Skip to content
Snippets Groups Projects
cnn_autoencoder_old.py 5.78 KiB
Newer Older
  • Learn to ignore specific revisions
  • Anna Neumann's avatar
    Anna Neumann committed
    #!/usr/bin/env python3
    # -*- coding: utf8 -*-
    import ctypes
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
    os.environ['TF_ENABLE_XLA'] = '1'
    os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
    os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1'
    os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1'
    os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1'
    
    import numpy as np
    from tensorflow.keras.models import Sequential
    import tensorflow.keras
    import os
    
    import tensorflow as tf
    
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
        except RuntimeError as e:
            print(e)
    
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D
    from tensorflow.keras.activations import selu
    from tensorflow.keras.constraints import max_norm
    from tensorflow.keras.optimizers import Adam, SGD
    from tensorflow.keras.utils import to_categorical, normalize
    from tensorflow.keras.callbacks import ModelCheckpoint
    from tensorflow.keras.datasets import mnist
    from tensorflow.keras import losses
    from tensorflow.keras import backend as K
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    # GET DATA
    # def getData():
    # Datasets
    path_train = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Train'
    path_valid = '/media/aneumann/Harddisk/Datenbanken/PythonTest/test/Preprocessing/Validation'
    
    train = os.listdir(path_train)
    train = sorted(train)
    print(len(train))
    valid = os.listdir(path_valid)
    valid = sorted(valid)
    print(len(valid))
    
    # partition = {'train': train,
    #              'validation': valid}
    # labels = []
    # for file in train:
    #     np.load(path_train + '/' + file)
    
    # print(partition)
    
    # train_file = np.load(path_train + '/' + train[0])
    # ids_train = np.arange(np.size(train_file['x'],0))
    # print(ids_train)
    batch_size = 10
    
    def batch_generator(files, path, batch_size):
        i = 0
        # while True:
        # for file in files:
        file = files[i]
        print(file)
        loadfile = np.load(path + '/' + file)
        ids = np.arange(np.size(loadfile['x'],0))
    
        batch = []
        batch_counter = 0
        np.random.shuffle(ids)
        # while batch_counter < np.floor(len(ids)/batch_size):
        while True:
            for i in ids:
                batch.append(i)
                if len(batch) == batch_size:
                    yield load_data(loadfile,batch)
                    batch = []
                    batch_counter += batch_size
            # i += 1
    
    # def batch_valid_generator(ids, batch_size):
    
    
    def load_data(loadfile,ids):
        X = []
        Y = []
    
        for i in ids:
    
            x = loadfile['x'][i,:,:,:]
            y = loadfile['y'][i,:,:,:]
    
            X.append(x)
            Y.append(x)
    
        return np.array(X), np.array(Y)
    
    # train_generator = batch_generator(ids, batch_size = 10)
    train_generator = batch_generator(train, path_train, batch_size)
    # print(train_generator.get_next().shape)
    # print(train_generator.get_next().shape)
    # for X,Y in train_generator:
    #     print(X.shape,Y.shape)
    # valid_generator = batch_valid_generator(ids_valid, batch_size)
    valid_generator = batch_generator(valid, path_valid, batch_size)
    
        # return train_generator, valid_generator
    
    # BUILD MODEL
    
    max_norm_value = 100.0
    model = Sequential([
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", input_shape=(256, 128, 1), name="enc_conv1"),
        LeakyReLU(),
        Dropout(0.3, name="enc_drop1"),
        MaxPooling2D(pool_size=(2,2), name="enc_pool1"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"),
        LeakyReLU(),
        MaxPooling2D(pool_size=(2,2), name="enc_pool2"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"),
        LeakyReLU(),
        MaxPooling2D(pool_size=(2,2), name="enc_pool3"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"),
        LeakyReLU(),
        Flatten(),
        Dense(units = 8192),
        Dense(units = 8192),
        Reshape((32,16,16)),
        UpSampling2D(size=(2,2), name="dec_up1"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"),
        LeakyReLU(),
        UpSampling2D(size=(2,2), name="dec_up2"),
        Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"),
        LeakyReLU(),
        Dropout(0.3, name="dec_drop1"),
        UpSampling2D(size=(2,2), name="dec_up3"),
        Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation='linear', kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3")
    ])
    # opt = Adam(lr=0.000001)
    model.compile(loss='mse', optimizer='adam', metrics=['mape', 'accuracy'])
    
    # MODEL Train
    
    if not os.path.exists("weights_cnn"):
            try:
                os.mkdir("weights_cnn")
            except Exception as e:
                print("Konnte Ordner für Gewichte nicht erstellen" + str(e))
    
    filepath = "weights_cnn/weights-{epoch:02d}-{loss:.4f}.hdf5"
    checkpoint = ModelCheckpoint(
        filepath,
        monitor='loss',
        verbose=0,
        save_best_only=True,
        mode='min'
    )
    model.summary()
    history = model.fit_generator(train_generator, steps_per_epoch = 1, epochs = 5, validation_data=valid_generator, validation_steps = 1, use_multiprocessing=True)
    model.summary()
    model.save('cnn_autoencoder_model.h5')