b772-ba67d008c5a4",
"metadata": {},
"source": [
"## Import the fitted potentials for Li-Al (from earlier excercise)\n",
"\n",
"The same directory contains a `helper.py` file which among other things, also contains the necessary specifications of each of the potentials that we will use today. Individual potentials are descrbed in the LAMMPS format as:\n",
"```\n",
"pot_eam = pd.DataFrame({\n",
" 'Name': ['LiAl_eam'],\n",
" 'Filename': [[\"../potentials/AlLi.eam.fs\")]],\n",
" 'Model': [\"EAM\"],\n",
" 'Species': [['Li', 'Al']],\n",
" 'Config': [['pair_style eam/fs\\n', 'pair_coeff * * AlLi.eam.fs Li Al\\n']]\n",
"})\n",
"\n",
"```\n",
"A list of such DataFrames describing the potentials is saved in a list called `potentials_list`. We import the list as:"
]
},
{
"cell_type": "code",
"execution_count": 1,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Filename</th>\n",
" <th>Model</th>\n",
" <th>Species</th>\n",
" <th>Config</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>LiAl_eam</td>\n",
" <td>[/home/minaam.qamar/workshop_POTENTIALS/new_no...</td>\n",
" <td>[pair_style eam/fs\\n, pair_coeff * * AlLi.eam....</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Name ... Config\n",
"0 LiAl_eam ... [pair_style eam/fs\\n, pair_coeff * * AlLi.eam....\n",
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from helper import potentials_list\n",
"\n",
"potentials_list = [potentials_list[0]]\n",
"\n",
"# display the first element in the list\n",
"# which is an EAM potential\n",
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
{
"cell_type": "markdown",
"id": "4c84560c",
"metadata": {},
"source": [
"### Import other important modules"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "83f7a2c9-d45a-4987-9e35-59badd754d4f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6.366608268"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pylab as plt\n",
"import seaborn as sns\n",
"import pandas as pd\n",
"import time\n",
"from helper import get_clean_project_name\n",
"from pyiron_atomistics import Project\n",
"from pyiron import pyiron_to_ase\n",
"import pyiron_gpl\n",
"\n",
"# save start time to record runtime of the notebook\n",
"time_start = time.process_time()\n",
"time_start"
]
},
{
"cell_type": "markdown",
"id": "acc0ee8f",
"metadata": {},
"source": [
"### Create a new project to perform validation calculations\n",
"\n",
"It is useful to create a new project directory for every kind of calculation. Pyiron will automatically create subdirectories for each potential and property we calculate. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "706be2a9-5f94-4eb5-8e4f-6c349fe216b3",
"metadata": {},
"outputs": [],
"source": [
"pr = Project(\"validation_LiAl\")\n",
"\n",
"# remove earlier jobs\n",
"# pr.remove_jobs(silently=True, recursive=True)"
]
},
{
"cell_type": "markdown",
"id": "3b84ed62-e841-4526-893e-dc4f61477c88",
"metadata": {},
"source": [
"### Define the important pases to consider for validation\n",
"\n",
"We construct a python dictionary `struct_dict` which contains a description of all the important phases that we want to consider for this exercise. The descriptions given in the dictionary will be later used by Pyiron to generate or read the structural configurations for the respective phases.\n",
"\n",
"For unary phases, we provide an initial guess for the lattice parameter and use pyiron to generate the structural prototype.\n",
"\n",
"For binary phases, we provide a phase name and an additional dictionary `fl_dict` which maps the phase name to a `.cif` file saved in a subdirectory. Pyiron will use this information to read the respective configurations from the file."
"id": "28778cef-2a07-4794-888f-7239500e7b5a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Al': {'s_murn': ['fcc', 'bcc'], 'a': 4.04},\n",
" 'Li': {'s_murn': ['bcc', 'fcc'], 'a': 3.5},\n",
" 'Li2Al2': {'s_murn': ['Li2Al2_cubic']},\n",
" 'LiAl3': {'s_murn': ['LiAl3_cubic']},\n",
" 'Li9Al4': {'s_murn': ['Li9Al4_monoclinic']},\n",
" 'Li3Al2': {'s_murn': ['Li3Al2_trigonal']},\n",
" 'Li4Al4': {'s_murn': ['Li4Al4_cubic']}}"
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"struct_dict = dict()\n",
"struct_dict[\"Al\"] = dict()\n",
"struct_dict[\"Al\"][\"s_murn\"] = [\"fcc\",\"bcc\"]\n",
"struct_dict[\"Al\"][\"a\"] = 4.04\n",
"\n",
"struct_dict[\"Li\"] = dict()\n",
"struct_dict[\"Li\"][\"s_murn\"] = [\"bcc\",\"fcc\"]\n",
"struct_dict[\"Li\"][\"a\"] = 3.5\n",
"\n",
"\n",
"\n",
"\n",
"struct_dict[\"Li2Al2\"] = dict()\n",
"struct_dict[\"Li2Al2\"][\"s_murn\"] = [\"Li2Al2_cubic\"]\n",
"# struct_dict[\"Li2Al2\"][\"a\"] = 3.7\n",
"\n",
"struct_dict[\"LiAl3\"] = dict()\n",
"struct_dict[\"LiAl3\"][\"s_murn\"] = [\"LiAl3_tetragonal\"]\n",
"# struct_dict[\"LiAl3\"][\"a\"] = 3.7\n",
"\n",
"struct_dict[\"LiAl3\"] = dict()\n",
"struct_dict[\"LiAl3\"][\"s_murn\"] = [\"LiAl3_cubic\"]\n",
"# struct_dict[\"LiAl3\"][\"a\"] = 3.7\n",
"\n",
"struct_dict[\"Li9Al4\"] = dict()\n",
"struct_dict[\"Li9Al4\"][\"s_murn\"] = [\"Li9Al4_monoclinic\"]\n",
"# struct_dict[\"Li9Al4\"][\"a\"] = 3.7\n",
"\n",
"struct_dict[\"Li3Al2\"] = dict()\n",
"struct_dict[\"Li3Al2\"][\"s_murn\"] = [\"Li3Al2_trigonal\"]\n",
"# struct_dict[\"Li3Al2\"][\"a\"] = 3.7\n",
"\n",
"struct_dict[\"Li4Al4\"] = dict()\n",
"struct_dict[\"Li4Al4\"][\"s_murn\"] = [\"Li4Al4_cubic\"]\n",
{
"cell_type": "markdown",
"id": "23b2e6d9",
"metadata": {},
"source": [
"a dictionary is described to map the binary phases to their file locations"
]
},
"execution_count": 35,
"id": "c1820db7",
"source": [
"fl_dict = {\"Li2Al2_cubic\": \"mp_structures/LiAl_mp-1067_primitive.cif\",\n",
" \"LiAl3_tetragonal\":\"mp_structures/LiAl3_mp-975906_primitive.cif\",\n",
" \"LiAl3_cubic\":\"mp_structures/LiAl3_mp-10890_primitive.cif\",\n",
" \"Li9Al4_monoclinic\":\"mp_structures/Li9Al4_mp-568404_primitive.cif\",\n",
" \"Li3Al2_trigonal\":\"mp_structures/Al2Li3-6021.cif\",\n",
" \"Li4Al4_cubic\":\"mp_structures/LiAl_mp-1079240_primitive.cif\"}"
]
},
{
"cell_type": "markdown",
"id": "198e9745-734a-4502-8f1b-0330ba8c8fca",
"metadata": {},
"source": [
"### (a) Ground state: E-V curves\n",
"\n",
"Using a series of nested `for` loops, we calculate the murnaghan EV-curves using all three potentials for all the defined structures.\n",
"\n",
"We loop over:\n",
" - All the potentials defined in `potentials_list` and name the project according to the potential\n",
" - All the chemical formulae defined in the keys of `struct_dict`\n",
" - All phases defined for a given chemical formula\n",
" \n",
"Within the loops, the first step is to get the structure basis on which we will perform the calculations. \n",
"\n",
"- For unary phases, we use the pyiron function `pr_pot.create_ase_bulk(compound, crys_structure, a=compound_dict[\"a\"])` \n",
"- For binary structures, we read the basis using `pr.create.structure.ase.read(fl_path)` with the `fl_path` given by `fl_dict` defined earlier.\n",
"\n",
"Once the structure and potential is defined as part of the pr_job, we run two calculations:\n",
"- `job_relax` to relax the structure to the ground state\n",
"- `murn_job` to calculate the energies in a small volume range around the equilibrium\n",
"\n",
"As the calculations are being performed, the status(s) of each calculation is printed. If a job is already calculated, the calculations are not re-run but rather re-read from the saved data."
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Al_fcc_relax was saved and received the ID: 481\n"
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:18:40,708 - pyiron_log - WARNING - The job murn_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Al_bcc_relax was saved and received the ID: 482\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:18:44,855 - pyiron_log - WARNING - The job murn_job_Al_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li_bcc_relax was saved and received the ID: 483\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:18:49,187 - pyiron_log - WARNING - The job murn_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li_fcc_relax was saved and received the ID: 484\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:18:55,198 - pyiron_log - WARNING - The job murn_job_Li_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li2Al2_Li2Al2_cubic_relax was saved and received the ID: 485\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:19:00,132 - pyiron_log - WARNING - The job murn_job_Li2Al2_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job LiAl3_LiAl3_cubic_relax was saved and received the ID: 486\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:19:06,418 - pyiron_log - WARNING - The job murn_job_LiAl3_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li9Al4_Li9Al4_monoclinic_relax was saved and received the ID: 487\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:19:11,676 - pyiron_log - WARNING - The job murn_job_Li9Al4_Li9Al4_monoclinic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li3Al2_Li3Al2_trigonal_relax was saved and received the ID: 488\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-30 19:19:14,923 - pyiron_log - WARNING - The job murn_job_Li3Al2_Li3Al2_trigonal is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job Li4Al4_Li4Al4_cubic_relax was saved and received the ID: 489\n",
"The job murn_job_Li4Al4_Li4Al4_cubic was saved and received the ID: 490\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_0_9 was saved and received the ID: 491\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_0_92 was saved and received the ID: 492\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_0_94 was saved and received the ID: 493\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_0_96 was saved and received the ID: 494\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_0_98 was saved and received the ID: 495\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_0 was saved and received the ID: 496\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_02 was saved and received the ID: 497\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_04 was saved and received the ID: 498\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_06 was saved and received the ID: 499\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_08 was saved and received the ID: 500\n",
"The job murn_job_Li4Al4_Li4Al4_cubic_1_1 was saved and received the ID: 501\n"
]
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
"for pot in potentials_list:\n",
" with pr.open(get_clean_project_name(pot)) as pr_pot:\n",
" for compound, compound_dict in struct_dict.items():\n",
" for crys_structure in compound_dict[\"s_murn\"]:\n",
" \n",
" # Relax structure\n",
" if crys_structure in [\"fcc\",\"bcc\"]:\n",
" basis = pr_pot.create_ase_bulk(compound, crys_structure, a=compound_dict[\"a\"])\n",
" else:\n",
" basis = pr.create.structure.ase.read(fl_dict[crys_structure])\n",
" job_relax = pr_pot.create_job(pr_pot.job_type.Lammps, f\"{compound}_{crys_structure}_relax\", delete_existing_job=True)\n",
"\n",
" job_relax.structure = basis\n",
" job_relax.potential = pot\n",
" job_relax.calc_minimize(pressure=0)\n",
" job_relax.run()\n",
" \n",
" # Murnaghan\n",
" job_ref = pr_pot.create_job(pr_pot.job_type.Lammps, f\"ref_job_{compound}_{crys_structure}\")\n",
" job_ref.structure = job_relax.get_structure(-1)\n",
" job_ref.potential = pot\n",
" job_ref.calc_minimize()\n",
" \n",
" murn_job = job_ref.create_job(pr_pot.job_type.Murnaghan, f\"murn_job_{compound}_{crys_structure}\")\n",
" murn_job.input[\"vol_range\"] = 0.1\n",
" murn_job.run()"
]
},
{
"cell_type": "markdown",
"id": "9d848f1a",
"metadata": {},
"source": [
"One can display the technical details of all submitted jobs using `pr.job_table()` below."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fdc89ebb-3c2a-4315-8fe0-3ae470375223",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# pr.job_table()"
]
},
{
"cell_type": "markdown",
"id": "425dcaec",
"metadata": {},
"source": [
"In order to get read useful results from the completed calculations (eq_energy, eq_volume, etc), it is useful to define the following functions"
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"id": "ef2f414b-64b8-49aa-87e9-e204950da938",
"metadata": {},
"outputs": [],
"source": [
"# Only work with Murnaghan jobs\n",
"def get_only_murn(job_table):\n",
" return (job_table.hamilton == \"Murnaghan\") & (job_table.status == \"finished\") \n",
"\n",
"def get_eq_vol(job_path):\n",
" return job_path[\"output/equilibrium_volume\"]\n",
"\n",
"def get_eq_lp(job_path):\n",
" return np.linalg.norm(job_path[\"output/structure/cell/cell\"][0]) * np.sqrt(2)\n",
"\n",
"def get_eq_bm(job_path):\n",
" return job_path[\"output/equilibrium_bulk_modulus\"]\n",
"\n",
"def get_potential(job_path):\n",
" return job_path.project.path.split(\"/\")[-3]\n",
"\n",
"def get_eq_energy(job_path):\n",
" return job_path[\"output/equilibrium_energy\"]\n",
"\n",
"def get_n_atoms(job_path):\n",
" return len(job_path[\"output/structure/positions\"])\n",
"\n",
"def get_ase_atoms(job_path):\n",
" return pyiron_to_ase(job_path.structure).copy()\n",
"\n",
"\n",
"def get_potential(job_path):\n",
" return job_path.project.path.split(\"/\")[-2]\n",
"\n",
"def get_crystal_structure(job_path):\n",
" return job_path.job_name.split(\"_\")[-1]\n",
"\n",
"def get_compound(job_path):\n",
" return job_path.job_name.split(\"_\")[-2]"
]
},
{
"cell_type": "markdown",
"id": "2fe57b8b",
"metadata": {},
"source": [
"Using the functions defined above, one can now define a `pd.DataFrame` containing all useful results"
]
},
"id": "255c28af-e4af-48c6-ae01-e90377c94e32",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The job table_murn was saved and received the ID: 502\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a5d41b6f348b4e31b85295d74e6f93b0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading and filtering jobs: 0%| | 0/9 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d4443355c4a458584cfc4343b77d69b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing jobs: 0%| | 0/9 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/minaam.qamar/.conda/envs/workshop2/lib/python3.10/site-packages/pyiron_base/table/datamining.py:620: PerformanceWarning: \n",
"your performance may suffer as PyTables will pickle object types that it cannot\n",
"map directly to c-types [inferred_type->mixed,key->block2_values] [items->Index(['potential', 'ase_atoms', 'compound', 'crystal_structure'], dtype='object')]\n",
"\n",
" self.pyiron_table._df.to_hdf(\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>job_id</th>\n",
" <th>potential</th>\n",
" <th>ase_atoms</th>\n",
" <th>compound</th>\n",
" <th>crystal_structure</th>\n",
" <th>a</th>\n",
" <th>eq_vol</th>\n",
" <th>eq_bm</th>\n",
" <th>eq_energy</th>\n",
" <th>n_atoms</th>\n",
" <th>phase</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>298</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Al', [0.0, 0.0, 0.0], index=0))</td>\n",
" <td>fcc</td>\n",
" <td>4.039967</td>\n",
" <td>16.495612</td>\n",
" <td>85.876912</td>\n",
" <td>-3.483097</td>\n",
" <td>1</td>\n",
" <td>Al_fcc</td>\n",
" <th>1</th>\n",
" <td>311</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Al', [0.0, 0.0, 0.0], index=0))</td>\n",
" <td>bcc</td>\n",
" <td>3.898853</td>\n",
" <td>16.147864</td>\n",
" <td>48.620841</td>\n",
" <td>-3.415312</td>\n",
" <td>1</td>\n",
" <td>Al_bcc</td>\n",
" <th>2</th>\n",
" <td>324</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [0.0, 0.0, 0.0], index=0))</td>\n",
" <td>bcc</td>\n",
" <td>4.195477</td>\n",
" <td>20.114514</td>\n",
" <td>13.690609</td>\n",
" <td>-1.757011</td>\n",
" <td>1</td>\n",
" <td>Li_bcc</td>\n",
" <th>3</th>\n",
" <td>337</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [0.0, 0.0, 0.0], index=0))</td>\n",
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
" <td>fcc</td>\n",
" <td>4.253841</td>\n",
" <td>19.241330</td>\n",
" <td>13.985972</td>\n",
" <td>-1.758107</td>\n",
" <td>1</td>\n",
" <td>Li_fcc</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>350</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [4.359978178265942, 2.5172345748814804, 1.7799536377360752], index=0), Atom('Li', [6.53996726740165, 3.7758518623203585, 2.669930456604318], index=1), Atom('Al', [-3.964456982410852e-1...</td>\n",
" <td>Li2Al2</td>\n",
" <td>cubic</td>\n",
" <td>6.165940</td>\n",
" <td>58.604895</td>\n",
" <td>100.347240</td>\n",
" <td>-11.074362</td>\n",
" <td>4</td>\n",
" <td>Li2Al2_cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>363</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [1.9825515172760235, 1.9825515172760237, 2.427925369776811e-16], index=1), Atom('Al', [1.9825515172760235, 1.2139626848884054e-16, 1.9825515172760...</td>\n",
" <td>LiAl3</td>\n",
" <td>cubic</td>\n",
" <td>5.607502</td>\n",
" <td>62.227580</td>\n",
" <td>51.472656</td>\n",
" <td>-12.774590</td>\n",
" <td>4</td>\n",
" <td>LiAl3_cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>376</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [4.9874675377354745, 1.0099032069001204, 0.8188717268019969], index=0), Atom('Li', [3.1237856900347722, 1.4557299809760758, 2.6737242758835587], index=1), Atom('Li', [-3.44219970899484...</td>\n",
" <td>Li9Al4</td>\n",
" <td>monoclinic</td>\n",
" <td>13.023702</td>\n",
" <td>190.504371</td>\n",
" <td>53.125273</td>\n",
" <td>-28.970054</td>\n",
" <td>13</td>\n",
" <td>Li9Al4_monoclinic</td>\n",
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
" <th>7</th>\n",
" <td>389</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Al', [2.1548001975659243, 1.2440753587819189, 1.8617841750008692], index=0), Atom('Al', [-2.154798282819334, 3.7322233132135576, 2.664676023808053], index=1), Atom('Li', [8.560563403365655e...</td>\n",
" <td>Li3Al2</td>\n",
" <td>trigonal</td>\n",
" <td>6.094693</td>\n",
" <td>72.810229</td>\n",
" <td>69.231669</td>\n",
" <td>-12.413856</td>\n",
" <td>5</td>\n",
" <td>Li3Al2_trigonal</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>490</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [2.1429671662366734, 1.237242669260901, 7.662122465542487], index=0), Atom('Li', [-8.827603092953495e-10, 2.4744853400282523, 0.5913662557792814], index=1), Atom('Li', [-8.827603092953...</td>\n",
" <td>Li4Al4</td>\n",
" <td>cubic</td>\n",
" <td>6.061226</td>\n",
" <td>131.389799</td>\n",
" <td>71.221356</td>\n",
" <td>-20.506570</td>\n",
" <td>8</td>\n",
" <td>Li4Al4_cubic</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" job_id potential ... n_atoms phase\n",
"0 298 LiAl_eam ... 1 Al_fcc\n",
"1 311 LiAl_eam ... 1 Al_bcc\n",
"2 324 LiAl_eam ... 1 Li_bcc\n",
"3 337 LiAl_eam ... 1 Li_fcc\n",
"4 350 LiAl_eam ... 4 Li2Al2_cubic\n",
"5 363 LiAl_eam ... 4 LiAl3_cubic\n",
"6 376 LiAl_eam ... 13 Li9Al4_monoclinic\n",
"7 389 LiAl_eam ... 5 Li3Al2_trigonal\n",
"8 490 LiAl_eam ... 8 Li4Al4_cubic\n",
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Compile data using pyiron tables\n",
"table = pr.create_table(\"table_murn\", delete_existing_job=True)\n",
"table.convert_to_object = True\n",
"table.db_filter_function = get_only_murn\n",
"table.add[\"potential\"] = get_potential\n",
"table.add[\"ase_atoms\"] = get_ase_atoms\n",
"table.add[\"compound\"] = get_compound\n",
"table.add[\"crystal_structure\"] = get_crystal_structure\n",
"table.add[\"a\"] = get_eq_lp\n",
"table.add[\"eq_vol\"] = get_eq_vol\n",
"table.add[\"eq_bm\"] = get_eq_bm\n",
"table.add[\"eq_energy\"] = get_eq_energy\n",
"table.add[\"n_atoms\"] = get_n_atoms\n",
"table.run()\n",
"\n",
"data_murn = table.get_dataframe()\n",
"data_murn[\"phase\"] = data_murn.compound + \"_\" + data_murn.crystal_structure\n",
"data_murn"
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
"execution_count": 40,
"id": "30d27d75",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAGiCAYAAAC1a4yzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACX40lEQVR4nOzdd3hUVfrA8e87k15IAqEHCFUQxQYKKFIXXRGxrBUFRBe7Yl1Fqg1QFNzVn3UXElFUFERFEVEQBBRBAQWkN+kJqZA+5/fHnQwpM8lMmJDC+3meeSZz77ln3kkgb06554gxBqWUUkr5j62qA1BKKaVqG02uSimllJ9pclVKKaX8TJOrUkop5WeaXJVSSik/0+SqlFJK+ZkmV6WqKRHZJSJGRHp5UXaGs+ywcsqNcJYzIjKynLLDnOVm+BC2UgpNrkqdboZ7+Fop5UeaXJWqHZ4COgBzPRUQkQ7ARcAxIA04W0Q6n5rwlDq9aHJVqhYwxhwwxvxpjEkro9gdzufZwIfOr7X1qlQl0OSqVC1Q3piriAQAtzpfTgf+5/z6ZhEJOQXxdRCR/4rIThHJFpEUEVkkIld5KH+miDwjIitEZL+I5IrIERH5SkQu93CNa4xYRGJE5N8iskdEskRkk4jcXaRsRxH5WEQOOc+vEpHLKuvzq9OPJlelTg9XAg2BHcAyY8wqYCMQDVxbmW8sIjcBa7FayceAL4H1QA9gnog84+ayR4AxzvjWYXV37wL+DnwtIo+U8ZbRwErgH8BPwAqgDfCGiPxLRLo5j58JLMb6PnQB5ovIpRX/pEqdoMlVqdNDYffvDHNit47pJc75nYh0AhKAXOAKY8xZxph/GGN6AucDe4ExItK7xKXvAS2NMWcaY/5ujLnRGNMF6AqkA5NEJM7D2w4CfgdaGWNuMMb0BQpbyKOBWcB4Zyw3GWMuAKYAdmCc3z68Oq1pclWqlhORhlgtPoOV6Aq9B+QDfUQkvpLe/mkgCHjCGPN10RPGmA1YLVSA+0uc+8EYs6tkZcaYn4HXgECsJOpOBnCPMSa7yHVfY7WAI4D9xpiXS1wz0fl8iYgEevG5lCpTQFUHoJSqdEOx/q8vMsbsKTxojDkkIl9hteqGAeP9+aYiYgMux0rqn3go9oPzuZub6yOBAcC5QF2sJA3Q1vnczkOdq40xSW6ObwPOARaUPGGMOSoiyUA95+Ogh7qV8oomV6Vqv2HO5+luzk3HmVxFZILx7wbP9YA6zq8Pi0hZZesXfSEig7AmXdUt45o6Ho7/5eF4phfn6wGVPsFL1X6aXJWqxUSkO9b9rwAPi8i9JYoU/g5oAfQFFvnx7e3O5wJgprcXOcdSZwGhwCTgA6zJTMeMMQ4RGQG8BXjK1o5y3qK880qdNE2uStVuRScrlbdgxHD8m1yTgCysJHm/MSaznPKFrnRe86kx5ik359v4KT6lKo1OaFKqlhKRcOAG58sexhhx9wA6OstcIyLR/np/Y0w+J5L1P3y4tLAreG/JEyISDFx3kqEpVek0uSpVe10PRAI7geWeChljNgK/Yo013uLnGJ4B8oBXReQmKTHwKiI2EelbYmGIP53P1zlnOheWDQL+A7Tyc4xK+Z12CytV/f2fiKSXcf4aD8cLu4RnejFR6T2s+06HA//nY3weGWNWi8gQrMlJs7DuT92IdbtMHNaM31hgMidm8X4O/AacB2wVkSVANnAxEAX8G3jQXzEqVRk0uSpV/XUo53xwyQMi0hprBSTwbjLRLOAl4AIR6WSMWe9biJ4ZYz4UkV+wEuLfgJ7OUwexWszzKXKrjjEmX0R6Yi34cDXQH0gBlmDdLlTqth2lqhvx78x7pZRSSumYq1JKKeVnmlyVUkopP9MxV6WUV0TkaqwxUG8kGWMeq7xolKreNLkqpbx1LtY6xd7YDWhyVactndCklFJK+Zm2XKtAbGysiY+Pr+owlFJKnaQ1a9YkGWPqlzyuybUKxMfHs3r16qoOQyml1EkSkd3ujutsYaWUUsrPNLkqpZRSfqbJVSmllPIzTa5KKaWUn2lyVUoppfxMk6tSSinlZ5pclVJKKT/T5KqUUkr5WY1OriJyl4i8LyJ/ikiBiPi0lqOIxIuIKecx2Mvyf/j/EyqllKqJavoKTU8B9YDfgHAgzsfrjwC3eTj3GhAKfOPm3FxgToljqT6+t1KqDPN3zOfVX1/l4LGDNApvxEPnP8SAVgOqOiylvFLTk2svYI8xxiEiX+JjcjXGHANmljwuIt2AKOATY0ySm0vXG2NKXadUbVSQns6hl14ic9F3FKSkYK9Xj5jBg6lzWX9soaHYwsKQsDAkMBARKXZt2hdfcHjqNPIPHCCgcWMaPDySqIEDy33P6X9M59VfX6XAFABw4NgBRi8fzS8Hf6Fr466EBoQSEhBS7LnwEWIPYcGuBZqYq5GK/jsoy8n88fX5ts/5z2//4dDxQzQIa8DDFzzs938ftWZXHGdyHWCMkXILl1/Xf4HhwOXGmG+KHI8HdgITgEmAzRhz3Nf6O3fubHRtYVVTHHnzLZKmTSu/oN2OLSzMSrihoRTk5VFw4AAU/R1jtxN24YWEdOiABAdhCw5GgkNKff2vn8fQdHsafdZD9DFIiYAvuwg/t7eRb8d62HB9bWwn/ttfvKGAW5YY6qVDch34oJewomMATcKb0DC8IcH2YILtwQTZg6yvA068br5yF80/+JGIo1kk1YHP+oUTPfAqujTqQqAt8MTDHkiALcD1Whb+iOPNRByHDpNSx87MnoatXRpzzzn3MKDVAOxixyY2bGIr9gdI0aSTVz+KWZfamN82w6tk4e21xhjIz8fk52MKCkj/cj5Jb7xB/uHDBNSvz6GBF/JO6C+kHkumQVBdbmp1HV3rd7bK5+UVeeRzbPVqMr/7DkdaGrbISNLOasZPAXvJyT5GHQnlrDpn0Dg4FkdODiY3F0duLo4Dh2DPvmL/DkxgAOv/eSlvNPyDo9lHiQmO4bL4y+hUvxN5jjzyCvLIc+SR78i3XjuKv96Wso3Vh1a7/vgCsImNFpEtqBNch9yCXPIceeQW5JLryCWvIM/1nF2QXep7GWIPYXz38RVKsCKyxhjTudRxTa6l6okADgBHgZbGGEeRc/FYyTUTqxtagL+A6cDzxpgcb95Dk6uqSbZccgkFSclVHUaZHGIlWwMEFVj/MV3ngNRwyAwFh80qW/S5wAYOEeocM8Qlg73Ir8QCgZ0NIbmOYAQKf7sYsd4LoF6aoe2B0tdtawxJUYIAhbNBxIAg2JzXtThkil3nENhbD9LDBZuBIOwEYMfmMNiMdb3NAWHHC6iTXlBs0owBsgLBYQe7AwIcVlm7g2rpSB24777q03naOLwxC/+x0OfrPCXX6vPJqo8bgQhgStHE6uQAvgc+w9oMuj5wAzAG6CYilxtT5E+pIkRkBDACoHnz5pUTuVKVoLonVsBKRG7/51mzNusesx6euW9k2A20OQhtDvrWCLEbOGM/nLHf3XWe67IZaJEEJBWWyXc+yidAWB6Q51OoVaZeelVHUNzBYwf9Wl+VJ1cRiQZG+nDJv40xRysnGgDuxEqi00ueMMbsAfqWOPxfEXkb+CdwE/C+u0qNMW8Db4PVcvVnwEpVJnv9+hQcOeLmhJ2A2FgcWVk4jh+HfO+SgFJgddlXJ43CG/m1vipPrkA0MM6H8jOxumz9TkTOBLoC3zgTqbeex0quA/CQXJWqqRo+8TgHxozFZJ8Yq5KQEBo/+0yxSSkmN9dKtM5km77gG5LffBOTm3uissBA6lxxBSHt2uLIzsbk5GJysq0xuuwcTG4Ojpxcjv34IybHzSiL3Ya9bl3IKz4eSC0Z3qosBQIFdgjId3//Zb4N9tQ/MYZdYJMTY9vO8e0uWw0hblrFx4Lhk0ts1hh4AOTbhdCwOpgAOyYwgJa7s7n0xzQC80/8jHICrLHwkkIDQrks/rJi49sBtgAC7cVfbz66ma92fkWe40RAgbZAhpw5hEvjLiXIHkSgLZAge5D1sAW5ji3avYhnf3q22NhriD2Eh85/6KS+xyVVeXI1xuyi+BBJVbrD+fyuj9ftBQqAWP+Go1TVK0yg5c32lKAg7EFB2KOiAKh/7z0ENYur0CzRtC++8CqhFzIFBZi8PNI+/4JDzz9fLDHnBkDGbQPofM0IKCjAFDjAUYDJL7CeCxxQkE/m8hUkJc7AlneifznPDt9dEMB5/W7h/AbnWUncGGuSkAGM4fiva0j75FMryRe5btE5sLN5MNed8Q/Ob3g+iGAABw4cQNbqNWR8/AkUuS7XDvO7wB/xNuwBQVzT7jrOb9wZYxOMXQDrOX/lahzvzoIif7jkBEBiX2FFBxsBgcHccc4/6RHfB7HbEZsgCAULFpM38d+QfeL7kxMIb/5dWN7RDkCwPZjHOj/G3+Mvc03CsoudY/MXkDz+2WI/k5xAePcyYXlHK2V7mhhUcrbwocE9WRP8BZRIcOO6jfN6UlG3Jt0qNFv4qjZXYbfZK302uU5oOnF9ILDP+bKpMcbrkQsRaQNsBWYaYzzdN+uiE5qUKl9Fb984mds+0r74gt0vvUDA4VSS6sDX/etyyfBR5f7iLXzPvAP7XbOFt1/Y1G8zfv15bcnvz77BPXkh6kevEs3JXFtSbbmP+bSfLSwisVgtywPGmDQ35/8BzAZeMcY86qGOesaY5BLHbMAHWBOhbjTGfFxerJpclVKqdqiVs4VFZCBwjvNlG+ex0c7XqcaY14oUvx9rbPd2YIab6rzpEn5HROoAK7C6gmOB64ALgHnAJ75/CqWUUrVNjU6uWIltaIljzzqfd2MtYVguEYkD+gMrjDGbyig6H2u5xBFAXSAH2ADcB7zp5tYdpZRSp6Fa0y1ck2i3sFJK1Q6euoVr9K44SimlVHWkyVUppZTyM02uSimllJ9pclVKKaX8TJOrUkop5WeaXJVSSik/0+SqlFJK+ZkmV6WUUsrPfF6hybnk4LlAHBDopogxxtzh5rhSSil1WvA6uYpIC+BL4EzK3iLOcGKdXqWUUuq040vL9d9AR+B/QCLW9mz5lRGUUkopVZP5klz7AN8YY+6srGCUUkqp2sCXCU15wO+VFYhSSilVW/iSXJcDZ1VWIEoppVRt4UtyHQtcKiI3VVYwSimlVG3g9ZirMeY3EekLzBeRu4BfgTT3Rc2zbo4rpZRSpwVfbsWJAiYCdYGezoc7BtDkqpRS6rTly2zhqUAvYBHwHrAfvRVHKaWUKsWX5HolsMIY07+yglFKKaVqA18mNIUCKyorEKWUUqq28CW5/ga0qqxAlFJKqdrCl+T6LDBQRC6prGCUUkqp2sCXMdfGWAv3fy8iHwBrcH8rDsaYRD/EppRSStVIviTXGVi32QgwxPkwJcqI85gmV6WUUqctX5Lr7ZUWhVJKKVWL+LJCU0JlBqKUUkrVFr5MaFJKKaWUF3zpFgZARMKAa4HzgGisSU2/AnONMcf8Gp1SqlKlpaWRlJREbm5uVYeiVLVht9uJjIykbt26BAcHV6gOn5KriFwBJGCtLyxFThlgqojcboz5skKR+EhEmmJNqrocaAfUAXYBXwGTjDHJPtR1EfA8cBHWZ1kBPGmMWeumbDDwNHAb0AT4C5gOTDbG5FX8Eyl1amVnZ3Po0CHi4uIIDQ1FRMq/SKlazhhDXl4e6enp7Nmzh+bNm1cowfqycP/5wBzADrwPfA8cwLpFpw9wM/CJiFxsjFnjcyS+GwiMB+YDLwEZwIXASOBGEbnQGHOwvEpEpCuwBNiHta0ewP3AMhHpbowpuUH8R8Ag4H/ASqAb1j3AbYBhJ/OBlDqVjhw5Qv369QkLC6vqUJSqNkSEoKAgYmNjATh69CiNGzf2uR5fWq5PY7XqehhjfipxboaIvI6VpEYB1/kcie+WAS1KJNB3RORn4B3gMeejPP8GcoFLjTH7AETkY2AT8DLgWkvZ2XIfBLxijHnUefhdEUkFHhGRt40xukSkqhGys7Np1KhRVYehVLVVp04ddu3aVaHk6suEph7AbDeJFQBjzM/AJ85ylc4Ys8FDy/Qj5/NZ5dUhIm2ALlifa1+RuvcBs4F+IlL0t88tzudpJaoqfH1r+ZErVT3k5+cTEODztAulThuBgYEUFBRU6FpfkmsUsLecMnuwxj6rUpzz+ZAXZbs4n1e6OfcT1rjyBSXK7zPGFPs+OF/vL1KfUjWCjrMq5dnJ/P/wJbnuxxrTLEtnrHHYqjTB+ezNfblNnM/73JwrPNa0RHl3ZQvLN/VwTiml1GnElz6hr4C7ReRJ4CVjjKutLCI24GGgH/CmLwGISDTWJCRv/dsYc9RDXY8C1wNvG2O+96KuwpkcOW7OZZcoU/i1u7KF5T3ODBGREcAIgObNm3sRmlJKqZrK111xDmLdsrJNRBJFZLKIJABbgRed55/zMYZoYJwPj7ruKhGRO7FmDc/Hmu3rjePOZ3fzrENKlCn82tOc7JASZYsxxrxtjOlsjOlcv359L8NTSlXEnXfeiYjwyCOPlDo3fvx4n7v7jh07xm233UaDBg0QEUaOHOmnSFVt5cvyhwdF5GLgLeBvQIsSRb4F7jbG+NQtbIzZRfF7Zn0mIsOBt4GFwHU+3G+63/nsrju38FjRbuD9HsoWlvfUZayUOkWysrKYPXs2AO+//z4vvvjiSU/cev3115k1axb/+9//aNeuXYVmj6rTi0//4pyJ8DLnAg7nYU1ySgN+Kzrb9lQSkduxbr1ZBFxtjPHUbevOL87nbsC7Jc51xbr1aE2J8oNFpFnRSU0i0gxrPPZzH8NXqlb57Ld9vPTNZvanZtEkOpTHLzuDq887tVMR5s6dS3p6OldccQVfffUVCxYs4MorrzypOjdt2kSTJk0YMmSIn6JUtV2F/pxzJtIqb6WJyDCspLgYGGSMyS6jbCwQCxwwxqQBGGO2ichq4HoRGWOM2e8s2wRr7Pb7Erf7zAIGY40RP1rk+Ejn8/t++FhKVZn4J+f7ra59qVmM/GgtIz9aW+E6dk0a4PM1CQkJxMTEMGPGDFq0aEFiYuJJJdeiXciFXy9evJhevXpx5MgRxo0bxxdffMHhw4dp0KABvXr14t1333Wt6rNu3TrGjx/P0qVLOX78OM2bN2fYsGE89dRTFY5JVX++rNBUAIw3xjxbRpmngQnGmEq/eU5ErgL+C6Rj3dt6XYlxlExjzGdFXt+PNWZ7O9betIUewkrOy0TkP85jD2CNRxdNoBhj5ovIl1gLRkRxYoWmO4CZxpgf/fLhlFIVsn//fhYtWsSIESOoX78+V199NXPmzCElJYWYmJgK1bly5UrGjx/PunXrmDt3LgBnnnkmKSkpdO/enaNHjzJ69Gg6derE4cOHmTdvHrm5uQQHB7Nq1Sp69epFmzZtmDp1KnFxcWzdupX169f782OrasiXJCh4NzZ6qm6cOx8rAUZjjbeWtBv4rLxKjDErRKQX1kSs5zixtvD1xph1bi65HhiNtWDEbZxYNnGSj/Erpfzsvffew+FwuLpvhw4dyqxZs/joo4+4++67K1Rn165diY2NJTg4mK5du7qOjx07lh07drB69WrOO+881/Gbb77Z9fVjjz1GvXr1+Omnn1zLTPbp06dCcaiaxd9bzsVw4haWSmWMGW+MkTIe8R7Kz3BT10pjTF9jTIQxJtIYc5kx5lcP75ttjBltjIk3xgQbY1oZY57VRfuVqnqJiYm0bduWbt26AdCvXz+aNGlCYmKi399r4cKFdOnSpVhiLer48eMsX76cwYMH6/rNp6EyW64icmmJQ/FujoG1mH9zrPHIzX6KTSl1ilVkjLPQZ7/t46k5v5OVd2K5uNBAOxOvPfuUTGr65Zdf2LhxI//6179ITU11Hb/22mt57bXX2LJlC+3atfPb+yUnJ3POOed4PJ+SkoLD4SAuLs5jGVV7ldctvASrmxTn81Dnwx0BHJQYp1RKnR4KE2hVzRZOSLAWZZs8eTKTJ08udT4xMZHnnvP1NnzPYmNj2bfP87zOmJgYbDZbmWVU7VVecn0GK6kK1rjiEuAHN+UKgGRgsTHmT38GqJSqOa4+r+kpv/UGIDc3lw8//JCLLrqISZNKT394+OGHee+993j2WY/zMX3Wv39/nnvuOdatW+e2BRsWFsYll1zCzJkzGTt2LKGhoX57b1X9lZlcjTHjC78WkaHAZ8aYf1d2UEop5Ysvv/yS5ORkXn75ZXr16lXq/F133cU999zDkiVL/PaeDz/8MB988AH9+vVj9OjRnH322SQlJTFv3jzefPNNIiMjmTJlCj179qRbt248+uijxMXFsWPHDtauXct//vOf8t9E1VheT2gyxrTUxKqUqo4SEhKIjIzk+uuvd3v+5ptvJjQ01NV17A/R0dEsX76ca665hkmTJnH55Zfz6KOPEhAQQFBQEABdunRh+fLlNGvWjAceeIArrriCl156ScdhTwNijCm/lPKrzp07m9WrV1d1GOo0t2nTJjp06FDVYShVrZX3/0RE1hhjOpc87tNiD2Kt0vAP4DKstXTdLWJvjDF9falXKaWUqk18WaEpGGvbuV5YE5wKJzoVMkWOK6VUtedwOHA4HB7Piwh2u/0URqRqC18WkfgX0BtrFaP6WIl0PNaC9bcAe4EPgSD/hqiUUpVj+PDhBAYGenz07audcKpifOkWvh741RgzDk4sYO1c2P5DEVkFrMVaxP5lv0aplFKVYPz48dx/v+ftnyMjI09hNKo28SW5tsba2q2QAQJdL4zZISLzgWFoclVK1QDx8fHEx8dXdRiqFvKlWziP4usGZ2B1Dxe1G2h1skEppZRSNZkvyfUvrBnChbZgbbdW1HnA0ZMNSimllKrJfEmuy4HuRV5/BpwtIv8VkQEi8hLQD2uJRKWUUuq05cuY6wdAMxGJN8bsAqYBg7A2Hx+GNXt4G/Ckf0NUSimlahavk6sxZglFWqXGmOMicjFWgm0D7AK+MMYc92+ISimlVM1S3n6u9YwxyZ7OG2PygU/9HpVSSilVg5U35npIRL4XkQdEpPkpiUgppU7SnXfeiYjwyCOPlDo3fvx413363oqPj+fWW2/1V3jqNFBecn0LaAu8CuwUkV9E5CkR0dW+lVLVUlZWFrNnzwbg/fffJz8/v4ojUqejMpOrMeY+Y0wzoCswBagDPA/8ISJ/isjzItLlFMSplKoJ1n8MU8+C8dHW8/qPT3kIc+fOJT09nSuuuILDhw+zYMGCUx6DUl5NaDLGrAJWAf8SkTOBa4FrgKeAJ0VkPzAXmAMsNcZ4XglbKVV9jY/yX11pe2HOP61HheNJ8/mShIQEYmJimDFjBi1atCAxMZErr7yy4jEU8c477zB58mT++usvzjzzTF5++WV69+5drMwPP/zAc889x6pVq8jPz6dNmzY8+OCD3HHHHcXqeeONN9i0aRMhISF06tSJiRMn0r1795JvqWooX+5zBcAYs9EY85wx5gIgHngU2A7cA3wHHBaR/4nIQL9GqpRS5di/fz+LFi3ixhtvpH79+lx99dV8/vnnpKSknHTdP/zwA6+88grPP/88H374IcHBwfz9739n8+bNrjLz5s2jb9++5Obm8tZbbzFv3jyGDx/O7t27XWUee+wxRowYwfnnn8/HH3/MzJkzufTSS9mzZ89Jx6iqD5/2cy3JGLMH637XaSISC1yN1aK9GRgK6F5NSqlT5r333sPhcDBkyBAAhg4dyqxZs/joo4+4++67T6ruQ4cOsXz5cpo3t+Z29u3blxYtWvDcc8/x3nvvYYzhoYce4txzz2Xx4sXYbFbbpV+/fq46tm3bxtSpU3n44Yd55ZVXXMcHDBhwUrGp6qfMlquIdPK2ImNMkjHmXWPMAKw1h28+2eBU2Y79dpgDk1bx15PLODBpFcd+O1zVISlVpRITE2nbti3dulkrs/br148mTZqQmJh40nV37drVlVjB2jFnwIABrFy5EoDNmzeze/du7rzzTldiLWnRokU4HA5GjBhx0vGo6q28luta51ZybwMfertAhDEmEzj1MxlOIxk/7Sfts+2u1wWpOaR8soWCjBwiuzdFAnzu8VenSOaag6R/sxtHei62yECirmhF+HkNqjosSwXGOF3WfwxfPAh5WSeOBYbCwH9DpxtOPrZy/PLLL2zcuJF//etfpKamuo5fe+21vPbaa2zZsoV27dpVuP6GDRu6PbZv3z4AkpOtJQHi4uI81uFNGVU7lJdctwIXAl2AqSLyAfCOMebXSo9MlSljkZvxmQJD+le7SP96F/aYEALqhRBQL5SA2FDy07LJWpuEIyMXe3QwdS6Lrz6/0GuBY78dJv2bXRSk5mCPCiKsa2OCGoZTkJZDfmoOBSnZFKTmkHf4OCa7wHWdIyOP1DlbAWr+z6MwgX73DKT9BVFx0HfsKUmsYE1kApg8eTKTJ08udT4xMZHnnnuuwvUfOnTI7bGmTa39TGJjYwFcydadomXOOOOMCseiqj8xxpRdQORS4J/AdUAI1j6uv2K1Zmc5W6nKB507dzarV68+qTr+enLZyQUhENA4nOAWdbBHBRMQHYw9ynpk70glY9EeK1Gcxom4WMKMDiayb3NCWkZRkJFrPdKt55xdaeTtybD+Z1SQPTqYxk9e6L/gvbBp0yY6dKgdt6zn5ubSpEkT2rRpw6RJk0qdf/jhhzl69Ci7du1iwoQJTJgwgfJ+9xUVHx/P/v372b59O82aNQMgIyODFi1aMGDAANeYa6tWrYiNjWXVqlVuF6rYvn077dq1Y+TIkbz8sm57XROU9/9ERNYYYzqXPF7uhCZjzFJgqYjcD9wG3AlcALwJvCwiH2K1Zn+paPDKdxJsx+QUlF/QEwP5+4+Rv/9YmcUKUnNI+Xgzx389RHB8FLbwQGzhgdjDA7FFBJK9I5XMJX/VmERcNGHaooKI6N6E4BZ1cBzPdz7ycBzPJ2dPGrk7010JsyA1h9RPt1ZaXAWpOZVW9+ngyy+/JDk5mZdffplevXqVOn/XXXdxzz33sGTJkgq/R8OGDenfvz/jx48nODiYyZMnc+zYMcaMGQOAiDBt2jSuvfZa+vTpw9133039+vXZtGkThw8fZsKECbRu3do1mSkjI4OrrroKu93OqlWraN++PTfeeGOF41PViy8L96cBrwGviUhnYARwI1ayvUNE1mO1Zt83xqRXRrDqhKiBrUj9bBvkF/nrW5xJN/skkq47BnK2ppKzNbXMYgWpOaR8tJm0hbsIjAlBgu1IsB1bkPWcl5xF7o40THYBEhpAaMd6BMdHgV0QG2ATxCZgE3J2pnF8zWEcx/KwhQcSel59QuKjMA4DDoMpcD47DDm708nedBSTlY8E2wlqHok9KhiTW4DJdeDIKcDkFZCfloPJyHPF60jLJf3rXf79XlWQPTq4qkOo0RISEoiMjOT66693e/7mm2/mkUceISEhgfj4+Aq9R8+ePenVqxejRo1y3ef69ddfFxvHHTRoEN9++y3PPvus677W1q1bM3LkSFeZKVOm0KZNG/7v//6PhIQEwsPD6dSpE/37969QXKp6KrdbuMyLRcKwZgXfCVyE9Xf+cWNMpH/CK/O9mwJDgMuBdlirR+0CvgImlbXhQJE6QrBa41cC5wANgQPAz8AzxphNJcrHAzs9VLfBGHOWN7H7o1sYSndbFrYaHbkFFBzNJj8pi/zkLNK/24PJ1XU9TrkAIezcBlaXe3QI9uhgcg9kkrFwNybvxM9DAm1EX9v2lLf4a1O3sFKVpdK6hcvinD38X2erdQrQAwg7mTp9MBAYD8wHXgIysCZfjQRuFJELjTEHy6kjHqu1/SPwX2A/0AprQYxrReRyY8xiN9cVrkZVVGpFPsTJCD+vgdtfyLYgO7ZG4QQ2Crde1wkmdc7WYr/QCRDCuzQiICaEgrQcClJzyE/PJe+vkxs7rPUEguIisUUGYa8ThD0yiPzUbI7/ehgKTnzjPCXMkDbR2COC3P5RpJSqPSqcXEUkCrgVa7LT2VibpWcCH/ontHItA1qUSKDviMjPwDvAY85HWY4A5xlj1hY9KCLvA79hJe1Sf5EA640xMysa+KlW+Ivbm1/ox347XDoR24XQs+oREB1CwbE8HM5H7l8ZUBsaxHYhpE00trBAbGEB2MICyUvOImvdEa8SJkBwq2ivE6anP4rUqedwOHA4PP8jFhHsdl0LR/nO5+TqnD18JydmDwuwBiuhfXCqZg8bYzZ4OPWRM5Zyu2idXceluo+NMRtF5I+y6nB2Kdtqyubw3v5CP+lEHCBE9oojOD4Kk+PAkVuAySkgbcFOt2PBEmgjtGO9E2OpDsjekgL5bn7hBdoIbV+32Nhs1u9H3HZ5S2gAMYNaI0Enxn2zt6eQvmhvsbrLSpjH2sZowqzlhg8f7rqFx52ePXue1CQodfryKrmKSH1gGHAH1hZ0gtUN+zbwtjHmt8oKsAIK784ufVOal0TEBjQuo45HgbFWUfkLmA48b4ypFVM+KyMRS7C9VCL2lNjcJW2PZdtEuy97VWvCzi1eNqhZJPaoEE2YymX8+PHcf//9Hs9HRlb69BFVS5WZXEXkMqxu34HOsoK1O45PKzadYhOcz57/HC3fPVjJ9dkSxx3A98BnwG6sZR5vAMYA3ZxjtG6n6orICKwZ1sWWUKvpKiMRV1ZZX+JVp4f4+PgKzx5WqixlzhYWkcLmQBowE6uV+rtfAxCJxpqE5K1/G2OOeqjrUayJVW8bY+6qYDzdsRLoZuAiY0y2F9e8jfVHyK3GmPfLK++v2cJKnQydLaxU+SprtvBPwFvAR94kmQqKBsb5UH4mUCq5isidWBOQ5gOe+3nKICIXOK/fD1zhw2d+Hiu5DgDKTa5KKaVqtzKTqzGm0nfuNcbswupurjARGY7VVb0QuM4Yk1fOJe7qOB/4FquV3tsY43mB0NL2AgVArK/vq5RSqvapyGzhTsAtQAcg3BjTz3k8Hus+02+NMSe/M7H38dyONTt4EXB1RSYVich5WIk1Ayux7i7nkpJaYe1dW+FJVEoppWoPn5KriDwDjOLEPrBFB2xtwCys8dP/+CM4L+IZBrwLLAYGldWN69zMPRY44FzKsfD4eViJ+RhWYvW0AhMiUq/kyk/OmcWFW218UcGPopRSqhbxOrmKyE3AaOAb4F9Y6wo/WXjeGLNDRFYDV3EKkquIXIW1qlI61r2t15XYhSLTGPNZkdf3Y43t3g7McNbRAqvFGgP8G+junNBU1FxjTOHq9u+ISB1gBVZXcCzW/b4XAPOAT/z08ZRSStVgvuyo/SCwDauFuB7IdVNmE9Z9sKfC+VjxR2ONt75X4jHNizpaAvWwxnzHu6njPazbbQrNx/qDZATwOlYrPh+4D7jWGFMb1itSqsaaMWMGIsK2bdvcnh82bJjPt96ICKNHj/ZDdOp04ku38NnADGOMu6RaaD/W4veVzhgzHishVri8MWYJPkymMsb8F6u1rJSqgcaMGcNDDz1U1WGo04AvyVUofyXZhkBl3bKjlFInpXXr1lUdgjpN+NItvBXweGuOiNiBSwBPa/4qpWq5+Tvm0/+T/nRK6ET/T/ozf8f8qg6pmIp0CwMYY3j++eeJi4sjNDSUSy+9lLVr15YqN3fuXC6++GIiIiKoU6cOF154IZ9//rnrfH5+PpMnT+bMM88kJCSE+vXrc/nll/Pnn3+exKdS1ZEvLdePgedE5FFjzMtuzj8FtAFe9UtkSqlT7uyEs/1W14FjB3hy2ZM8uezJ8gt78PtQvy4IV2GJiYk0b96c1157jZycHMaOHUvfvn3ZunUrdevWBeA///kPDz74IFdffTUJCQlERETw66+/smvXLlc9N910E5999hkjR46kX79+ZGdns3TpUg4cOED79u2r6NOpyuBLcp0GXA+8KCI34LwNR0QK93HtjLWi09t+jlEppapUVlYWCxcuJDzc2iP5oosuom3btkydOpVnn32W9PR0Ro0axTXXXMOcOSe2er7ssstcX3///fd8+umnvPrqqzz44IOu41dfffUp+xzq1PE6uRpjskSkN1bLdDDWogkAj2CNxc4E7jfG5Ps9SqWUqkJXXHGFK7GCteB/165dWblyJQArVqwgMzOTESNGeKxj4cKFiAj//Oc/Kz1eVfV8WkTCufjCMBF5BOiCdRtLGrDKGHOkEuJTSqkq17Bh6ZsgGjZsyIYN1hST5GRrbZm4uLhS5QolJydTt25dQkNDKydIVa34vPwhgHNXmm/8HItSqoqdzBjn/B3zGb9iPNkFJ24YCLGHML77eAa0GuCP8KrMoUOlVzY9dOgQTZs2BSA21lpWfN++fZx11llu64iNjeXo0aNkZWVpgj0N+DJbWCmlPBrQagDju4+ncXhjBKFxeONakVgBvvrqK44dO+Z6vWvXLn766Se6desGQPfu3YmIiODttz1POenfvz/GGN59991Kj1dVvQq1XJVSyp0BrQZUi2S6YMECGjVqVOxYVFRUhesLDQ2lf//+PP744+Tk5DBu3Djq1KnDww8/DEBkZCQTJ07kgQce4LrrrmPw4MFERkaydu1aQkJCeOCBB+jduzfXXXcdjzzyCHv37qVPnz7k5eWxdOlSBgwYQK9evU7mI6tqRpOrUqrWeeCBB0od69ixI507l9rT2itDhgwhPDyc+++/n6SkJLp06cKHH37oug0H4P7776dRo0a89NJLDB48mMDAQDp06MCYMWNcZT788EMmT55MQkIC06ZNIyoqii5dunDnnXdWKC5VfYkxpvxSyq86d+5sVq9eXdVhqNPcpk2b6NChQ1WHoVS1Vt7/ExFZY4wp9VebjrkqpZRSfqbdwkqp01JBQQFl9dzZbDZsNm1/qIrRfzlKqdNS3759CQwM9PgYPnx4VYeoajC/tVxFpDmQb4zZ7686lVKqsrz11ltkZGR4PF9476pSFeHPbuFdgBGRH4EXjDG6yIRSqto644wzqjoEVYv5s1t4D/AXcDHwlYis8WPdSimlVI3ht5arMSYeQESigUudD6WUUuq04/fZwsaYVOBz50MppZQ67ehsYaWUUsrPNLkqpZRSfuZTchWRC0XkUxHZLiI5IlLg5qGbpSullDqteZ1cReQfwArgGkCAVcBSN49l/g9TAaxfv56pU6cyfvx4pk6dyvr166s6JKWqlRkzZiAibNu2ze35YcOGER8f71OdBw8e5KqrrqJu3bqICNOmTTv5QFWt58uEpvHAMWCAMebHyglHebJ+/Xo+//xz8vOtjoG0tDQ+//xzCgoKOO+886o4OlWW9evX891335GWlkadOnXo168fnTp1quqwTktjxozhoYce8umaZ555hh9++IEZM2bQuHFjn5OzOj35klzbADM0sVaN7777zpVYC+Xn5zNv3jxWrFhBo0aNij3Cw8OrKFKVm5tLcnIySUlJbNiwgc2bN7vWsE1PT+eLL74A0ARbBVq3bu3zNZs2beKcc87hmmuuqYSIVG3lS3I9CORVViCqbGlpaR7PHTlyhCNHjvD777+7jgUHB1NQUEB+fj6hoaFcdNFFXHTRRYSGhp6KcGu99evX8+2335KRkUFoaChNmjRBREhKSiI1NbXMa/Py8vjuu+9qZXJN++ILDk+dRv6BAwQ0bkyDh0cSNXBgVYflMmzYMJYsWcKuXbvKLbtr1y5atmzpei0iAOzcuZP4+Hh27tzJ2LFj+fbbb0lJSaFp06YMHDiQV1991XXNDz/8wHPPPceqVavIz8+nTZs2PPjgg9xxxx1+/2yqevEluc4GBopIkDEmt7ICUu5FRUWVmWBLysnJcX2dlZXFkiVLWLJkCWFhYdStW5d69eq5HkePHuWXX34hPT2dqKgo+vbtWyt/8ZenaPdtVFQUPXr0oEmTJqSkpJCamkpqaiopKSkcPHiQzMxM13VZWVls377dp/fy5Wd5Km1q77/9XfP372f/40+w//EnKlxHhz83+S0eXzVu3JiVK1dy1113Ybfb+b//+z/X8Z07d3LhhRcSFhbGhAkTaNu2LXv37mXhwoWu6+fNm8d1113HxRdfzFtvvUVsbCwbNmxg9+7dVfWR1CnkS3IdB/QAPhaRh4wx+i/kFOrbt2+xMdeKOn78OMePH+evv/5yez4tLY25c+eydu1aWrVqRWRkJHXq1CEyMpLIyEg2b95cLAFV90RcMmH27duXDh06kJmZWeyxffv2Yt23aWlpfPnll5UWV1RUVKXVrfwjODiYrl27EhkZSUBAAF27dnWdGzduHFlZWaxbt44mTZq4jg8dOhQAYwwPPfQQ5557LosXL3ZtXdevX79T+yFUlfE6uRpjjovICGAxsENEUgF3f34bY4zvAxuqTIUJrGSiaNu2LYcOHeLgwYPFHifDGMOOHTvYsWNHmeUKE/Hvv/9Os2bNCAkJcT1CQ0PZs2cPP/30ExkZGeUmYndJ0FPZdevW8d1335Genk5kZCRdunShWbNm5OTkkJ2d7Xreu3cv27dvL5Yw58yZc1LfG2/FxMQQGxuLMYadO3dSUFDgOhcYGEjfvn1PSRyqcixcuJArr7yyWGItavPmzezevZsnn3xS94Q9TXmdXEXkEmABEAbkA8exbskpVdQ/oZUbT1NgCHA50A6og7Uzz1fAJGNMspf1zACGejh9vTHmkxLlg4GngduAJlibFUwHJhtjKnVMulOnTm4TTnx8fLEZjFOnTj1l3Y7GGLZu3crWrVvLLFeY2ObMmUNAQAB2ux273Y7NZqOgoICsrKxSZefPn09AQAAFBQUUFBTgcDiKJSmAjIwMvv/++0r5bL4KCwtj6NCh1K1bl8DAQNdxX/5wUDVDcnIycXFxZZ4HyiyjajdfuoUnA4FYCe0DY4yjckLy2kCs24PmAy8BGcCFwEjgRhG50BjjSxPuNjfHVrk59hEwCPgfsBLoBjyLNZt6mA/vV2n69u3LF198QV7eiVwfGBjIlVdeSfPmzUlOTiY5OZmjR4+yZs2ak+5q9lV+fr5X75mTk1Ns7Lgq2Gw2WrduTXR0NNHR0cTExHDkyBGWLVtW7DMEBgZy+eWX07Bhw1J1ePqjqDo6mTHOtC++4MCYsZjsbNcxCQmh8bPPVKtJTf4QGxvLvn37yjwPlFlG1W6+JNdzgFnGmJmVFYyPlgEtSiTQd0TkZ+Ad4DHnwyvefC4RuQIrsb5ijHnUefhdZxf5IyLytjFmhbfvWVk8dSEXHo+JiaFNmzYANG3atFQittvtdOjQgYiICNLT08nIyCA9Pb3aTsKpiIiICCIjI4mIiCAiIoLjx4+zdetWHI4TfzMGBgYycOBAt4kxJiZGW6MlFCbQ6jxb2F/69+/PnDlzOHDgAI0bNy51vl27dsTHx/Puu+8yYsQI10xjdfrwJblmAkcrKxBfGWM2eDj1EVZyPcuX+sT61x8JZJbRKr/F+TytxPFpwCPArVirWFU5b1tL5SXiotatW8cXX3xRrMVmt9s544wziImJITs72/XYtWtXqS7cymS322nVqhUhISEEBwcTEhLC0aNH2bx5c7E4AgICGDhwIOecc06pOnzpvq1JrdFTKWrgwGqRTBcsWECjRo2KHfPnJLIJEyYwf/58unfvzqhRo2jTpg379u1jwYIFzJw507WS07XXXkufPn24++67qV+/Pps2beLw4cNMmDDBb7Go6smX5PoV0LOyAvGjwkGOQz5el4aVXHNFZCkw2hjzc4kyXYB9xpi9RQ8aY/aKyH7n+RrH20RxzjnnICJeJaD169e77ZoeMGAAZ555ZrFx1A0bNpRaJCMgIIB+/frRsWNH19is3W5nw4YNzJ8/v1S9nlqYmjBPTw888ECpYx07dqRz585+qT8+Pp6ff/6Z0aNH89RTT5GRkUHTpk0ZNGiQq8ygQYP49ttvefbZZ133tbZu3ZqRI0f6JQZVvUnhTMpyC4o0AJYDC4EnjDHHKjOwihKRj4Hrgb7GmHJnuojIJCAIWIO1vOM5WOO24cAVxphFRcpmABuNMRe5qWcVEGeMcTt90DnTegRA8+bNLzgd7nXzJbGVV3bX7rfZu3c6ublHsNli2bXzXHbvbqRdsidh06ZNdOjgv/talaqNyvt/IiJrjDGl/mrzJbl+D0RjJZ/jwBY834rj9X0GIhKNlcy89W9jjNvuaRF5FJgCvG2MucuHOkvW0xZYC+w3xrQtcrwAWG6MudTNNUuBTsaY6PLq79y5s1m9enVFwzvtHDg4j40bHwdOdO+KBBAffz/xLe7BZvOlA0YV0uSqVPkqmlx9+a3Uq8jX4YCn1eK9y9YnRGMtUOGtmbgZ+xWRO7FmDc8H7vcxhmKMMVudLeBhItLOGLPFeeo4EOzhshDneeVnO7ZPoWhiBTAmn507p7Fnz7tER51PdPSFREd3oU6ds7HZPP2IlDqhoKCAshoXNptN71FVFebLIhKV8q/MGLOLk7w3VkSGA29jdVlf56f7TXc5n2OxWukA+4GmHso3BXTefSXIzjng8VxBQSbJR5eSfHQpADZbMHXqnEtAQBRpaWvIyztKSHBjWrV+jMaNBnmsR1UfuXmp5OYcxOHIw2YLJCi4EUGB0X5/n759+/LDDz94PD906FBmzJjh9/dVp4ca358mIrdjzQ5eBFxtjPHXjZGF3cFFJ0b9AgwWkWZFJzWJSDOsBSU+99N7qyKCguqTm3vYq7IORw6pqcXnoWXn7GfjxsdJSvqeJo3/QUREe4KD61dGqKoCjHHgcORhTB55eank5aVS2AHmcOSRnW0t1envBPvWW2+RkZHh8XzhvapKVUSNTq4iMgx4F2tJxkHGmOwyysZitUIPGGPSnMfCgYKS14nIeViTojYZY4quyD4LGIw1RvxokeMjnc/vn8THUR60afMkf/75NA5HVpGjNmy2UBwOb+fVFXD48JccPmytFxwYWI/IiPZEFHlkZG5i545pZOcc0NaunxhjyMs7Sk7OYYzJR8SO3R6GiA2HIw+HIxdjyllQxBhycw76PbmeccYZfq1PqaJ8Tq4ichNwJ9aYaxSQjjXT9r/GmA/9G16ZcVwF/Nf5/h8B15W4UTvTGPNZkdf3Y43t3g7McB5rC3wtIp8BWzkxW3g41iDfiKIVGmPmi8iXWAtGRHFihaY7gJm6123lKExwO7ZPKZb4GjW8iuPHt5OSuorU1F9ITV1FTo53i3Ll5SVzNGU5R1OWuz2fnbOfTZv+RUbGBpo0vo6QkKYEBET47TPVZEW7bUUCCAyMwWYPxjjyMSYPh8nHOPIwJh+Ho/gGWsYUkJ/vubXoicOhu12qmsWXtYUFSMRaSEGwks8RrNZgX6CPiFxljLnFcy1+dT5gw5oQ9bab87uBz8qp4yBWd3JvrBZpKHAAK1lPNMb86eaa64HRWAtG3IY1zjoWmOTrB1Dea9xokNtWZHh4G8LD2xDX9BaMMWRn72XVL9eQn5960u9pTB579/6XvXv/C0BgYAwhIU0ICYkjNCSO3NyjJB/9gby8FIKDGtCy5UM0aXJDjVqNp1iitAUSFFgPuz0MYwowJt/5KHA9FziyMUUSnTH55OYeqfQ4bbbA8gspVY34civO3cD/YbVS/wX8YIwpEBE71uISk4ALgPuMMW9WUry1gt6KU7kOHJxXqhtZJJA6dc7D4TjOsWNbcTgqa81iITCwLoGBMQQGRhEYGE1gQBQBgdFkZ+0nJXUl+flpBAbG0KjRtdSrezEigdhsQYgEYLMFOl9bz0lJ37N7z1vk5BwiOLgBzZvdSb16vTDG2TIs2ko0+SQnL+PgwTnk5R0lICCKunV7Eh7WgvyCYxTkZ5JfkOl6ttvupXXr6jGuaH32IMBQUJBNsZsORAgJiauUSU1KledU3Oe6CquV2tEYk+XmfCjwB3DUGFMjVyo6VTS5Vr4DB+eV6kYubPk6HPlkZe0mM3MTmZl/kpm5maTkJUBV70VxatWNeYvWrUtvNHAqiNgJDW1e5A+JEzcjnKrZwkp541Tc53om8Ja7xApgjMlyjl1WePEGpfzFUzcygM0WQHh4a8LDW9Ow4ZVAYWt3FA5H0bltdsLCWmFMDtnZB6jkHQVrNhGCAusWSZYBiARSUHDMupWq6HLdYiM4pInHMeygwGhNpqrG8yW5Gsq/H7XmDDYpVYSnSVOFx40pICfnMNnZ+8jO3sfmLeMqNDGnZhACAiIQsTuTZIDra4cji5zcI1C0x0tshIQ0dZsQ7fZgEJu2RNVpx5fkugm4VkSeLqNb+Gpgo59iU+qUKqu1K2InJKQxISGNgc4YKDWua7OFcka78dSr18N5v2Ya+fnW89ZtL5Cfn16qXpstmKg65+EweRiHc6atsW5Rycr6i5IrUxXGEhbWqkjSC8QmAaRnrCs1OxfAbo+kZcv7CLBHYA+IcD3/tdeAiNeJ0lIHsQX7lCxPZUt0xowZ3H777WzdutW1rWJRw4YNY8mSJezatQuALVu28Prrr7N48WJ27NhBZGQkXbp04dlnn3W7cxLA3r17iY+Px263s3//frf3w4oI48aNY/z48QB88sknzJo1i9WrV3P48GGaN2/Otddey6hRo4iMjPTb5/fFkiVL6N27N99++y39+vUrs2zJz6PK50ty/R/WhKalIvIk1oSmfOeEpkuBiUAL4EX/h6lU9VJeSzc4uPhYptiC3Cbj9u2f95jQ3U3MKusaT+XPOGOC2/IHD2wiJKSxz63KmtxtO2bMGB566CHX64ULF7J48WKGDh3K+eefT2pqKi+++CIXXXQRy5cv54ILLihVR2JiIg6HA4fDwaxZs9zuwFPSlClTaN68OS+88AJxcXH89ttvjB8/nsWLF7NixYpqv8ziypUriYuLK7+gcvElub4F9ABuxlpm0CEiR4G6WLfECPCxzhRWp4uyWrruyoLnZOyPayryHjU5UVZE69ati72+6aabuO+++4rdPtWnTx/i4+N59dVXSUxMLFVHYmIiZ511Funp6SQkJHiVXL/44gvq1z+xKljPnj2pW7cuQ4cOZcmSJfTp0+ckPlXl69q1a1WHUON4/eeSsQzGuh/0e6wdceo6n78HBhtjbqqUKJWqBRo3GsTFFy+jb59tXHzxMq8Ss6/XVOQ9/GnLzwdJGLWc1+/+noRRy9nys3eLepwqw4YNIz4+3vU6Nja21H3JUVFRtGvXjn37Si8VvnLlSrZs2cKQIUO47bbbWLNmDRs2bCj3fYsm1kJdulg3Vbh7n7IcOXKEe++9l2bNmhEcHEyzZs247bbbyMmxbi8r+RkL9erVi169epU6npaWxrBhw4iJiaFOnToMHjyY5OTkYmVEpFSX8Lp167jmmmuoV68eoaGhnHHGGUycONGnz1Kb+bxCkzFmFtYygEqpWub1u8vdAtlrmUdz+Hb6Rr6dXvFpGPe9eepbdEePHuWPP/7g9ttvL3UuISEBm83G4MGDyczM5PnnnycxMZHJkyf7/D6Fmwb4su1fSkoK3bt35+jRo4wePZpOnTpx+PBh5s2bR25uLsHBvu8INXLkSPr168esWbPYunUro0aNYv/+/SxevNjjNatWraJXr160adOGqVOnEhcXx9atW1m/fr3P719b+bJC0xBgrTHG43dPRM4GzjPGlO5LUUqpGuCBBx7AGMPIkSOLHc/JyeGjjz6iX79+NGnSBLC6S2fOnMnEiRN9Gjfdt28fY8eOpV+/fnTuXOoWSY+mTp3Kjh07WL16Needd2LXz5tvvtnrOkrq2LEj06dPB+Dyyy+nbt263HrrrXz33Xf07et+a+7HHnuMevXq8dNPPxEWFgZQ7bu2TzVfRtFnYM0GLstVwPSKBqOUUlVp4sSJfPDBB7z22mulZhvPmzeP1NRUhgwZ4jo2dOhQ9u/fz6JFi7x+j8zMTAYNGkRAQIArqXlr4cKFdOnSpVhiPVk33HBDsdfXX389NpuNlStXui1//Phxli9fzuDBg12JVZXm7ylqdnzfLF0pparcm2++yahRo3juuecYPnx4qfMJCQmEhYXRu3dvUlNTSU1N5bLLLiMwMJCEhASv3iM7O5urrrqKHTt28M033/g8Azc5Odnvs3YbNiw+sz0oKIiYmBiPY8EpKSk4HA6dPVwOf2851w5I8XOdSqlT5GTGOLf8fJDF7/9Jfu6J1ZgCgmz0Htyedhc18kd4lea9997j3nvv5dFHH+Xpp58udf7QoUMsXLiQ/Px8mjZtWur83LlzycjIKPOe1by8PK677jpWrVrFokWLOPvss32OMzY2ttwJUCEhIeTmlr7fOTk5mXr16pU6fujQoWKvc3NzSUlJcfs5AWJiYrDZbD5PxDrdlNlyFZH/FT6ch64ueqzII0FEFgM3ASsqPWqlVLXT7qJG9B7cnoi61qSaiLrBNSKxzp07l9tvv50777yTKVOmuC0zc+ZM8vPzeeONN1i8eHGxx7Rp08jKymL27Nke38PhcDB48GC+++475s2bV+FbW/r378+qVatYt26dxzItWrTg0KFDJCUluY5t376dzZs3uy3/8ccfF3s9e/ZsHA4H3bp1c1s+LCyMSy65hJkzZ5KV5XY1XEX5LddhRb42wLnOhzsG+Bl4+GSDUkrVTO0ualQtkumCBQto1Kh4HFFRUaXKLV26lJtvvplOnToxbNgwfvrpJ9e54OBg19hmYmIiLVu25K677ip1606PHj148cUXSUhIcNudDHDfffcxe/Zsnn76acLDw4u9T1xcnNddrA8//DAffPAB/fr1Y/To0Zx99tkkJSUxb9483nzzTSIjI7n++usZM2YMgwcP5pFHHiEpKYmJEye6XUkKYMOGDdx+++3cdNNNbNmyhaeffpqePXt6nMwE1qIYPXv2pFu3bjz66KPExcWxY8cO1q5dy3/+8x+vPkutZ4zx+MBacakFEI+1ZcgrRY4VfcQB4WXVpY8TjwsuuMAoVdU2btxY1SH43fTp0w3WH/qlHh07djRDhw41LVq0cJUfN26cx/KF5X799VcDmGeeecbj+44aNcqIiNmxY4cxxhjAjBs3znW+RYsWHt+naDlvHDp0yPzzn/80jRo1MoGBgSYuLs4MGTLEZGdnu8rMnTvXdOzY0YSEhJhOnTqZb775xvTs2dP07NnTVWbx4sUGMJ9++qkZOnSoiYqKMhEREebmm282R44cKfae7uL89ddfzZVXXmmioqJMSEiIOeOMM8ykSZN8+iw1QXn/T4DVxs3veV+2nBsHLDbGLK1wJleAbjmnqofyttJSSp2CLeeMMRMqGJtSSil1WqnQbGHnYv2xgNvlQIwxe04mKKWUOt3k5+eXed5ut5ca71XVl0/3uYrI2SIyH8gA9gM73Tx2+DtIpZSq7QIDA8t8eHsvraoefFn+sD0nbrP5FhgIrAMOAedjtWQXA9pqVUopH/3yyy9lnm/ZsuUpikT5gy/dwmOAQKCLMeZ3EXEAc40xz4hIOPBv4AqK376jlFLKC76sMayqP1+6hXsBXxpjfi9yTACMMceAu7BWZ3rWb9EppZRSNZAvyTUW2FrkdT7gWrXZGJOP1S3c3z+hKaWUUjWTL8n1KBBR5HUS0LxEmVyg9DIoSiml1GnEl+S6HWulpkJrgL+JSAMA57jrIKwZw0oppdRpy5cJTQuBJ0Qk3DnG+iYwAPhNRFYAF2Athfio/8NU7mz5+SAr520n82gOEXWD6TaodbVY11UppU53vrRc3wHuAEIBjDHzgZHO19cBDYDJWLOGVSX7c8UBvp2+kcyjOQBkHs1h8ft/suXng1UcmVJKKV+WPzwAfFTi2L9F5HWsyU6HjbcLFauTtmLutlLH8nMd/PDhFmIahxPbLEJXc6mm/lxxgBWfbScrPZfw6GC6X6M9DkrVNj6t0OSOMabAGHPoVCdWEWkqIk+JyA8ickBEjonIBhF5SURK7wjsvo54ETHlPAZ7Wf6Pyvu0pWVl5Lk9npuVz8cv/MKMfy3nu4SNbF19iOxj7suqU+NYWg47fjvC8k+38d6YlXyXuImsdGsz62Op2uPgTzNmzEBE2Lat9B+fAMOGDSM+Pt7tuR9//BERoWHDhm6XIty1axciwowZM1zHZs6cycUXX0z9+vUJDg4mPj6eO++8k7179/rj41RIed+DQu4+j/KfCq0tXE0MBMYD84GXsJZkvBCrq/pGEbnQGFPeb6wjwG0ezr2G1eX9jZtzc4E5JY6lehO0v9jsgqPA898zx9Nz+XPlQf5ceRARqFM/lKyMXHKzCoiICabb1dpa8qei499hdYJodmZdjMNwcEca6UnZZV6bn+tg5bzt+vM4BcaMGcNDDz3k9lzh8oKHDx/m66+/ZuDAgeXWl5ycTN++fXniiSeIjo5m8+bNPPvss3zzzTds3LiRyMhIv8bvT40bN2blypW0bt26qkOplWpycl0GtCiRQN8RkZ+xxocfcz48ck7MmlnyuIh0w7ql6BNjTJKbS9cbY0pddyr1HtyeJR/8SUF++R0GxkDa4SzX68yUHL6dsZFNPx2gfdfGNGpVhzqxodqN7KOCfAcpB4/zx9K/2PjjAYzD+lkcT89l80++tUQLx85ruk3LFrPsw0QykpOIrBdLj5uG0KFH76oOy8VTIsnKymL27Nn06tWLVatWkZCQ4FVyLZmoe/bsSYsWLbj88stZuHAh1113nV/irgzBwcF07dq1qsOotWpscjXGbPBw6iOs5HrWSVR/p/P5XU8FRCQEsBljjp/E+1RY++6NsdnF1VoKjw6mWYcYco7n89efKeTlFJRdgYG/NqXw16YUAEIiAmnUsg4NW0aRl5vPlp8PkZlyes9CLtoaDY8O5oyLGhISEUTyX5kk7csk5cCxMnsPfBFR1+0GU6fcyzde6be6MpKO8NVrL/PVay9XuI5HP/rSb/GA1S28ZMkSdu3aVez4Z599RlpaGvfeey9Nmzblk08+ISUlhZiYGJ/fo149a1QqMDDQp+t27tzJ2LFj+fbbb0lJSaFp06YMHDiQV199FYBevXoBsGTJkmLXxcfH06tXr1Ldu/v37+exxx5j0aJFBAcHc9NNNzFlyhRCQ0MBq1u4ZcuWTJ8+nWHDhrmu++GHH3juuedYtWoV+fn5tGnThgcffJA77rjDp89zuquxybUMcc7nQxW5WEQigBuwNiD41kOxR4GxVnH5C5gOPG+MOaXNj3YXNXKb9AryHRzYlsruDUfZsyGZo/uPlVtXdmYeu35PZtfvycWOZx7NYVHCJvb+eZR2FzUipmEY4dHBtbKVm5dTQHpSFmlHstj26yG2rT7iao0eS83h128qtieFzS7ENoukcasoHMaw8cf9FOQ5XOcDgmx0G6Rdc1UpISGB6OhorrrqKqKionj//ff58MMPueeee7y6vqCggPz8fDZv3swjjzzCmWeeSf/+3i9Wt3PnTi688ELCwsKYMGECbdu2Ze/evSxcuLCiH4lbb72VG264gXvvvZdVq1bxzDPPcOzYsTLHWOfNm8d1113HxRdfzFtvvUVsbCwbNmxg9+7dFY7jdFUbk2vhpu4V3Z/pRqyVqKYYYxwlzjmA74HPgN1AfaxEPAboJiKXG2PKaTJWPnuAjbj2dYlrX5eLr2vDjCeXcyy14nnfOIxr/BYgINhOdINQYhqGkZ/v4MDWVLKP5RMWFcSFV7bkzEuaVLvkaxyGnKx8Ni7fz9pv95CVkUdQiJ26TcIBSEvKdk0y8peg0AAG3NeJBs0jCQiyu443iq+j9ydXI/v372fRokXccccdBAcH069fP5o2bUpCQoLXybVhw4YkJ1t/mHbu3JlFixYREhLidQzjxo0jKyuLdevW0aRJE9fxoUOH+vZhirjiiiuYMmUKAP3790dEGDt2LKNGjaJdu3alyhtjeOihhzj33HNZvHgxNps137Vfv34VjuF05suWc82BXC8mCflERKKxJiF569/GmKMe6noUuB542xjzfQVDuhMriU4vecK5CXzfEof/KyJvA/8EbgLe9xDbCGAEQPPmJVeNrFzdr2nN4vf/JD/3xN8KtgCh2Zl1yc8p4PCujPK7kYvIzykgaW8mSXszix0/npbLkvc3s+SDzUREBxMaGURoZBBhdQIJqxNERko2ezccJftYPqGRgXS4uDHxZ8ViD7RhD3A+nF/vXHeE1V/tIjPF6pI9v39zWpxdj4I8Q0G+o9hjz8ajbP7pINmZeQSF2mnQIpKQ8CCyMnPJysgjKzOP7Mw8Vyu0UG52AQd3pJ/U9zY8OpiQiACO7j9erP6AIBs9b2pHkzbRpa7x1OOgqsbMmTMpKChgyJAhANhsNm699VYmT57M5s2bOeOMM8qt47vvvuP48eNs2rSJiRMn8re//Y0ff/yR6Ohor2JYuHAhV155ZbHEerJuuOGGYq9vuukmRo8ezapVq9wm182bN7N7926efPJJV2JVFedLy3UnVmtwuJ9jiAbG+VB+JtY6x8WIyJ1Ys4bnA/dXJBARORPoCnzjTKTeeh4ruQ7AQ3I1xrwNvA3QuXPnU3rbUuEvck+tJYfDkHLgGAd3pPHjJ1vJzynZYPeRsSZNZaZ4bi1nZeTx64I9/Lqg/G/zsdQcln28lWUfby23bG5WAX/9mepLtD4JCLbR9arW1IuLILZpBCER1rhabVkt62TGODctW8zCt18jP/fEzz0gKJj+I+6vVpOaSkpMTKR58+Z07NiR1NRUAAYNGsTkyZNJTEzk+eefL7eOc845B4Bu3brRu3dvWrduzZtvvsmTTz7pVQzJycnExcWVX9AHDRs2dPt63759HmMA/B7H6cqX5JqKtVi/XxljduHcuq6iRGQ4VuJaCFxnjKnojZ2FI/YeJzJ5sBcowFpMo1oqq7Vkswn1mkZQr2kEgUH20q1cu9AgPhJHviH10HFys6u857tSiE2IrBtMndhQjDEc2JZWbMJSQJCN3re0d/t91NYorgRanWcLl7R69Wo2bLDmRrqbvPTee+/x7LPP+tSSa9myJXXr1i33PtOiYmNjPSa9QiEhIaSnl+5pOXrUbUcehw4domPHjsVeAzRt2tRjDOA5+Srf+JJcfwLOq6xAKkpEbseaHbwIuLqik4pEJBDrntcjwDwfL28F2KngJKrqpLxWrjGG4+m5pB0+zldv/E7O8dI329c0oZGB/ONfnYmICcZmP/FLtLa0Rk+lDj16V+tkWlJCQgIiwieffELdunWLnfvmm2+YNGkSS5YsoU+fPl7XuWHDBpKTk326f7R///7MmTOHAwcO0LhxY7dlWrRowaeffkpubi5BQUEALF26lIyMDLflP/7442Jxf/jhh9hsNi688EK35du1a0d8fDzvvvsuI0aMqHbzJmoaX5LreGCZiNxpjPG1ZVcpRGQYVitzMTDIGOPxbn0RicVqWR4wxqS5KTIIa4LSK55aviJSzxiTXOKYDXjO+fILnz9ENVRWK0xECI8KJjwqmEtvbFeqlRsQZKPHje1o2i6GrIxcjqfnkpWRy4o528jNKt3itQUIdRuHU5DvHEvNc3AsLQfcdJyLDaIbhGErHJ8NEA7vyqAgv3Q3dkh4AH+7oyOhEUGERgYSEhHIjl+PuI33kn+0pU5sqE/fB1W9LViwgEaNiv/soqKK74aZl5fHhx9+SM+ePbn22mtL1XHuuecybdo0EhISPCbXSy65hGuuuYb27dsTEhLC+vXrefnll4mLi+Of//yn1/FOmDCB+fPn0717d0aNGkWbNm3Yt28fCxYsYOZM65b6m266ibfffpvhw4czbNgwdu7cySuvvFLqcxX66quvePzxx+nfvz+rVq1iwoQJDBkyxO14K1j/t6dNm8a1115Lnz59uPvuu6lfvz6bNm3i8OHDTJgwwe11yj1fkuvfgSXAWyJyD7AKOEjpX4PGGPOsf8LzTESuAv4LpGPd23pdib+0Mo0xnxV5fT/W2O7twAw3VXrTJfyOiNQBVmB1BcdibVpwAVZr9xNfP0dNVl4rN6r+iYTlrrs5IMhG78Glu1m3/HzwpMv2uKEdzc8svgpmefGq2uOBBx4odaxjx4507tzZ9frLL78kKSmJ4cPdTyOJjo7m2muv5dNPP+X11193W+aiiy5ixowZ7Nq1C2MMzZs35+abb+bxxx93dbN6Iz4+np9//pnRo0fz1FNPkZGRQdOmTRk0aJCrTO/evXnzzTeZMmUKn376Keeddx4zZ870uFDFzJkzefnll3njjTcICgrin//8p2v2sCeDBg3i22+/5dlnn3Xd19q6dWtGjhzp9WdRFvF2SWAR8XaWizHG2MsvdnJEZDxlT4TabYyJd1P+dmPMjBJ1xWHdWvOTMebiMt7zDqyu4/ZAXSAH2AAkAm+6uXXHrc6dO5vVq1d7U7RW8aWbtbLKqhM2bdpEhw4dqjoMpaq18v6fiMgaY0znUsd9SK49vQ3GGPODt2VPR6drclXViyZXpcpX0eTqy5ZzmjCVUspH7nbYKcput+vkoVpI7xRWSqlKsmvXLgIDA8t8/PCDtltqI5+XPxSRTsAtQAcg3BjTz3k8HmvLt2+NMSn+DFIppWqiJk2a8Msvv5RZxpsVoFTN41NyFZFngFGcaPEWHbC1AbOwljL8jz+CU0qpmiwoKKjYDGV1+vC6W1hEbgJGY+0Ucy4wseh5Y8wOYDVwlR/jU0oppWocX8ZcHwS2YS3WsB5wt4XIJqCtPwJTSimlaipfkuvZWAval7Uv136gYRnnlVJKqVrPl+QqWFuxlaUh4HEJQqWUUup04Ety3Qp093RSROzAJVgrFimllFKnLV+S68fA+c4Nyd15CmgDfHDSUSmllFI1mC/JdRqwDnhRRH7GWsgfEZnifD0Ba1u6t/0dpFJKeWPGjBmIiMe9VIcNG0Z8fHyxY4WL99evX5/Q0FAuuugivvnmG4/vsXfvXux2O0FBQSQlud/iWkQYP368xzouv/xyRITRo0eX+5lOB7t27UJEmDFjhuuYu5+Vt+Lj4xk2bJhfYqsor5OrMSYL6A28B5yPtWCEAI9g7QozE7jcGFPzN/hUStVKY8aMYe7cua7XOTk59OnThwULFvDiiy8yZ84cmjVrxpVXXsmSJUvc1pGYmIjD4SAvL49Zs2b5HMOsWbNYt25dRT/CaaPkz8oXc+fOZcyYMX6OyDc+LSLh3Ad1mIg8AnQB6gFpwCpjzJFKiE8pVYMc++0w6d/soiA1B3t0MHUuiyf8vAZVHZZLyQ3MZ8+eze+//87ixYvp1asXYLUqzznnHJ544glWrVpVqo7ExETOOuss0tPTSUhIcLu9nSepqak8/PDDTJ06lVtuueWkPktt58tm8yWdd955foykYnxe/hDAGHMU8NxvopSqkf56cpnf6ipIzSHlo82kfLS5wnXETerht3jA6mpcsmQJu3btAuCnn34iNDSUnj1PbPolIvTv35+XX36Zffv20bRpU9e5lStXsmXLFl588UXS0tJ4/vnn2bBhAx07dvTq/Z944gk6duzIzTffXKHkumTJEnr37s3cuXP5+uuvmT17NsYYhg0bxpQpU/j11195+OGH+e2334iPj+eVV17hsssuK1bHzJkzeemll9i8eTMRERH8/e9/58UXX6Rx48auMvHx8VxyySVceeWVTJgwgT179tChQwemTZvGJZdc4nN9AO+88w5vvPEGmzZtIiQkhE6dOjFx4kS6d3c/T7bkz2rXrl20bNmSN998k3379vHOO++QlZVFjx49eOONN4iLiysWf69evYp1M+/cuZOxY8fy7bffkpKSQtOmTRk4cCCvvvqqzz8Hb1Ro4X4RaSYiV4nIbc7nZv4OTCmlKpvdbicwMLDUrjTBwcEA/PHHH8WOJyQkYLPZGDx4MEOGDAGslqw3fvzxRxITE/m///u/k4575MiRhIeH89FHH3H//fczbdo0Ro4cyZAhQxg+fDhz5syhbt26XHvttcXGhd9++21uu+02OnTowJw5c5g0aRLffPMNPXv2JDMzs9h7LFu2jJdffplnn32Wjz76iIKCAq688kpSU1N9ru+xxx5jxIgRnH/++Xz88cfMnDmTSy+9lD179vj82SdOnMi2bdv43//+x6uvvsrKlSsZPHhwmdfs3LmTCy+8kKVLlzJhwgS+/vprxo0b53HM3B98XVu4LfB/QB83574H7jPGbPFTbEopVanOOOMM0tPTS+3ZuXLlSgCOHj3qOpaTk8NHH31Ev379aNKkCQBdu3Zl5syZTJw4EZvNc1slLy+Pu+66i8cee8wvC/X36dOHV155BYC//e1vzJ8/n9dee41ly5a5WpaNGzfmnHPOYf78+QwdOpSCggLGjBlDr169+PDDD111tW/fnh49evC///2PBx980HU8PT2dtWvXEhMTA0CjRo3o0qULX331FbfccovX9W3bto2pU6fy8MMPu2IGGDBgQIU+e4sWLfjggxM3pRw5coTHH3+c/fv3u34uJY0bN46srCzWrVtXrMzQoUMrFIM3fFlbuA2wAugL7AASgRedzzucx390llNKqWrvlltuoX79+gwdOpTff/+dpKQkXnjhBZYuXQpQLGHOmzeP1NRUV4sVrF/O+/fvZ9GiRWW+z+TJk8nKyuLpp5/2S9x///vfi71u37494eHhxbps27dvD1izmwE2b97M4cOHS7XyLrnkElq0aFFq67tu3bq5EivA2WefDeBqbXpb36JFi3A4HIwYMaLCn7eokkm5ZFzuLFy4kCuvvNJj8q0MvrRcJ2JNYHoIeN0Y41qtSURswAPAVOAF4AZ/BqmUOjVOZozz2G+HSZ2zFZN3YiE3CbQRfW3bajWpqajo6Gg+/fRThg4dSqdOnQBrIs348eMZM2ZMsXHDhIQEwsLC6N27t6tr9LLLLiMwMJCEhAT69+/v9j327NnD888/z7vvvktOTg45OTmuczk5OaSmphIZGYndbvc67qJJD6zdd6Kjo0sdA8jOthbNK2yFlxwLBatVWrSVDlC3bt1irwu7yn2tLzk5GaDYmOjJKC8ud5KTk/32/t7yZcy1L/CVMeY/RRMrgDHGYYx5Ffga6OfPAJVSNUP4eQ2IvrYt9mjrl509OrhaJ9ZCPXr0YPv27WzZsoVNmzaxZcsWAgMDCQ0N5fzzzwfg0KFDLFy4kOPHj9O0aVNiYmKIiYmhVatW5OXlMXfuXDIyMtzWv2PHDrKzs7n11ltd1xUmxylTphATE8Pvv/9e6Z+zMCkdPHiw1LmDBw9Sr169SqkvNjYWgH379vlUvz/Fxsae8vf3peUaBKwtp8xa4NKKBqOUqtnCz2tQ7ZOpOyJC27bWhl6ZmZm888473HbbbURERADWjNj8/HzeeOMNV3droXXr1jFy5Ehmz57N8OHDS9V97rnnsnjx4lLHe/fuza233sodd9xBmzaVP5p2xhln0LBhQz788EPuuOMO1/EVK1awe/duHn3U0+J7J1dfv379sNlsvP3227z88sv++TA+6t+/P3PmzOHAgQNuW9qVwZfkug5recOytAHWVzwcpZQ6eQsWLKBRo0bFjkVFRbkt+9RTT3HBBRcQGxvLtm3beOmllwgMDGTixBNbVicmJtKyZUvuuuuuUjOLe/TowYsvvkhCQoLb5BodHe26h7akFi1aeDznb3a7nWeeeYa77rqLW2+9lVtvvZV9+/bx9NNP07ZtW26//fZKqa9169auyUwZGRlcddVV2O12Vq1aRfv27bnxxhsr4+MWM2HCBObPn0/37t0ZNWoUbdq0Yd++fSxYsICZM2dWynv6klxfAOaKyN+NMV+XPCkiA4BrgKv9FJtSSlWIu4UdOnbsSOfOnUsdP3ToECNHjuTw4cM0aNCAa665hgkTJri6PX/77TfWr1/PM888UyqxgpVkhg0bxsSJE9m5cyctW7b0/wfykxEjRhAWFsZLL73EoEGDiIiI4IorruDFF190tdIro74pU6bQpk0b/u///o+EhATCw8Pp1KmTx3Fqf4uPj+fnn39m9OjRPPXUU2RkZNC0aVMGDRpUae8pxhjvCooMAa4DrgS+A5YCh7C2meuJdXvOF8CcktcaY7y7Eew00blzZ7N69eqqDkOd5krefqKUKq28/ycissYYU+qvNl9arjMAg7WecD/cT1y6ChhY9H2d12hyVUopddrwJbn61iGvlFLKa/n5Ze95Yrfb3XZLq+rJ6+RqjEmozECUUup0FhgYWOb56dOnV/k2asp7FVq4XymllH/98ssvZZ6vzhOlVGmaXJVSqhpwN5NZ1VwV2hVHKaWUUp7V2OQqIg1EZLqIrBeRoyKSLSLbROS/vm4eICIXicgiEckQkXQRWSAi53ooGywiz4jIThHJEZHtIjJaRMoeMFFKKXXaqMndwjFAO2AhsBvIAtoCw4HrRaSrMWZjeZWISFdgCbAPGOs8fD+wTES6G2NKLvr5ETAI+B+wEugGPIu1OtWwk/tISimlaoMam1yNMZuBi0seF5FPgFVYCfJeL6r6N5ALXGqM2ees42NgE/Ay4FpCRESuwEqsrxhjChfifFdEUoFHRORtY8yKCn8opZRStUKN7RYuw27nc0yZpXDtUdsFmF2YWAGcX88G+olI0QVKb3E+TytRVeHrWysQr1JKqVrGl83SXxWRMyszmIoQkUARiRWRxiLSA5jlPPWVF5d3cT6vdHPuJ6wVpi4oUX6fMWZv0YLO1/uL1KeUUuo05kvL9QHgdxFZKiKDRSSosoLy0WXAEazkthToCDxqjHnPi2sLt6V3t9Ff4bGmJcp72hRwX4mySqlTbMaMGYgI27Ztc3t+2LBhxMfHu15nZGRwww030KZNG8LDw4mOjuaiiy4qc6eUvXv3YrfbCQoKIikpyW0ZEWH8+PGu15988gnXXXcdLVq0IDQ0lDPOOMO1gLwv1q5dy/jx40ttbF6WJUuWICIsWbLEp/eqSiV/TjWRL2OuNwAjsDZNvxh4VURmAO84xz8rRESigZE+XPJvY0zRf1k/AX8DQoEzgRuBGBEJMMaUvZ4YhDmfc9ycyy5RpvBrd2ULy4d5OIeIjMD6/tG8efNywlJKVYYxY8bw0EMPuV7n5uYSEBDAU089RXx8PDk5OXz00UfcdtttHDlyhIcffrhUHYmJiTgcDhwOB7NmzXK7A09JU6ZMoXnz5rzwwgvExcXx22+/MX78eBYvXsyKFSuw2bxr56xdu5YJEyZw6623unbtKc/555/PypUrOfPMatfxWKv5svzhJ8AnIhIP3AUMBR4BHhaRH4A3gbnGmDwfY4gGxvlQfibgSq7GmCRgkfPlFyLyHtaesg2ccZbluPM52M25kBJlCr92V7aw/HEP5zDGvA28DdauOOXEpZSqBK1bty72ul69enzwwQfFjl1xxRVs2bKF//3vfx6T61lnnUV6ejoJCQleJdcvvviC+vXru1737NmTunXrMnToUJYsWUKfPn0q+Ik8KygowBhDnTp16Nq1q9/rV2XzeUKTMWaXMeYpoDlWa/Y7rC3nZgF/icgkEWldVh1u6hMfHu77e07Utx8r2d4hIp4SYaH9zmd33bmFx4p2A+/3ULawvKcuY6VOC+vXr2fq1KmMHz+eqVOnsn79+qoOqRhvuxvr1avndq3flStXsmXLFoYMGcJtt93GmjVr2LBhQ7n1FU2shbp0saZo7Nvn3a+NGTNmuDYgb9u2LSKCiLBr1y7A6op++umnmTRpEi1btiQoKIjff//dbbdwQUEBo0ePpnHjxoSFhdGnTx/+/PPPUt3ZYG08361bN0JDQ4mKiuLqq69m8+binZW9evXikksuYdGiRZx//vmEhYVx1lln8dlnnxUrt23bNm677TZatmxJaGgorVq14p577iElJcWr70FNUuFbcZxdroWt2QuBT7ESzBPAYyKyABhnjFnjl0h9EwrYgTpY47GeFC7m2Q14t8S5rljb5a0pUX6wiDQrOqlJRJphjcd+fpJxK1WlSv5iPRlpaWnMmTOHOXNKbfFcJfGUxRhDQUEBaWlpfPrpp3zzzTf897//LVUuISEBm83G4MGDyczM5PnnnycxMZHJkyf7/J4//PADgNd76g4YMIDRo0fz3HPPMXv2bOLi4gBo3Lixq8yMGTNo1aoVU6ZMITw8nCZNmpCWllaqrnHjxvHCCy/w+OOP069fP3799VeuuuqqUuUWLFjAgAED6NOnDx999BGZmZmMHTuWSy65hLVr19K06Ym2xvbt23nooYd46qmniI2N5eWXX+Yf//gHf/75J23aWOv67N+/n7i4OKZNm0ZMTAw7duzghRde4IorrmDlSnfzSmuuk7rPVUR6YnW9XoPVXXoEeB84H7gCuExEbjXGfHSygbp574bGmENujp+JNS68wxhzpMjxWCAWOGCMSQMwxmwTkdVYi06McbZ6EZEmwPXA98aYg0WqnwUMxhojfrTI8ZHO5/f99PGUUqfQ66+/7ureDQwM5NVXX2XIkCHFyhSOx/br148mTay5kF27dmXmzJlMnDjR63FTsFqrY8eOpV+/fl6vKVy/fn1Xt/a5557rSlhFGWNYuHAhoaGhrmObNm0qViYlJYVp06Zx9913u/4o+Nvf/kZgYCCPPvposbKjR4+mVatWfP311wQEWOmiW7dutGvXjpdffplXXnnFVTYpKYmlS5fStm1bwBrrbdy4MR9//DGjRo0C4NJLL+XSSy91XdO9e3fatGlDjx49+O233zjvvPO8+l7UBD53C4tIXRF5WEQ2Ad8DNwGrse7xjDPGPGKM6YXV8jsEjPdfuMU8JSIbRORFEblXRO4TkTewFpAIpPQCEvdjLQxxTYnjD2H9YbBMREaKyEhgGdb3pti/NGPMfOBLrAUj3hWRO0TkXayx55nGmB/9/BmVUqfAjTfeyC+//MLXX3/NnXfeyQMPPMBbb71VrMy8efNITU0tlnSHDh3K/v37WbRoUckqPcrMzGTQoEEEBAQwffp0v30GgMsvv7xYYnXn999/59ixY1x//fXFjv/jH/8o9vrYsWP8+uuv3Hjjja7ECtbuPBdffLGr5V2obdu2rsQK0KBBAxo0aMCePXtcx3Jzc3nhhRdo3749oaGhBAYG0qNHD4BSXc01ndctVxG5BKuVeh3W5J1M4C3gDTdLBGKMWSUi04F/+SnWkr4EmmGN+zbA6gYuXPxhijGm/IEQK84VItILeM75MMAK4HpjzDo3l1wPjMb6Y+I2TiybOOkkPotSqgrVr1/fNS56+eWXc/z4cR577DGGDx/uGntNSEggLCyM3r17k5qaCsBll11GYGAgCQkJ9O/f31P1LtnZ2Vx11VXs2LGDH374wdW16y9Fu4g9OXDgAGAlv6IaNmxY7HVKSgrGGLd1NmrUiN27dxc75m72cnBwMNnZ2a7XTz31FP/5z38YO3Ys3bt3JzIykr/++otrr722WLnawJdu4aXO5w3AG0CiMSaznGv2UUmTfIwxizgxS9ib8uPx0Io2xqzE6kr2pp5srOQ62tv3VqqmOJkxzvXr1/PFF1+Ql3fihoHAwEAGDhxIp06d/BDdqdO5c2cSEhI4dOgQcXFxHDp0iIULF5Kfn19snLHQ3LlzycjIIDIy0mOdeXl5XHfddaxatYpFixZx9tln+z1uESm3TGGyPHz4MB07dnQdP3So+ChbTEwMIsLBgwcp6eDBg9SrV8/n+D788EOGDBnC6NEnfn1mZpaXRmomX7qFPwJ6GmPONsb8nxeJFWPMm8YY3eFXqdNAp06dGDhwIFFRUQBERUXVyMQK1mSjiIgIV+tu5syZ5Ofn88Ybb7B48eJij2nTppGVlcXs2bM91udwOBg8eDDfffcd8+bNq/CtMcHB1g0QWVlZFboe4OyzzyY8PLxUvCVfh4eHc8EFFzB79mwKCgpcx3fv3s2KFSvo2bOnz+99/PjxUrOw/d01Xl34cp/rzZUZiFKq5uvUqVO1SKYLFiygUaNGxY4VJv2i3nrrLX766Sf69etHXFwcycnJfPzxx3zyySdMmjSJoCBrIbrExERatmzJXXfdVap12KNHD1588UUSEhIYPny423juu+8+Zs+ezdNPP014eDg//fST61xcXJzX3cOFC0G8/vrrDB06lMDAQDp16uSK0xsxMTGMHDmSF154gcjISNds4cLZ0UUnZj377LMMGDCAK6+8knvvvZfMzEzGjRtHVFRUqclP3rj88stJSEjg7LPPpk2bNsyZM4cVK2rpXifGGH2c4scFF1xglKpqGzdurOoQ/G769OkGa95EqUfHjh3N0KFDTYsWLVzlly9fbv7+97+bRo0amaCgINOkSRPTt29f8+WXX7rK/PrrrwYwzzzzjMf3HTVqlBERs2PHDmOMMYAZN26c63yLFi08xlW0nDfGjx9vmjRpYmw2mwHMzp07Xe/59NNPlyq/ePFiA5jFixe7juXn55tRo0aZhg0bmpCQENOzZ0+zfPlyA5hp06YVu/7rr782Xbt2NSEhIaZOnTrmqquuMn/++WexMj179jQXX3xxqfdu0aKFGTp0qOv1kSNHzI033miio6NNdHS0ueWWW8yqVasMYKZPn+4qV/LnVJXK+38CrDZufs+Lda58IvI/L4o5gHSsWblfGmMOeJnjTyudO3c2q1evruow1Glu06ZNXt9jqWq/2bNnc8MNN7B06VLXDF5V/v8TEVljjCl1P5UvE5qGYf2lBdZuMSWZEsfzRGS0MeYlH95DKaVUJfv555+ZP38+F110ESEhIaxZs4ZJkybRtWtXLrnkkqoOr1bwJbm2xto8/BKs/Ut/xLqPtSHQA+t+0WVYt6ScC4wBJonIFmPMPP+FrJRStU9+ftn7jNjtdq9mA3sjIiKCpUuX8vrrr5Oenk6DBg244YYbmDhxot/e43TnS3K9GiuJnmuKbCwObAaWikgi8BuwzBgzzbn84SasxRs0uSqlVBncrWVc1PTp0xk2bJhf3qtjx441agu6msiX5DoCmF0isboYY/aKyGxnuWnO119ibQenlFKqDL/88kuZ51u21LsaaxJfkms8UHoF6OJSgaL/AnYBET5FpJRSpyFv1xhWNYMvi0gkUX4rtD+QXOR1NOUnZKWUUqpW8SW5fgqcLyIzRaR50RMi0lxE3seayPRJkVMXAFtPOkqllFKqBvGlW3gs1oSmW4AbRWQfJ2YLN8VaOH+tsxwi0hjIA97zY7xKKaVUtefL8ofpItIdazP0oUAroLAFuwNIBF401sL2OBeQ6O7fcJVSSqnqz6fN0o0xOcCzwLMiEgnUAdKNMRmVEZxSSilVE3k95ioiBSLyQeFrY0yGMWafJlallFKqOF8mNGUAu8stpZRSVWTGjBmICNu2bXN7ftiwYcTHx3u8ftasWYhImbvU7N27F7vdTlBQEElJSW7LiEiZe+NefvnliEixfU1PtSVLliAiLFpU/rbY5X0eVZovyfU34MzKCkQppSrbmDFjmDt3rttzqampPPzww6W2qispMTERh8NBXl4es2bN8jmGWbNmsW7dOp+vq0orV67kzjvvrOowahRfkutk4AoR0RWXlKpljDEcS03h8K4dHNy+lUM7t5OVkV7VYfld69atOe+889yee+KJJzjnnHO47LLLyqwjMTGRs846i+bNm5OQkODT+xcm8FdeecWn66pa165dvd5zVll8Sa4NgAXA1yLyiYj8S0SGisiQko9KilVVI6s+/5S37h7CyzcO5O37bmfTssVVHZIqYdOyxbx93+28fJP1M9q4bDHHUlP4a9Mf/P79QrKPZZJ68ABJe3dzaOc2MpKTcBQUAGAcDtKPHPY5wR44OI/ly3vw3fdtWL68BwcOVq9lxT11Cy9fvpyZM2fy+uuvl3n9ypUr2bJlC0OGDOG2225jzZo1bNiwwev3f+KJJ+jYsSM333yzr6G7HDlyhHvvvZdmzZoRHBxMs2bNuO2228jJyQE8f8ZevXrRq1evUsfT0tIYNmwYMTEx1KlTh8GDB5OcnFysjLtu4XXr1nHNNddQr149QkNDOeOMM5g4cWKFP1dt48ts4Rmc2FbuWucDTmxDh/OcwbotR9VSm5Yt5scPZlC4F3BG0hG+ev0VVs//jMZt2xNZL9Z61K1HRL1YIurWY9vPK1j2YSIZyUlE1oulx01D6NCjdxV/ktonLzub9KQjbPjhW9Z89TkO504rGUlH+Pq1l4uVveS+x8k+llns2IbdlxevcFfFY8nO2c/GjY+wceMjFa6jb5/tFQ/AS3l5eYwYMYLHH3+cNm3alFk2ISEBm83G4MGDyczM5PnnnycxMZHJkyeX+z4//vgjiYmJJ9UlnJKSQvfu3Tl69CijR4+mU6dOHD58mHnz5pGbm0twcLDPdY4cOZJ+/foxa9Ystm7dyqhRo9i/fz+LF3v+g3nVqlX06tWLNm3aMHXqVOLi4ti6dSvr16+v8GerbXxJrrdXWhSqRln2YaIrsboYw+Gd2zm8s/xfhhlJR/j6jWlsW7OK+HPOI6xOFKGRUdZznSiCQkP588clmoxLyM/LY/23X/PzvNkcT00hODyCRm3aERgUTHrSYTKSjtTKrtzKNnnyZHJycnjqqafKLJeTk8NHH31Ev379aNKkCWB1l86cOZOJEydis3nuCMzLy+Ouu+7iscce44wzzqhwrFOnTmXHjh2sXr26WPf2ybSEO3bsyPTp0wFrolXdunW59dZb+e677+jbt6/bax577DHq1avHTz/9RFhYGAB9+vSpcAy1kS+LSPg2uKBqrQwPMyR9YQoK2LJyGVtWLit1Tmw2jMNR5P2O8PX/TWXjjz/QtF17giMiCAkLJzg8guCwcPZt3shvC74g8+hRImPLT8Sbli2utMTtbd0ORwF52dlsWPIdqz7/hGMpRwmNrEPL87sQVb8Bx9NSOZ6WxrG0VLLSUzmWmkpu1vFideQcy2T3ul/9Evfpatu2bTz//PPMnTuXkJCQMsvOmzeP1NRUhgw5MfI1dOhQ7rnnHhYtWkT//v09Xjt58mSysrJ4+umnTyrehQsX0qVLF4/jxhVxww03FHt9/fXXM2TIEFauXOk2uR4/fpzly5fz+OOPuxKrKs2nRSSUAoisV4+M5JNPsJ4UTaxFj+1au5pda1eXeW1G0hG+eu1lvn33/wiNrENgcLDzEUJgSAjH09M5tGOr6z0yko6w4I1pbFm1gobxrRG7HZvdjs1mx2a3YbPbObh9G9t+WUl2ZgYhERG0Ov9CGsS3wlFQcOLhKODwzh3sWrfGNW5Z+EfBT3M/JjA4mNysLHKzjpOblUVeTnap2LMy0tn4w3d++A6WrUF8a6IbNyE4LIyoBg2xBwaRn5tDRtKRSn/v6ubBBx+kT58+dO3aldTUVAByc3MxxpCamkpwcDChoaGA1SUcFhZG7969XWUvu+wyAgMDSUhI8Jhc9+zZw/PPP8+7775LTk6Oa2wUrNZwamoqkZGR2O32cuNNTk7mnHPOObkPXULDhg2LvQ4KCiImJoZ9+9zuLkpKSgoOh0MnOJXD5+QqIvWB64AOQLgx5s4ix1sCvxtjsvwapapWetw8lIVvv0Z+7olfEvbAQM7uexlR9RuSeTSJjORkMo4mkZmcTEbyqf+lnZedRV62d/8MHQUFbFu1km2rVpZbNjszk41Lv2fj0u+9qts4HBzdt9ersv5gs9uJqBuLPTCQ1IP7i/2hEhAUxN9GPMCZzpb0pk2bCI2sA0BQSAgiQif7Igry87EHBBBRt57rvDcOHJzHn38+jcNx4vtus4XSvv3zNG40yE+f0L82btzI7t27iYmJKXUuJiaGhx56iGnTpnHo0CEWLlxIfn4+TZs2LVV27ty5ZGRkEBkZWercjh07yM7O5tZbby11bsqUKUyZMoXffvuNc889t9x4Y2NjPSa9QiEhIeTm5pY6npycTL169UodP3ToULHXubm5pKSkuP2cYH1fbDZbuXGc7nxKriJyB/BvIIQTk5cKb35qCKzE2iz9v36MUVUzhd2c3natblj6PYveeY38Iv/hbXY7zc8+j7DISI5npJOVnsbx9DSy0tLIzyv9i0F5FhJZh6sfG01kbH0i6tbFZrNaQL52f4dG1vEpmZZUmEB3bJ9Cds4BQoIb06r1Y9U2sQJ8+OGHZGcX70WYNGkSa9asYfbs2a7W2cyZM8nPz+eNN96gffv2xcqvW7eOkSNHMnv2bIYPH17qPc4991y3k4N69+7Nrbfeyh133FHuRKpC/fv357nnnmPdunUeW7AtWrTg0KFDJCUlERsbC8D27dvZvHkz3buXXu79448/Lhb37NmzcTgcdOvWzW39YWFhXHLJJcycOZOxY8e6WvaqOK+Tq/P+1reB9cA44DLg7sLzxpg/RGQDcDWaXGu9Dj16ez1O2fHSPthEvPpFb4zhj8Xf8t3/3qSgSJK1BQTQtks3oho2IufYMbKPZZJz/Bh7/ljnmhFb8xT+fVpcUGgYF994K2FR0YTViSYsKoqwqGh2rV3Dt++8XqzHICAomD5D/0nT9qXXd/HlZ+QvjRsNqhbJdMGCBaUWg4iKiipVrmvXrqWOzZgxg+Dg4GK3rSQmJtKyZUvuuusuRKRY+R49evDiiy+SkJDgNrlGR0e7vQUGrETo6Zw7Dz/8MB988AH9+vVj9OjRnH322SQlJTFv3jzefPNNIiMjuf766xkzZgyDBw/mkUceISkpiYkTJ7oSbUkbNmzg9ttv56abbmLLli08/fTT9OzZ0+NkJrBa3D179qRbt248+uijxMXFsWPHDtauXct//vMfrz9PbeZLy/VfwAGgp3OHHHcj6usB93/uqNOat7/oRYSz+/QnIDDQq2S8adniUl3UAUFB9Lx1OPHndiYvJ5u87Gzyc3PIy8lm17pfWf/dN8USss1up9UFF1KvaXMcBfmuMVRHgYONS78jL7v0+GhgSCid+l2OzW7HbrcjNjtJf+1m+y8/ucZcAewBAVww4GraXNiNoJAwgsJCreeQEP5c/oOb2IPpd8c9bj/rmZf2Qbz8I+V098ADD5Q61rFjRzp37uxzXb/99hvr16/nmWeeKZVYAex2O8OGDWPixIns3LmTli1bVihmb0RHR7N8+XJGjx7NpEmTSE5OpmHDhvTp04egoCAA2rRpwyeffMLo0aO5+uqradeuHa+88govvPCC2zpfffVVPv/8c2688UYKCgoYOHAg//73v8uMo0uXLixfvpyxY8fywAMPkJOTQ4sWLbj9dr2ppJCUuqXCU0GRVOBDY8zdztfjgLHGGHuRMpOAB4wx4ZUQa63RuXNns3p12RNzlPd87f70pbz75B1M/xH3e0z2lRWLv23atIkOHTqckvdSqqYq7/+JiKwxxpT6q82XlmsQcKycMtFAQTlllPIrX7s/fSnv6/hyZcailKo5fEmuu4ALyilzEbC5wtH4QEQaYK13fAEQB4QBfwE/ABONMe63xSheRwhwG3AlcA7WpKwDwM/AM8aYTSXKxwM7PVS3wRhzVoU+jKrWNAGqUyG/nLkDdrvdbbe0qp58Sa7zgCdE5HpjzOySJ0XkdqATcHJ3SXsvBmgHLMTaCi8LaAsMB64Xka7GmI3l1BGPNUnrR6xJWPuBVsA9wLUicrkxxt0aYHOBOSWOpVbsYyilFAQGBpZ5fvr06QwbNuzUBKNOmi/J9UXgJmCWiPwDiAIQkfuBHlhrDW8FTslUMWPMZuDiksdF5BNgFXA/cG851RwBzjPGrC1Rx/tYW+y9BLibAbHeGDOzAmErpZRbv/zyS5nnK3OilPI/X5Y/TBGRnliL8l9f5FThtLJlwC3GmPLGZStb4Ybupe8KL8EYkwwkuzm+UUT+ADx28zq7lG3GmOOeyiillLcqMpNZVV8+LSJhjNkD9BKRTli33NQD0oCfjDFrKiG+colIIFYrOhBoA4x3nvrqJOq0AY2BQx6KPAqMtYrKX8B04HljTI6H8koppU4jFVpb2BizHuue1urgMuCLIq8PAY8aY947iTrvwUquz5Y47gC+Bz7DaiHXB24AxgDdnGO0bmdLi8gIrNWraN68+UmEppT/GGN0koxSHnh7q6o7Vb5wv4hEAyN9uOTfxpijRV7/BPwNCAXOBG4EYkQkwBjj89I9ItIdeBnrj4did107W+4lly35r4i8DfwTa0z6fXf1GmPexpo8RefOnSv+E1PKTwIDA8nKytKdTZTyICsrq0J75ILvawsHAoOAC7HGNN1t42CMMXf4UG001nKK3poJuJKrMSYJWOR8+YWIvIeVGBsAd/lQLyJyATAfa9bwFcaY0kvzuPc8VnIdgIfkqlR106BBA/bt20fTpk0JDQ3VFqxSWK3V/Px8MjIySEpKKrVrkLd8WVu4CfAt0B5rUVSPsQFeJ1djzK5y6vOJMWa/iCwC7hCRB70dBxWR87E+XxrQ2xjjy5YPe7EWz3C/eKdS1VCdOtYi/fv37ycvL6+Ko1Gq+ggICCAkJITmzZuXu8+vxzp8KPsy1jZzs4B3sBJKdV0xPRSrVV0H63abMjnXSf4WyMBKrLvLuaSkVs738zQBSqlqqU6dOq4kq5TyH1+Sa39gqTFmcGUF4wsRaWiMKZXMRORMrHHRHcaYI0WOx2K1LA8YY9KKHD8Pq1v5GFZi9bQCEyJSz3n7TtFjNuA558svSl+llFLqdONLcg3BWhawunjKuQ3efKylGQXrvtTbsG7LKbmAxP1YY7u3AzMARKQFVos1But+3e7OCU1FzS1y7+47IlIHWIHVco/F2jj+AqwVrD7x38dTSilVU/mSXP8AWlRWIBXwJdAM61aYBljdsvuA2cAUY8wGL+poiXWvLpy4P9ZdmcLkOh8reY8A6gI5wAbgPuBNY4zD50+hlFKq1vFly7l/YK3O1NmLNXtVGXTLOaWUqh38seXcYawxxRUi8iqwBg+L1RtjllYkSKWUUqo28CW5LsG6zUawViQqq8nr7v5XpZRS6rTgS3J9hrITqlJKKaXwbVec8ZUYh1JKKVVr2Ko6AKWUUqq2KTO5isilIuL1Fi4ico6IDDn5sJRSSqmaq7yW62JgWNEDIvIvESm1wbjT1Vh7myqllFKnrfKSq7sF9UOwdrJRSimllBs65qqUUkr5mSZXpZRSys982ixdKb/Ly4KZ/4DDGyErBaLioO9Y6HRDVUemlFIVpi1XVbWWToHdP0LWUcBA2l6YezfMGQEH1oGjoKojVEopn3nTctVVmVTlWfVO6WOmANZ/ZD2CIqHZhdC8G7ToBk0vgMDQUx+nUkr5wJvkOl5Expc8KCLapFAnLyet7PO5GbD9O+sBYAuEqGZw/AjkZEBEQ6sb+bxbKz9WpZTykjfJ1d3tOGXRlq7yXngDOHbY+/KOPEjZceJ15iGYdx98Ow6ang+x7axH/TOs57C6sP5j+O4ZSPtLx3SVUqdEmcnVGKNjsqpyXfY8fPGgNbGpkC0QGna0xl+Pe1qvpITjSbB1ofUoKjAC8o9D4T72aXth3v2QugfOuw3CY8Gmmzj5rOQfLD3/Be0us3oTcjMhJ9P5nAG5x2DXMtjyDeSkQ2hd+Ptk/QNH1Wpeb5au/Ec3Sy/BU8vSGEjeBrtXwJ6fYM8KSNnl3/cWG4TXh4gGENHI6mY+ngx7VkJ2KoTFwvlDoP0ACAp3PiKsR0BQ2fH7+nn9Wn4CpO2DOk3g4pHQ9m+QnwP52aWfd/wAGz61ZmuHREHLnlC3lfUHT95x5yPrxHPaPkjfx0l1UgWGwsB/a4JVNZ6nzdI1uVYBTa4n4eUOkLG/qqOw2ALBFmAlqKKJRmwQ09JK1Da79RDnc8YhOPSHNWnLVd4ODc+GOo2sFrZxWLOkjQMyDkLy1hMtb+sCq+7AECjIcz5ywZFvJT9TQ6ZDRDWDh/+o6iiUOimekqve56pqlF/ajuSsX8cQSs6JgwGh0PNxiG4BSVshabPzeSsU5Hiu7GQ58qxHScYBR7dbD2+YAji4Fg56+8YGMr0uXH2l/VXVEShVaTS5qhrjs9/28eSq5vR33METAR/TRJI5QD32nPUY3XrcU/oCRwH8/CYsGm+17AqJzWr55WdbXaHKP8RmtUaDI51d5+EQHAFbF0HesdLlo+JOfYxKnSKaXFWN8dI3m8nOd/A5l/B57iUnTvwE/dJW0//MhvTt0IB6EcHWcZsdut1njal6GrPMz4HMw87HQWvmsbuEaw+0unpzj1sTdXIzrW7YmkLsUK81BARDQIjzEQy7lkN+VunyIVHQ6ylrbDQwzPlwfr3rR1g2xdkd7lTWGOr6j0tPWgsMtX4OStVSmlxVjbE/1U0ScFq06RCLNh1CBDq3iOFvZzbkb2c2omVsuPUL39PEmYBgiG5mPcCa2eouEbhLHPm5sHYmLHiqeKKxB8PFD0Grns6x0wLr2VEAO3+AX94t3pK2B0GXOyG+h3N81gYiVkLcuRRWvl68ezsgGHqNgg4DrWvtgdazLQA2fQFfPepd/OA58V0xxfP3rEU3iGnh/SSrwuN6O5Q6jeiEpiqgE5oq5uJJ37EvNbv8gkW0aRBBi3phrN+bRlJmDk2iQ3n8sjO4+rymni+qlrN/q1F5pZSLzhauRjS5Vsxnv+3jqTm/k5V3Yjas4PsNIQE24d7erbm3VxtCAvUe1+rK4TAkrNzF64u3kZSZS0SwnbFXnskNXZpXdWhKuWhyrUY0uVbcZ7/t46VvNrM/NYsm0aE81r8dbRtG8u3GQ3y78RAbD6R7XVeQ3cZZTetwQYsYLmhRlwtaxFA/MrgSo1elfn5/a8dFreuxK+kYu5KPsyv5GDuTjrE7+RjbD2dSUOLXU3CAjcnXdSq750GpU0iTazWiybXy7D16nEWbrET7886jFDh8+/fdol4Y9SOC2Hb4GGlZeTSOCuGJy9vrL/MKMsaQlpXHvtQs5qz5i8SfdpNXMmP6qGl0KMuf7OOnCJU6OZpcqxFNrqdG2vE8ek1ZTMpxN/ei+kCAMxpF0rVVPVrXD6dlbAQt64fTuE4INpuvS2/XLrNX72XKws0cTs8hOiyQbq3qERUWxP7ULPalZrE/NYvjuf5d1EKAnZMG+LVOpSpKF5FQp52osEDGDexYapzWLkJkSACpWd4lXQP8eTCDPw9mFDseEmgjvl44reqHk5fvYPXuFFKO59EgMpj7erfm5gtbEBRQc5bnLtpl26BOMDd1ac6ZTeqQlJlDUkau9ex65LI/5Tg5RVqhKcfz+OqPyl/cokm0bjmoqr8a23IVkQbAZOACIA4IA/4CfgAmGmO2eVnPDGCoh9PXG2M+KVE++P/bO/Mou4o6j3++vSfpJgnZMIEQhCSgISyCLA4QUUBgDqBHQQcwC6Cj4IwjozMsQhQRRDHRYcZh0TTiAiInyDpAhBiiQgCJIERCyAJkI5CQjYRe8ps/qh55ebmv+728rZff55w61a/qV1W/W9X3/m6tF7gMOBcYHsucAXzPzHJ6WnvPtbxkzvOlVguvWr+VZ5ati24tL6zYQFuew8id0dRQw+796ti9Xx2D+tUxsG8duzfWsXLdFuYsepO332llUL86zjxsLyaMHUJtTRV11VXUVldRWy3q4u9HXlzNDY8tYtX6rezRv4GLProfJ3xwGG3tRmv7NlrbjbZt22htM1q3baOt3Zj90hvc8dRrvLW5hQF9apkwdggjB/Vj49ZWNm5te8/f9G4bK97ewpubWjq/oBIgwfg9BzBqUF9GDerHPoP7sfegvixYuYGr7luww4tRn9pqrvnUgT5M73QZetywsKSxwM+APwPLgC3AaGAKUA8caWYv5pBPM8G4npsQPcfMXs2Qvxs4Pa3so2KZt5rZpFx0d+PaNdnS0s4x1z1aMSPTU+lTW83wAQ3UVFex6I1NO8yDN9RWce2nsi9QyvZi5DhdhR5nXLMh6XBgHvATM/tyDvLNwEQz63TyTNIpwP3AD83s4rTw64GvAR8xsz91lo8b165L0naf+poqPnv4Xgxpqmfxms0sfnMzi9dsYsPWbnRCUxnp36eG73/6IIYP6MOIAX0Y0LcWKdxebiydnkZvmnNdFv2B+SRSuPubgE1mO3yCJJ1/iv70jPDpBON6DtCpcXW6LqkHfWcGwMxYu7mFJW9u5vyfP83bBS6a6qrU11Rx2kHDGdxUz+DGegY31jGksZ7BTfU8tWQt37n/Rba0br9d+tRW863TxnHiB/dIzO+MQ0a4MXV6Bd3euEqqBfoDtcB+wNQY9UCeWa0nGNcWSXOAy83syQyZw4HlZvZaeqCZvSZpRYx3ujm5GABJDGqsZ1BjPVMTFk31qa3m6jPGMWH/oazd3BLdu6zd3Mq1Dy5I7PXWVVdxwPDdaG3bFudRw1zqyvVbSJoKrhIMbWqgtkbUVlVRUy1qq6uoqa5iwYoNtLTv/I7Y1FDDvxw/mqaGGpoaaqNfw7wlbzHtkZfZ2rajoexofnPMsCb61dd4T9RxEuj2xhU4Cbg37fdq4GIzuy3H9KuAacAzwGbgIOCrwOOSTjGzWWmyw4Fs87jLCQurnF5GZ73d3fvV7SDft6460RhnM2RJQ9WdGb5saa46fVximkNGDmTYbn3yNpTeE3WcZCo+5yppAMGY5cqPzWxtWvrBwMFAH+ADwFmEedFvmdkuTYpJGg3MB1aY2ei08Hbgj2Z2bEKaOcB4MxuQJc8vAF8AGDly5IeWLVuWJOb0EvKde9yVuUqf33Sc0tNlFzRJGgUsySPJ6I622UgaDjwH3GVmXyxArxnAJGCsmS2MYRuBF83siAT5ecCeZja8s7x9QZPjOE7PIJtxrfgOdzNbambKw3W4f9XMVgCzgPPintRdZWn0B6eFrQCyvfqPIAwNO47jOL2cihvXEtEHqAZ2KyCP1HDw6rSwp4ARkvZKF4y/hwPeHXUcx3G6r3GVNCxL+AeAjwGLzWxNWvhgSftL6p8W1k9SQ0IehwCfARaY2StpUb+O/lczkqR+/zLf63Acx3F6Ht15tfAlkk4gLF5aSjjPexzhpKVaIPMAiYuAK4HJQHMMGw08GE9depntq4WnAO3EBUgpzOx+SfcBX4tGOnVC03nAL8xsblGv0HEcx+mWdGfjeh+wF3AmMJQwDLwcuBP4gZm9kEMeqwjzsx8FziYMJ68E7iCcT/z3hDSfAS4nHBhxbizzCuDaQi7GcRzH6TlUfLVwb8RXCzuO4/QMuuxqYcdxHMfpabhxdRzHcZwi48bVcRzHcYqMG1fHcRzHKTK+oKkCSFrD9k/jdWcGA29WWolugtdV7nhd5Y7XVX6Uor72NrMhmYFuXJ1dRtLTSavknJ3xusodr6vc8brKj3LWlw8LO47jOE6RcePqOI7jOEXGjatTCDdVWoFuhNdV7nhd5Y7XVX6Urb58ztVxHMdxioz3XB3HcRynyLhxdRzHcZwi48bVSUTSJZLulLRYkklamkfaL8c0JmlwCdXsEuxKXUk6VdIsSeskvSNpoaQbyqBuRcm3riQdJekeSa9L2iLpFUk3S3p/mVSuCJLGSPq2pCckrZG0UdJ8SZdJ6pcgP1bS3fH/abOkxyUdXwndy02udaXAOZJul7Qo3nevxv+vI4qul8+5OklIMmAt8BfgQ8AGMxuVQ7rhwALCi1sjMMTMevQm93zrStKVwFTgIeAB4B1gJDDezM4osboVJZ+6kvQJwveaXwF+Rtj8/0HCd5bfBQ40s+VlULvsSLoWuBC4B3gCaCV8GvNM4DngSDPbEmX3BeYBbcB0YD1wAeH71ieb2axy619Ocq0rSQ3AFmA+4f9qCfA+4J+B4cDnzewXRVPMzNy528kB70/7+2/A0hzTzQSeBW4DDBhc6WvpSnUFfDzWyzcrrXc3qKuHgJbM/yHg/FiHX6309ZSwng4D+ieEfyde+0VpYb8B2oGD08IaCafAvUTsRPVUl2tdEb5fflyC3DDCi9tqoKpYevmwsJOImS3ON42kTwKnAV8k3Oy9gjzr6lLgDeAaAEmNknrNfZhnXe0GbAXWZYSviP7moijVBTGzp81sfULUHdEfBxCHPU8DZpvZ/LT0m4BbgDHA4aXVtrLkWldm1mZmf0hIvxr4AzA0uqLQa25qp7RI2g24AbjRzOZVWp+uSHwQHgs8CZwnaTmwEdgU54GGVVTBrsdDQBNwq6SDJI2QdBJwPWHq4faKalcZ9oz+6uiPB+qBPyfIPhH9Hm1cOyCzrjqTbQHeLlbhNcXKyOn1fI/wsnZJpRXpwuwHVANHAicC1wJ/BY4B/hUYL+kwM3uncip2Ka4h9CSmAGenhT8AfM7MNlZEqwohqRq4gjC3+qsYPDz6SXPPqbARJVaty5GlrrLJngJ8GLjNzLYWSwc3rk7BSDqaMBR8dpbhGSfQFP0hwAVmdkv8PVPSBuBKYCLwk0oo1wVpJxiIWYS5/LXAR4CvALdLOt3MWiuoX7mZTngxu9TMXophfaP/boL81gyZ3sR0dq6rnZA0mrA+ZDlwcTEVcOPqFISkOuBmYJaZ/brS+nRxtkR/G+GGTudWgnGdgBvXFM3A0cC4tN78TEmLCHU0kTCv2OORdBVwEXCTmV2TFpWql/qEZA0ZMr2CDuoqU24f4PeERU8nm9maYurhc65OoVwI7A/8UNJ+Kcf2Xto+PX1PYh68Hv11ZpbZ01gZ/YFl1KfLImkkYSj4/oRh8jujf1x5taoMkqYClwMzCNtG0kkt7koa+k2F9cjtSkl0UlfpcqOAxwirqk8ws+eLrYv3XJ1C2ZvwkvZglvh5hFWdjWXTqItiZqslvQrsJalvhtFILb54owKqdUVShqE6Ia4mw++xxD3RVwI/B863uHckjecJQ8JHJSQ/MvpPl07DrkMOdZWS25tgWPsDHzezZ0uhj/dcnUKZAXwmwc2O8VOAcyqiWdfkNkCEOep0vhT9B8qrTpflJcKc6xmSBmTETYr+U+VUqNxIuoJw2MhtwGQz25YpE7fc3AtMkHRQWtpGwn7glwkvuD2aXOoqyu1NeDYNBE40s2dKplMW4+70ciSdS+iVQlhAUkfYAgGwzMwy5wwz0zcT5sR6wwlNOddV3LL0JGH/4U2E1cL/QBgCfZRww/fYPcJ51tUPCItMlhLm9VMLms4GFgOHmtmG8mheXiRdSNja9irwTcI8fTqrzeyRKLsfwYC2AtOADYQTmg4ETjWzh8qldyXIta4kNRHut32A/yL5peORuO+1cCp9uoa7rukIb3eWxc3OIX0zveeEprzqChhMWJCzgrC3bjFwNdBQ6WvpSnVF6OFfQHgZ2UQwHkuB/ya8tFX8ekpYT80d1FNSXR0A/I6wT/MdYC5hyLPi19JV6goY1YmcAROKpZf3XB3HcRynyPicq+M4juMUGTeujuM4jlNk3Lg6juM4TpFx4+o4juM4RcaNq+M4juMUGTeujuM4jlNk3Lg6juM4TpFx4+o4juM4RcaNq+M4juMUmR7/VQnHcZyeRjxP+BTCect32s6fMHQqjPdcHcdxuhGSjiV8au5HhK/AzJWU9LF0JF0o6TlJG6L7s6RTy6lvb8WNq+M4TvdiKuFze0OBjwHjgTOzyL4O/AdwKHAY4ctLd0saX3o1ezduXB3HcboXQ4E7zGyNmT1K6MUOTRI0s9+Z2YNmtsjMFprZZcBGkj+u7hQRN66O0wmSRkmy+I1ax6k0dwGfkzRU0gRgNOFzcx0iqVrSZ4FG4E8l1dBx4+p0XyT9Khq9L+Ug+0iUPaMMqjkVpoe/EH0bGACsBh4DrjazRdmEJR0oaRPwLvC/wCfN7PlyKNqbcePqdGduiv4FHQlJGkWYm1oJ3FdinRyn1AwF9id83BvguE7kXwIOBo4EfgLcKmlcybRzADeuTjfGzGYDC4FDJB3ageh5gIAZZtZWDt0cp4RMBKqBWwhbcU6SNDybsJm1xDnXp83sEmA+8G9l0bQX48bV6e7cHP3E3qukamAy4S3/loy4MyXNkbRe0hZJz0u6JNu2hoS8J8Shx6lZ4pdKWpoR9t5wpaR9Jf1W0luSNkp6ONWjkDRE0k2SVkraKukpSR/NUs4RMZ9VklokvSbpxo4euAl5pOu1v6S7Ja2VtFnSXEknFlp2RhljJN0h6Q1J2+LcYUf6TZJ0l6TFsa02SPqjpHMSZKcCS+LPibHMlJuUJpdz+5ei3QpgcvRvBG4nGNqJeaSvAnL6H3cKwMzcueu2DhhCmEtaD/RNiP9HgmF9OCP8uzF8DWGo7PvA32LYbKA2TXZUDG/OyGNCDJ+aRbelwNKMsFFpZbwJPA5cT1iksi2GjQZeAZ4FpgM/B1qArcDIjPwmA23AZuDXwHXATKAdWJEp30E9pvT6A7Au6nUN0AxsifmdVUjZaWU8Hst4EphGmAc8tBP9tgDPRH2uIUwJvB7zuyqhXabHuPmErSspd3C+7V+Kdivg//2YqMfz8ffh8ffLWeSvjWlGAQfGutsGnFzpe7enu4or4M5doQ64Iz5gJiXE/S7GfTot7KgY9iqwR1p4DXBvjLs0LTz1YG3OyHsCu25cDbgsI+6bMXxtNDhVaXHnxrhpaWFj4sN7ETAiI6/jCUZuZo51mK7X9zPiDgNaCQZxt10tO6OM7+bZxvsmhNUBv4+6ZeqQ2Ga70v7FbrcC/9dnxPwuTgtLvRQcmyDfDCwjvIC+AcwCTirm/ecuS1tVWgF37gp1hMVKBszNCH9ffPCuYsee6M1R/gsJeY2JhmFxWljig5rCjOsSoDojbmSM2ww0ZcRVx2t5LC1sWpQ/NUv5Mwk9y6ak+Cx6vZ0kHx/SBkzc1bLTylgF1Bep7T8V8/x8lutpTkiTV/sXu90KuNZGYFPMb1ha+NezXau7yjk/W9jpCTxKGI77iKQDzGxBDJ9M6I00m1lrmvyhael2wMwWSnod2EfSADN7u0Q6zzez9oywFdFfaGYbM/Rql7Qa2DMtOHUQwHGSDk8oYyjh4T6GMKSaC3/JLDsymzCvdwhwa4Fl/9XyPAtX0kjCSUMfIxizPhkiI/LIrpD2L0a77SpnAf2A+8xsdVr4bYTh3k9L+kqW9nPKjBtXp9tjZibpFsID5nzgYkkCppCwkAnoH/2VWbJcSXiA9yf05ErB+swAM2sLau8cF2kDatN+D4r+1zspqzEPvVZnCV8V/VTdFVL2qoSwrEh6PzAPGEiY63yYUEfthB7lRPJboFNI+xej3XaVKdFvzih/laT/A04lGODM/3enArhxdXoKMwib6z8v6RLCIo59gUdt5w32qYfgHoQebybvy5DLxrboZ7uP+ueQRyGk8u5vZhuKlOewLOF7ZJRZSNmWp/zXCMZ8spk1p0dI+hz5rZSF4rV/2ZA0Fjg6/vxtNOZJTMGNa5fAt+I4PYI4THYPMBg4g9CDhe0HTaTzbPQnZEYofMprT2BJDkPC66K/V5Z8BnSSvlCeiP4xRczzUElNCeETop+qu1KUnY39on9XQtxxWdKkhm6rE+KK1f7lJNVrnQf8NItbCxwlaf+KaOjsgBtXpyeR2vN6MfBJwvaImQlyP4v+5ZKGpALjntgfEO6Ln+ZQ3t+BDcDpkt47OF1SH+DHeWufPzcQFrdMkzQmM1JSnaR8jV9/4IqMfA4Dzib05FL1WYqys7E0+hMyyjiJ7S9Rmawj9JBHJsQVq/13mbhfdod9tx3IVhNWHQNcYGbnJzm2X9eU5JyccuLDwk5P4mHCas4Px983mFlLppCZ/UnSdcA3gL9J+i1hpefJwDhgLmHfY4eYWaukHxG2YjwraSbhnjqBsMhlRUfpC8XM/i5pCuGh+kKcd1tImN8bSehVriEclZcrc4DzJR0B/JEwRHoWweB8MTUEXKKys/E/hMVpd0q6C1hOaKdPAL+J+u2AmW2S9CRwjKRfRt3agXuK1f4FkurY5HJi2CmEdnjKzJ7rQO4W4N8JUyOXmp9GVlkqvVzZnbtiOuAytu9HHNuJ7GcJD9KNhI3+L8T0DRlyo8i+rUPAfxLm7loIeyevA/rS8VacnfKK8QbMzhK3U34x/EB23M+4lrD38Ubg+Bzr7T29gAMI+4PXAe8QjGzi3sh8yu7s2jvR72jC6t51sb3mEob/J5BlOxRhOPle4C3C/LiRthc61/YvRbsRhqY3AANzuPaZZNk6lCA7J8qeVon7z912p9ggjuP0YhQ+brAEuNXMJlVWm56NpAEEg3+9mX2jwuo4JcLnXB3HccrLMYT56h9WWhGndPicq+M4Thkxs3uBhkrr4ZQW77k6juM4TpHxOVfHcRzHKTLec3Ucx3GcIuPG1XEcx3GKjBtXx3Ecxykyblwdx3Ecp8i4cXUcx3GcIuPG1XEcx3GKjBtXx3Ecxykyblwdx3Ecp8j8P4JHb7w9949KAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 480x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax_list = plt.subplots(ncols=len(potentials_list), nrows=1, sharex=\"row\", sharey=\"row\")\n",
"\n",
"fig.set_figwidth(20/3)\n",
"fig.set_figheight(6)\n",
"\n",
"color_palette = sns.color_palette(\"tab10\", n_colors=len(data_murn.phase.unique()))\n",
"\n",
"\n",
"for i, pot in enumerate(potentials_list):\n",
" \n",
" if len(potentials_list) == 1:\n",
" ax = ax_list\n",
" else:\n",
" ax = ax_list[i]\n",
" \n",
" data = data_murn[data_murn.potential == get_clean_project_name(pot)]\n",
" \n",
" for j,(_, row) in enumerate(data.iterrows()):\n",
" murn_job = pr.load(row[\"job_id\"])\n",
" murn_df = murn_job.output_to_pandas()\n",
" n_atoms = row[\"n_atoms\"]\n",
" \n",
" ax.plot(murn_df[\"volume\"]/n_atoms, murn_df[\"energy\"]/n_atoms,\"o-\",\n",
" lw=4,\n",
" label= row[\"phase\"], \n",
" color=color_palette[j])\n",
" \n",
" ax.set_title(f\"{get_clean_project_name(pot)}\",fontsize=22)\n",
" ax.set_xlabel(\"Volume per atom, $\\mathrm{\\AA^3}$\",fontsize=20)\n",
" ax.set_ylabel(\"Energy per atom, eV/atom\",fontsize=20)\n",
" ax.tick_params(labelsize=18)\n",
" ax.legend(prop={\"size\":16})\n",
" #break\n",
"fig.subplots_adjust(wspace=0.1);"
]
},
{
"cell_type": "markdown",
"id": "fba90359-a2a5-4f83-9fa8-6dc4d87f5743",
"metadata": {},
"source": [
"## (b) Elastic constants and Phonons\n",
"\n",
"Pyiron also has job modules to calculate elastic constants and thermal properties using the quasi-harmonic approximation given by the `phonopy` package.\n",
"\n",
"As in the previous task, we again loop over the defined potentials and then over the given structures.\n",
"\n",
"Calculating elastic constants and thermal properties is considerably more expensive than calculating EV curves. Hence, it is useful to only calculate these properties for a subset of most important structures "
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "7bf87f90",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>job_id</th>\n",
" <th>potential</th>\n",
" <th>compound</th>\n",
" <th>crystal_structure</th>\n",
" <th>a</th>\n",
" <th>eq_vol</th>\n",
" <th>eq_bm</th>\n",
" <th>eq_energy</th>\n",
" <th>n_atoms</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>298</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Al', [0.0, 0.0, 0.0], index=0))</td>\n",
" <td>Al</td>\n",
" <td>fcc</td>\n",
" <td>4.039967</td>\n",
" <td>16.495612</td>\n",
" <td>85.876912</td>\n",
" <td>-3.483097</td>\n",
" <td>(Atom('Li', [0.0, 0.0, 0.0], index=0))</td>\n",
" <td>Li</td>\n",
" <td>bcc</td>\n",
" <td>4.195477</td>\n",
" <td>20.114514</td>\n",
" <td>13.690609</td>\n",
" <td>-1.757011</td>\n",
" <td>1</td>\n",
" <td>(Atom('Li', [4.359978178265942, 2.5172345748814804, 1.7799536377360752], index=0), Atom('Li', [6.53996726740165, 3.7758518623203585, 2.669930456604318], index=1), Atom('Al', [-3.964456982410852e-1...</td>\n",
" <td>Li2Al2</td>\n",
" <td>cubic</td>\n",
" <td>6.165940</td>\n",
" <td>58.604895</td>\n",
" <td>100.347240</td>\n",
" <td>-11.074362</td>\n",
" <td>4</td>\n",
" <td>Li2Al2_cubic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>363</td>\n",
" <td>LiAl_eam</td>\n",
" <td>(Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [1.9825515172760235, 1.9825515172760237, 2.427925369776811e-16], index=1), Atom('Al', [1.9825515172760235, 1.2139626848884054e-16, 1.9825515172760...</td>\n",
" <td>LiAl3</td>\n",
" <td>cubic</td>\n",
" <td>5.607502</td>\n",
" <td>62.227580</td>\n",
" <td>51.472656</td>\n",
" <td>-12.774590</td>\n",
" <td>4</td>\n",
" <td>LiAl3_cubic</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" job_id potential ... n_atoms phase\n",
"0 298 LiAl_eam ... 1 Al_fcc\n",
"2 324 LiAl_eam ... 1 Li_bcc\n",
"4 350 LiAl_eam ... 4 Li2Al2_cubic\n",
"5 363 LiAl_eam ... 4 LiAl3_cubic\n",
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_of_phases = [\"Al_fcc\",\"Li_bcc\",\"Li2Al2_cubic\",\"LiAl3_cubic\"]\n",
"\n",
"subset_murn = data_murn[data_murn[\"phase\"].isin(list_of_phases)]\n",
"subset_murn"