Skip to content
Snippets Groups Projects
chiraleft4dm.py 23.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
import pandas as pd
import numpy as np
import symengine
import pathlib


#WATCH OUT! All abs have been removed!!!
#Results only appliclable for real wilson coefficients

mN = 0.938272                    #nucleon mass in GeV
mpi = 138.0/1000                 #pion mass in GeV
mAMU = 931.494/1000              #atomic mass unit
sigma = 10**(-46)                #WIMP-nucleon cross section in cm^2
cvel = 299792458                 #speed of light in m/s

#Dirac WIMP (zeta=1) or Majorana WIMP (zeta=2).
#For spin-0 WIMPs for a complex scalar particle zeta=1
#and zeta=2 for a real scalar particle.
zeta = 1

#approximate WIMP velocity
#v=10**(-3)

#xi_ud
xiud = 0.37

#scalar radii
sigdot = 0.27 #GeV^-1
sigdots = 0.3 #GeV^-1

#magnetic moments
kappap = 1.792847356
kappan = -1.91304272
kappaNs = 0.006

#charge radii
r2Ep = 18.1597 #GeV^-2 = 0.7071 fm^2
r2En = -2.9817 #GeV^-2 = -0.1161 fm^2
r2EsN = 30.8183*10**(-3) #GeV^-2 = 0.0012 fm^2

#nucleon masses
mp = 938.272 * 10**(-3) #GeV
mn = 939.565 * 10**(-3) #GeV

#couplings to quarks/gluons
#scalar
fpu = 20.8 * 10**(-3)
fnu = 18.9 * 10**(-3)
fpd = 41.1 * 10**(-3)
fnd = 45.1 * 10**(-3)
fps = 43 * 10**(-3)
fns = fps
fpQ = 68 * 10**(-3)
fnQ = fpQ

fpiu=0.32
fpid=0.68

#spin-2
fpi2u = 0.298
fpi2d = 0.298
fpi2s = 0.055
fpi2g = 0.341

fp2u = 0.346
fp2d = 0.192
fp2s = 0.034
fp2c = 0.0088
fp2b = 0
fp2t = 0
fp2g = 0.419

fn2u = 0.192
fn2d = 0.346
fn2s = 0.034
fn2c = 0.0088
fn2b = 0
fn2t = 0
fn2g = 0.419

#tensor
fTpu = 0.784
fTpd = -0.204
fTps = -0.0027
fTpc = 0
fTpb = 0
fTpt = 0

fTnd = 0.784
fTnu = -0.204
fTns = -0.0027
fTnc = 0
fTnb = 0
fTnt = 0

kappatilTpu = -1.3
kappatilTpd = -0.7
kappatilTps = 0.0
kappatilTpc = 0.0
kappatilTpb = 0.0
kappatilTpt = 0.0

kappatilTnu = -0.7
kappatilTnd = -1.3
kappatilTns = 0.0
kappatilTnc = 0.0
kappatilTnb = 0.0
kappatilTnt = 0.0

r21p = r2Ep - 3*kappap/(2*mp**2)
r21n = r2En - 3*kappan/(2*mn**2)

def set_param(mchi,lam, **kwargs):
    muN = (mchi * mN)/(mchi + mN)    #WIMP-nucleon reduced mass
    mupi = (mchi * mpi)/(mchi + mpi) #WIMP-pion reduced mass
    names = [

    #WILSON coefficients
    #scalar-scalar
    'CSSu',
    'CSSd',
    'CSSs',
    'CSSc',
    'CSSb',
    'CSSt',
    'CSg',
    'CSgtil',

    #pseudoscalar-scalar
    'CPSu',
    'CPSd',
    'CPSs',
    'CPSc',
    'CPSb',
    'CPSt',

    #vector-vector
    'CVVu',
    'CVVd',
    'CVVs',
    'CVVc',
    'CVVb',
    'CVVt',

    #axial-vector-vector
    'CAVu',
    'CAVd',

    #spin-2
    'C2u',
    'C2d',
    'C2s',
    'C2c',
    'C2b',
    'C2t',
    'Cg2',

    #tensor
    'CTTu',
    'CTTd',
    'CTTs',
    'CTTc',
    'CTTb',
    'CTTt',

    'CtilTTu',
    'CtilTTd',
    'CtilTTs',
    'CtilTTc',
    'CtilTTb',
    'CtilTTt',

    #dipole
    'eCF',
    'eCFtil'
    ]
    param = {name:0 for name in names}
    for key, value in kwargs.items():
        param[key] = value

    #------------------------------------------------------------------------------
    CSgp = param['CSg']-1/(12*np.pi)*(param['CSSc']+param['CSSb']+param['CSSt'])
    CSgptil = param['CSgtil']-1/(12*np.pi)*(param['CPSc']+param['CPSb']+param['CPSt'])

    #nucleon/pion form factors------------------------------------------------------------------------------
    fp = mp/lam**3*(param['CSSu']*fpu+param['CSSd']*fpd+param['CSSs']*fps-12*np.pi*fpQ*CSgp)
    fn = mn/lam**3*(param['CSSu']*fnu+param['CSSd']*fnd+param['CSSs']*fns-12*np.pi*fnQ*CSgp)

    ftilp = mp/lam**3*(param['CPSu']*fpu+param['CPSd']*fpd+param['CPSs']*fps-12*np.pi*fpQ*CSgptil)
    ftiln = mn/lam**3*(param['CPSu']*fnu+param['CPSd']*fnd+param['CPSs']*fns-12*np.pi*fnQ*CSgptil)

    fdotp = 1/lam**3*(param['CSSu']*(1-xiud)/2*sigdot + param['CSSd']*(1+xiud)/2*sigdot+param['CSSs']*sigdots)
    fdotn = fdotp

    fVp1 = 1/lam**2*(2*param['CVVu'] + param['CVVd'])
    fVn1 = 1/lam**2*(2*param['CVVd'] + param['CVVu'])

    fVp2 = 1/lam**2*((2*param['CVVu']+param['CVVd'])*kappap \
            + (param['CVVu']+2*param['CVVd'])*kappan \
            +(param['CVVu']+param['CVVd']+param['CVVs'])*kappaNs)
    fVn2 = 1/lam**2*((2*param['CVVd']+param['CVVu'])*kappap \
            + (param['CVVd']+2*param['CVVu'])*kappan\
            +(param['CVVd']+param['CVVu']+param['CVVs'])*kappaNs)

    ftilVp1 = 1/lam**2*(2*param['CAVu'] + param['CAVd'])
    ftilVn1 = 1/lam**2*(2*param['CAVd'] + param['CAVu'])


    fdotVp1 = 1/lam**2*((2*param['CVVu']+param['CVVd'])*(r2Ep/6-kappap/(4*mp**2)) \
                                +(param['CVVu']+2*param['CVVd'])*(r2En/6-kappan/(4*mn**2)) \
                                +(param['CVVu']+param['CVVd']+param['CVVs'])*(r2EsN/6-kappaNs/(4*mN**2)))
    fdotVn1 = 1/lam**2*((2*param['CVVd']+param['CVVu'])*(r2Ep/6-kappap/(4*mp**2)) \
                                +(param['CVVd']+2*param['CVVu'])*(r2En/6-kappan/(4*mn**2)) \
                                +(param['CVVu']+param['CVVd']+param['CVVs'])*(r2EsN/6-kappaNs/(4*mN**2)))

    fp2 = mchi*mp/lam**4*(param['C2u']*fp2u + param['C2d']*fp2d + param['C2s']*fp2s \
                          + param['C2c']*fp2c + param['C2b']*fp2b+param['C2t']*fp2t + param['Cg2']*fp2g)
    fn2 = mchi*mn/lam**4*(param['C2u']*fn2u + param['C2d']*fn2d + param['C2s']*fn2s \
                          + param['C2c']*fn2c + param['C2b']*fn2b+param['C2t']*fn2t + param['Cg2']*fn2g)

    fTp1 = 1/lam**2*(fTpu*param['CTTu'] + fTpd*param['CTTd'] + fTps*param['CTTs'] \
        + fTpc*param['CTTc'] + fTpb*param['CTTb'] + fTpt*param['CTTt'])
    fTn1 = 1/lam**2*(fTnu*param['CTTu'] + fTnd*param['CTTd'] + fTns*param['CTTs'] \
        + fTnc*param['CTTc'] + fTnb*param['CTTb'] + fTnt*param['CTTt'])

    ftilTp1 = 1/lam**2*(fTpu*param['CtilTTu'] + fTpd*param['CtilTTd'] + fTps*param['CtilTTs'] \
             + fTpc*param['CtilTTc'] + fTpb*param['CtilTTb'] + fTpt*param['CtilTTt'])
    ftilTn1 = 1/lam**2*(fTnu*param['CtilTTu'] + fTnd*param['CtilTTd'] + fTns*param['CtilTTs'] \
             + fTnc*param['CtilTTc'] + fTnb*param['CtilTTb'] + fTnt*param['CtilTTt'])

    fTp2 = 1/lam**2*(kappatilTpu*param['CTTu'] + kappatilTpd*param['CTTd'] + kappatilTps*param['CTTs'] \
        + kappatilTpc*param['CTTc'] + kappatilTpb*param['CTTb'] + kappatilTpt*param['CTTt'])
    fTn2 = 1/lam**2*(kappatilTnu*param['CTTu'] + kappatilTnd*param['CTTd'] + kappatilTns*param['CTTs'] \
        + kappatilTnc*param['CTTc'] + kappatilTnb*param['CTTb'] + kappatilTnt*param['CTTt'])

    ftilTp2 = 1/lam**2*(kappatilTpu*param['CtilTTu'] + kappatilTpd*param['CtilTTd'] + kappatilTps*param['CtilTTs'] \
             + kappatilTpc*param['CtilTTc'] + kappatilTpb*param['CtilTTb'] + kappatilTpt*param['CtilTTt'])
    ftilTn2 = 1/lam**2*(kappatilTnu*param['CtilTTu'] + kappatilTnd*param['CtilTTd'] + kappatilTns*param['CtilTTs'] \
             + kappatilTnc*param['CtilTTc'] + kappatilTnb*param['CtilTTb'] + kappatilTnt*param['CtilTTt'])

    fpi = mpi/lam**3 *((param['CSSu']+8*np.pi/9*CSgp) \
                       *fpiu+(param['CSSd']+8*np.pi/9*CSgp)*fpid)
    fpitheta = -mpi/lam**3*8*np.pi/9*CSgp
    fpi2 = mchi*mpi/lam**4*(param['C2u']*fpi2u+param['C2d'] \
                            *fpi2d+param['C2s']*fpi2s+param['Cg2']*fpi2g)

    #hadronic matrix elements for the different responses-------------------------------------------------------
    cform = {
    'cMp': zeta/2*(fp + fn + fVp1 + fVn1 + 3/4*(fp2 + fn2)) \
           + (2-zeta)*param['eCF']/(2*mchi*lam),
    'cMm': zeta/2*(fp - fn + fVp1 - fVn1 + 3/4*(fp2 - fn2)) \
           + (2-zeta)*param['eCF']/(2*mchi*lam),

    'cdotMp': zeta*mN**2/2*(fdotp + fdotn + fdotVp1 + fdotVn1 \
                            + 1/(4*mN**2)*(fVp2 + fVn2) \
                            + 1/(2*mchi*mN)*(fTp1 + fTn1) \
                            + 1/(mchi*mN)*(fTp2 + fTn2)) \
              + (2-zeta)*param['eCF']/(2*mchi*lam)*mN**2/6*(r21p + r21n),

    'cdotMm': zeta*mN**2/2*(fdotp - fdotn + fdotVp1 - fdotVn1 \
                            + 1/(4*mN**2)*(fVp2 - fVn2) \
                            + 1/(2*mchi*mN)*(fTp1 - fTn1) \
                            + 1/(mchi*mN)*(fTp2 - fTn2)) \
              + (2-zeta)*param['eCF']/(2*mchi*lam)*mN**2/6*(r21p - r21n),

    'cpi': zeta * (fpi + 2 * fpitheta - 1/2 * fpi2),
    'cb': zeta * (fpitheta + 1/4 * fpi2),

    'cPhip': zeta/2*(fVp2 + fVn2 + (1 + muN/mchi)/2 * (fVp1 + fVn1) \
                     + mN/mchi * (1 + muN/mN)*(fTp1 + fTn1)),
    'cPhim': zeta/2*(fVp2 - fVn2 + (1 + muN/mchi)/2 * (fVp1 - fVn1) \
                     + mN/mchi * (1 + muN/mN)*(fTp1 - fTn1)),

    'cM5p': zeta/2 * ((1 + mN/(2*mchi)) * (fVp1 + fVn1) \
                      + (1 + 2*mchi/mN)*(fTp1 + fTn1) \
                      + 4*mchi/muN*(fTp2 + fTn2)) \
            + (2-zeta)*2*param['eCF']*(mchi+mN)/6/lam*(r21p + r21n),
    'cM5m': zeta/2 * ((1 + mN/(2*mchi)) * (fVp1 - fVn1) \
                      + (1 + 2*mchi/mN)*(fTp1 - fTn1) \
                      + 4*mchi/muN*(fTp2 - fTn2)) \
            + (2-zeta)*2*param['eCF']*(mchi+mN)/6/lam*(r21p - r21n),

    'cM8p': zeta/2 * (ftilVp1 + ftilVn1),
    'cM8m': zeta/2 * (ftilVp1 - ftilVn1),

    'cM11p': zeta/2*(ftilp + ftiln - 2*mchi/mN*(ftilTp1 + ftilTn1) \
                     - 4*mchi/mN*(ftilTp2 + ftilTn2)) \
             - (2-zeta)*2*param['eCFtil']*mchi/6/lam*(r2Ep + r2En),
    'cM11m': zeta/2*(ftilp - ftiln - 2*mchi/mN*(ftilTp1 - ftilTn1) \
                     - 4*mchi/mN*(ftilTp2 - ftilTn2)) \
             - (2-zeta)*2*param['eCFtil']*mchi/6/lam*(r2Ep - r2En),

    #part of the dipole terms that come with 1/q^2
    'DcM5_1p': -(2-zeta)*2*param['eCF']*(mchi+mN)/lam,
    'DcM5_1m': -(2-zeta)*2*param['eCF']*(mchi+mN)/lam,

    'DcM11_1p': (2-zeta)*2*param['eCFtil']*mchi/lam,
    'DcM11_1m': (2-zeta)*2*param['eCFtil']*mchi/lam,
    }

    return cform

def fit(u,c):
   y = 0
   for i in range(len(c)):
      y += c[i] * u**i
   return np.exp(-u/2)*y

def ufunc(q,b):
   return (1000*q)**2*b**2/2

def bosc(A):
   m = 938.919
   return 1/np.sqrt(m*(45*A**(-1.0/3.0)-25*A**(-2.0/3.0)))

def sf0(q,ds,A,cform,mchi):
    #structure factors that come with no additional powers of v
    muN = (mchi * mN)/(mchi + mN)    #WIMP-nucleon reduced mass
    mupi = (mchi * mpi)/(mchi + mpi) #WIMP-pion reduced mass
    eps = 10**(-16)

    mA = A * mAMU                    #nucleus mass in GeV
    mu = (mchi * mA)/(mchi + mA)     #WIMP-nucleus reduced mass

    vT = q/(2*mu)

    #kinematic factors
    xi5  = muN*q*vT/(2*mchi*mN)
    xi8  = vT
    xi11 = -q/(2*mchi)

    #check if the dipole terms contribute
    if (cform['DcM5_1p'] > eps or cform['DcM5_1m'] > eps \
         or cform['DcM11_1p'] > eps or cform['DcM11_1m'] > eps):
             if q < eps:
                print("WARNING: For q=0 the dipole term 1/q^2 diverges.")
                print("sf0(q=0) set to 0.")
                return 0
             else:
                sf = abs((cform['cMp']-q**2/mN**2*cform['cdotMp'])*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                                     +(cform['cMm']-q**2/mN**2*cform['cdotMm'])*fit(ufunc(q,bosc(A)), ds[1][str(A)]) \
                                     +q**2/(2*mN**2)*(cform['cPhip']*fit(ufunc(q,bosc(A)), ds[2][str(A)]) \
                                     +cform['cPhim']*fit(ufunc(q,bosc(A)), ds[3][str(A)])) \
                                     +cform['cb']*fit(ufunc(q,bosc(A)), ds[4][str(A)]) \
                                     +cform['cpi']*fit(ufunc(q,bosc(A)), ds[5][str(A)]) \
                                                              )**2 \
                     -abs(xi5*((cform['cM5p']+cform['DcM5_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                               +(cform['cM5m']+cform['DcM5_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                     -abs(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                               +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                     +abs(xi11*((cform['cM11p']+cform['DcM11_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                                +(cform['cM11m']+cform['DcM11_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
                return sf


    else:

        sf = abs((cform['cMp']-q**2/mN**2*cform['cdotMp'])*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                             +(cform['cMm']-q**2/mN**2*cform['cdotMm'])*fit(ufunc(q,bosc(A)), ds[1][str(A)]) \
                             +q**2/(2*mN**2)*(cform['cPhip']*fit(ufunc(q,bosc(A)), ds[2][str(A)]) \
                             +cform['cPhim']*fit(ufunc(q,bosc(A)), ds[3][str(A)])) \
                             +cform['cb']*fit(ufunc(q,bosc(A)), ds[4][str(A)]) \
                             +cform['cpi']*fit(ufunc(q,bosc(A)), ds[5][str(A)]) \
                                                      )**2 \
             -abs(xi5*(cform['cM5p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM5m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             -abs(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             +abs(xi11*(cform['cM11p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                        +cform['cM11m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
        return sf

def sf2(q,ds,A,cform,mchi):
    #structure factors that come with an additonal v^2
    eps = 10**(-16)
    muN = (mchi * mN)/(mchi + mN)    #WIMP-nucleon reduced mass
    mupi = (mchi * mpi)/(mchi + mpi) #WIMP-pion reduced mass

    #kinematic factors
    xi5  = muN*q/(2*mchi*mN)
    xi8  = 1

    #check if the dipole terms contribute
    if (cform['DcM5_1p'] > eps or cform['DcM5_1m'] > eps):
             if q < eps:
                print("WARNING: For q=0 the dipole term 1/q^2 diverges.")
                print("sf2(q=0) set to 0.")
                return 0
             else:
                sf = abs(xi5*((cform['cM5p']+cform['DcM5_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                   +(cform['cM5m']+cform['DcM5_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                   +abs(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                   +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
                return sf

    else:

        sf = abs(xi5*(cform['cM5p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM5m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             +abs(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2

        return sf

def sf0_wo_abs(q,ds,A,cform,mchi):
    muN = (mchi * mN)/(mchi + mN)    #WIMP-nucleon reduced mass
    mupi = (mchi * mpi)/(mchi + mpi) #WIMP-pion reduced mass
    #structure factors that come with no additional powers of v
    eps = 10**(-16)

    mA = A * mAMU                    #nucleus mass in GeV
    mu = (mchi * mA)/(mchi + mA)     #WIMP-nucleus reduced mass

    vT = q/(2*mu)

    #kinematic factors
    xi5  = muN*q*vT/(2*mchi*mN)
    xi8  = vT
    xi11 = -q/(2*mchi)

    #check if the dipole terms contribute
    if (cform['DcM5_1p'] > eps or cform['DcM5_1m'] > eps \
         or cform['DcM11_1p'] > eps or cform['DcM11_1m'] > eps):
             if q < eps:
                print("WARNING: For q=0 the dipole term 1/q^2 diverges.")
                print("sf0(q=0) set to 0.")
                return 0
             else:
                sf = ((cform['cMp']-q**2/mN**2*cform['cdotMp'])*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                                     +(cform['cMm']-q**2/mN**2*cform['cdotMm'])*fit(ufunc(q,bosc(A)), ds[1][str(A)]) \
                                     +q**2/(2*mN**2)*(cform['cPhip']*fit(ufunc(q,bosc(A)), ds[2][str(A)]) \
                                     +cform['cPhim']*fit(ufunc(q,bosc(A)), ds[3][str(A)])) \
                                     +cform['cb']*fit(ufunc(q,bosc(A)), ds[4][str(A)]) \
                                     +cform['cpi']*fit(ufunc(q,bosc(A)), ds[5][str(A)]) \
                                                             )**2 \
                     -(xi5*((cform['cM5p']+cform['DcM5_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                               +(cform['cM5m']+cform['DcM5_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                     -(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                               +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                     +(xi11*((cform['cM11p']+cform['DcM11_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                                +(cform['cM11m']+cform['DcM11_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
                return sf


    else:

        sf = ((cform['cMp']-q**2/mN**2*cform['cdotMp'])*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                             +(cform['cMm']-q**2/mN**2*cform['cdotMm'])*fit(ufunc(q,bosc(A)), ds[1][str(A)]) \
                             +q**2/(2*mN**2)*(cform['cPhip']*fit(ufunc(q,bosc(A)), ds[2][str(A)]) \
                             +cform['cPhim']*fit(ufunc(q,bosc(A)), ds[3][str(A)])) \
                             +cform['cb']*fit(ufunc(q,bosc(A)), ds[4][str(A)]) \
                             +cform['cpi']*fit(ufunc(q,bosc(A)), ds[5][str(A)]) \
                                                      )**2 \
             -(xi5*(cform['cM5p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM5m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             -(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             +(xi11*(cform['cM11p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                        +cform['cM11m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
        return sf

def sf2_wo_abs(q,ds,A,cform,mchi):
    muN = (mchi * mN)/(mchi + mN)    #WIMP-nucleon reduced mass
    mupi = (mchi * mpi)/(mchi + mpi) #WIMP-pion reduced mass
    #structure factors that come with an additonal v^2
    eps = 10**(-16)

    #kinematic factors
    xi5  = muN*q/(2*mchi*mN)
    xi8  = 1

    #check if the dipole terms contribute
    if (cform['DcM5_1p'] > eps or cform['DcM5_1m'] > eps):
             if q < eps:
                print("WARNING: For q=0 the dipole term 1/q^2 diverges.")
                print("sf2(q=0) set to 0.")
                return 0
             else:
                sf = (xi5*((cform['cM5p']+cform['DcM5_1p']/(q**2))*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                   +(cform['cM5m']+cform['DcM5_1m']/(q**2))*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
                   +(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                   +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2
                return sf

    else:

        sf = (xi5*(cform['cM5p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM5m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2 \
             +(xi8*(cform['cM8p']*fit(ufunc(q,bosc(A)), ds[0][str(A)]) \
                       +cform['cM8m']*fit(ufunc(q,bosc(A)), ds[1][str(A)])))**2

        return sf

def Heaviside(*args):
    return symengine.Symbol("Heaviside"+str(args))

def g(vmin, v0, vE, vesc):

    k = symengine.erf(vesc/v0) \
        - 2/np.sqrt(np.pi)*vesc/v0*np.exp(-(vesc/v0)**2)

    prefac = 1/(k*vE*np.sqrt(np.pi))

    xmin = vmin/v0
    z = vesc/v0
    neta = vE/v0

    res = 0

    res =(prefac * (np.sqrt(np.pi)/2 \
        *(symengine.erf(xmin+neta)-symengine.erf(xmin-neta)) \
        -2*neta*np.exp(-z**2)))*Heaviside(z-neta-xmin)
    res =res+(prefac * (np.sqrt(np.pi)/2 \
        *(symengine.erf(z)-symengine.erf(xmin-neta)) \
        -np.exp(-z**2)*(z+neta-xmin)))*Heaviside(xmin-(z-neta),z+neta-xmin)

    return res

def gv2(vmin,v0, vE, vesc):
    cvel = 299792458  #speed of light in m/s

    k = symengine.erf(vesc/v0) \
        - 2/np.sqrt(np.pi)*vesc/v0*np.exp(-(vesc/v0)**2)

    prefac = 1/(k*vE*np.sqrt(np.pi))

    xmin = vmin/v0
    z = vesc/v0
    neta = vE/v0

    res = 0

    res = (prefac/4*(-2*np.exp(-(xmin+neta)**2)*(xmin-neta) \
                        +2*np.exp(-(xmin-neta)**2)*(xmin+neta) \
                        -8/3*np.exp(-z**2)*neta*(3+3*z**2+neta**2) \
                        +np.sqrt(np.pi)*(1+2*neta**2) \
                         *(-symengine.erf(xmin-neta)+symengine.erf(xmin+neta))))*Heaviside(z-neta-xmin)

    res = res+(prefac/4*(2*np.exp(-(xmin-neta)**2)*(xmin+neta) \
                        -2*np.exp(-z**2)*(z+2*neta) \
                        +1/3*np.exp(-z**2)*(4*xmin**3-4*(z+neta)**3) \
                        +np.sqrt(np.pi)*(1+2*neta**2) \
                         *(symengine.erf(z)-symengine.erf(xmin-neta))))*Heaviside(xmin-(z-neta),z+neta-xmin)

    return res *v0**2/(cvel/1000)**2


def Fv0MB(eta, xmin):
    return (symengine.erf(xmin + eta) - symengine.erf(xmin - eta)) / (2 * eta)

def FvsqMB(eta, xmin):
    return (
        np.exp(-((-xmin + eta) ** 2)) * (xmin + eta)
        - np.exp(-((xmin + eta) ** 2)) * (xmin - eta)
    ) / (2 * np.sqrt(np.pi) * eta) + (
        (1 + 2 * eta ** 2) * (symengine.erf(xmin + eta) - symengine.erf(xmin - eta))
    ) / (
        4 * eta
    )


def WC_name_converter(directdm3f_dict, lam):
    chiraleft4dm_dict = {}
    chiraleft4dm_dict['CVVu']=directdm3f_dict['C61u']*lam**2
    chiraleft4dm_dict['CVVd']=directdm3f_dict['C61d']*lam**2
    chiraleft4dm_dict['CVVs']=directdm3f_dict['C61s']*lam**2
    chiraleft4dm_dict['CAAu']=directdm3f_dict['C64u']*lam**2
    chiraleft4dm_dict['CAAd']=directdm3f_dict['C64d']*lam**2
    chiraleft4dm_dict['CAAs']=directdm3f_dict['C64s']*lam**2
    chiraleft4dm_dict['CAVu']=directdm3f_dict['C62u']*lam**2
    chiraleft4dm_dict['CAVd']=directdm3f_dict['C62d']*lam**2
    chiraleft4dm_dict['CAVs']=directdm3f_dict['C62s']*lam**2
    chiraleft4dm_dict['CSSu']=directdm3f_dict['C75u']*lam**3
    chiraleft4dm_dict['CSSd']=directdm3f_dict['C75d']*lam**3
    chiraleft4dm_dict['CSSs']=directdm3f_dict['C75s']*lam**3
    chiraleft4dm_dict['CPSd']=directdm3f_dict['C76d']*lam**3
    chiraleft4dm_dict['CPSu']=directdm3f_dict['C76u']*lam**3
    chiraleft4dm_dict['CPSs']=directdm3f_dict['C76s']*lam**3
    chiraleft4dm_dict['CSg']=directdm3f_dict['C71']*lam**3/(12*np.pi)
    chiraleft4dm_dict['CSgtil']=directdm3f_dict['C72']*lam**3/(12*np.pi)
    #+chiraleft4dm_dict['eCF']=directdm3f_dict['C51']*lam*(0.30282212088)/(8*np.pi**2)
    #chiraleft4dm_dict['eCFtil']=directdm3f_dict['C52']*lam*(0.30282212088)/(8*np.pi**2)
    return chiraleft4dm_dict



def get_eventrate(
    target_isotope,
    dm_particle,
    coeff,
    num_target_nuclei: float,
    dm_density: float,
    q: float,
    v_earth: float,
    v_0: float,
    lam: float,
    v_esc: float,
    halo: str = "MBcutoff",
) -> float:

    if halo != "MBcutoff":
        raise Exception("Halo must be of type Maxwell-Boltzmann with cutoff if you want to use ChiralEFT4DM")
    mchi= dm_particle.m
    chiraleft4dm_dict = WC_name_converter(coeff, lam)
    cform=set_param(mchi,lam, **chiraleft4dm_dict)
    rho = dm_density

    elem = target_isotope.isotope_short_name  #element
    A = target_isotope.A      #mass number
    directory = str(pathlib.Path(__file__).parent.resolve())+r"/fit_data/"
    ds = []
    reslist = ["m+","m-","phi+","phi-","eb","pi"]
    for res in reslist:
        name = directory + elem + "_wimps_" + res + "_fit.dat"
        #print("Directory: ", name)
        ds.append(pd.read_csv(name, sep='\s+'))

    mA = A * mAMU                    #nucleus mass in GeV
    mu = (mchi * mA)/(mchi + mA)     #WIMP-nucleus reduced mass

    vmin = q/(2*mu)/1000*cvel

    v_0_nu = v_0*1000/cvel

    sf0_0=sf0_wo_abs(q,ds,A,cform,mchi)
    sf2_2=sf2_wo_abs(q,ds,A,cform,mchi)
    eventrate = rho/(2*np.pi*mchi) \
    *(sf0_0*g(vmin, v_0, v_earth,v_esc)+sf2_2*gv2(vmin, v_0, v_earth, v_esc)) \
    /1000*100/(10**9*1.602*10**(-19))*60**2 \
    *24*cvel**4/10**6 \
    *0.197327**2 *10**(-26)#this is 1/cm^2 to natural units

    eventrate = eventrate*10**6#go from 1/keV to 1/GeV
    return eventrate