Skip to content
Snippets Groups Projects
cnn_autoencoder_old_2.py 6.43 KiB
Newer Older
  • Learn to ignore specific revisions
  • Anna Neumann's avatar
    Anna Neumann committed
    def autoencoder_old(path_train, path_valid, batch_size, epochs, path_save_model, path_weights_model, plot_name, option, reduction_divisor):
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        # initializing
    
    
    Anna Neumann's avatar
    Anna Neumann committed
        #!/usr/bin/env python3
        # -*- coding: utf8 -*-
        import ctypes
        import os
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
        os.environ['TF_ENABLE_XLA'] = '1'
        os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
        os.environ['TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32'] = '1'
        os.environ['TF_DISABLE_CUDNN_TENSOR_OP_MATH'] = '1'
        os.environ['TF_ENABLE_CUBLAS_TENSOR_OP_MATH_FP32'] = '1'
    
    
        import numpy as np
        import tensorflow as tf
    
        gpus = tf.config.experimental.list_physical_devices('GPU')
        if gpus:
            try:
                tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])
            except RuntimeError as e:
                print(e)
    
        from keras.models import Sequential
        from keras.layers import InputLayer, Dense, Flatten, Dropout, Conv2D, MaxPooling2D, Conv2DTranspose, LeakyReLU, Reshape, Activation, BatchNormalization, UpSampling2D
        from keras.activations import selu
        from keras.constraints import max_norm
        from keras.optimizers import Adam, SGD
        from keras.utils import to_categorical, normalize
        from keras.callbacks import ModelCheckpoint
        from keras.datasets import mnist
        from keras import losses
        from keras import backend as K
        import matplotlib.pyplot as plt
        import numpy as np
        import random
    
    
    Anna Neumann's avatar
    Anna Neumann committed
        #custom generator import
    
    Anna Neumann's avatar
    Anna Neumann committed
        from Generators.DataGenerator_whole import DataGenerator
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        train = os.listdir(path_train)
    
    Anna Neumann's avatar
    Anna Neumann committed
        train = sorted(train,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5])))
    
    Anna Neumann's avatar
    Anna Neumann committed
        valid = os.listdir(path_valid)
    
    Anna Neumann's avatar
    Anna Neumann committed
        valid = sorted(valid,key=lambda x: ((int(x.split("_")[2])),(int(x.split("_")[3])),(int(x.split("_")[4])),(x.split("_")[5])))
    
    Anna Neumann's avatar
    Anna Neumann committed
    
    
    Anna Neumann's avatar
    Anna Neumann committed
        train_generator = DataGenerator(path_train, option, reduction_divisor, batch_size, True)
        valid_generator = DataGenerator(path_valid, option, reduction_divisor, batch_size, True)
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        # BUILD MODEL
    
        max_norm_value = 100.0
        model = Sequential([
    
    Anna Neumann's avatar
    Anna Neumann committed
            InputLayer(input_shape=(260,128,1)),
            BatchNormalization(),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv1"),
    
    Anna Neumann's avatar
    Anna Neumann committed
            LeakyReLU(),
            Dropout(0.3, name="enc_drop1"),
            MaxPooling2D(pool_size=(2,2), name="enc_pool1"),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv2"),
            LeakyReLU(),
            MaxPooling2D(pool_size=(2,2), name="enc_pool2"),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv3"),
            LeakyReLU(),
            MaxPooling2D(pool_size=(2,2), name="enc_pool3"),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="enc_conv4"),
            LeakyReLU(),
            MaxPooling2D(pool_size=(2,2), name="enc_pool4"),
            Flatten(),
    
    Anna Neumann's avatar
    Anna Neumann committed
            Dense(units = 4352),
            Reshape((17,8,32)),
    
    Anna Neumann's avatar
    Anna Neumann committed
            UpSampling2D(size=(2,2), name="dec_up1"),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv1"),
            LeakyReLU(),
            UpSampling2D(size=(2,2), name="dec_up2"),
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv2"),
            LeakyReLU(),
            UpSampling2D(size=(2,2), name="dec_up3"),
    
    Anna Neumann's avatar
    Anna Neumann committed
            Conv2D(filters=32, kernel_size=(3,3), strides=1, padding="same", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv3"),
            LeakyReLU(),
            Dropout(0.3, name="dec_drop1"),
            UpSampling2D(size=(2,2), name="dec_up4"),
            Conv2D(filters=1, kernel_size=(3,3), strides=1, padding="same", activation="linear", kernel_constraint=max_norm(max_norm_value), kernel_initializer="he_normal", name="dec_conv4")
    
    Anna Neumann's avatar
    Anna Neumann committed
        ])
        # opt = Adam(lr=0.000001)
    
    Anna Neumann's avatar
    Anna Neumann committed
        model.compile(loss='mse', optimizer='adam', metrics=['mape', 'accuracy'])
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        # MODEL Train
    
    
    Anna Neumann's avatar
    Anna Neumann committed
        if not os.path.exists(path_weights_model):
    
    Anna Neumann's avatar
    Anna Neumann committed
                try:
    
    Anna Neumann's avatar
    Anna Neumann committed
                    os.mkdir(path_weights_model)
    
    Anna Neumann's avatar
    Anna Neumann committed
                except Exception as e:
                    print("Konnte Ordner für Gewichte nicht erstellen" + str(e))
    
    
    Anna Neumann's avatar
    Anna Neumann committed
        filepath = path_weights_model + "/weights-{epoch:02d}-{loss:.4f}.hdf5"
    
    Anna Neumann's avatar
    Anna Neumann committed
        checkpoint = ModelCheckpoint(
            filepath,
            monitor='loss',
            verbose=0,
            save_best_only=True,
            mode='min'
        )
        model.summary()
    
    Anna Neumann's avatar
    Anna Neumann committed
        history = model.fit(train_generator, steps_per_epoch = int(np.floor(len(train) // reduction_divisor / batch_size)), epochs = epochs, validation_data=valid_generator, validation_steps = int(np.floor(len(valid) // reduction_divisor / batch_size)), callbacks=[checkpoint], use_multiprocessing=True)
    
    Anna Neumann's avatar
    Anna Neumann committed
        model.summary()
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        model.save(path_save_model)
    
        index = path_save_model.split("/")
        path_save_nomodel = '/'.join(index[0:-1])
    
        loss_history = history.history["loss"]
        mape_history = history.history["mape"]
        accuracy_history = history.history["accuracy"]
        val_loss_history = history.history["val_loss"]
        val_mape_history = history.history["val_mape"]
        val_accuracy_history = history.history["val_accuracy"]
    
        dict_history = {'loss':loss_history, 'mape':mape_history, 'accuracy':accuracy_history, 'val_loss':val_loss_history, 'val_mape':val_mape_history, 'val_accuracy':val_accuracy_history}
        np.save(path_save_nomodel + '/' + plot_name, dict_history)
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        plt.style.use("ggplot")
        plt.figure()
        plt.plot(history.history["loss"], label="train_loss")
        plt.plot(history.history["val_loss"], label="val_loss")
        plt.title("Training Loss and Accuracy")
        plt.xlabel("Epochs")
        plt.ylabel("Loss/Accuracy")
        plt.legend(loc="lower left")
    
    Anna Neumann's avatar
    Anna Neumann committed
        index = path_save_model.split("/")
        path_save_nomodel = '/'.join(index[0:-1])
        plt.savefig(path_save_nomodel + '/' + plot_name + '.png', dpi=400)
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        plt.show()
    
    Anna Neumann's avatar
    Anna Neumann committed
    
        return