Newer
Older
// Only this file gets the implementation
#define REFPROP_IMPLEMENTATION
#define REFPROP_FUNCTION_MODIFIER
#include "REFPROP_lib.h"
#undef REFPROP_FUNCTION_MODIFIER
#undef REFPROP_IMPLEMENTATION
#include <stdlib.h>
#include <stdio.h>
#include <chrono>
#include <iostream>
#include <valarray>
#include <random>
#include <numeric>
#include "teqp/models/multifluid.hpp"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
struct OneTiming {
double value, sec_per_call;
};
template<typename Taus, typename Deltas>
auto some_REFPROP(int itau, int idelta, Taus &taus, Deltas &deltas) {
std::vector<OneTiming> o;
double z[20] = { 1.0 };
for (auto repeat = 0; repeat < 100; ++repeat) {
std::valarray<double> ps = 0.0 * taus;
double Arterm = -10000;
auto tic = std::chrono::high_resolution_clock::now();
for (auto i = 0; i < taus.size(); ++i) {
PHIXdll(itau, idelta, taus[i], deltas[i], z, Arterm); ps[i] = Arterm;
}
auto toc = std::chrono::high_resolution_clock::now();
double elap_us = std::chrono::duration<double>(toc - tic).count() / taus.size() * 1e6;
double val = std::accumulate(std::begin(ps), std::end(ps), 0.0) / ps.size();
OneTiming result = { val, elap_us };
o.emplace_back(result);
}
return o;
}
template<int itau, int idelta, typename Taus, typename Deltas, typename TT, typename RHO, typename Model>
auto some_teqp(const Taus& taus, const Deltas& deltas, const Model &model, const TT &Ts, const RHO &rhos) {
std::vector<OneTiming> out;
// And the same example with teqp
auto N = taus.size();
auto c = (Eigen::ArrayXd(1) << 1.0).finished();
using tdx = TDXDerivatives<Model, double, decltype(c)>;
for (auto counter = 0; counter < 100; ++counter)
{
double o = 0.0;
auto tic = std::chrono::high_resolution_clock::now();
for (auto j = 0; j < N; ++j) {
if constexpr (itau == 0 && idelta == 0) {
o += tdx::get_Ar00(model, Ts[j], rhos[j], c);
}
else if constexpr (itau == 0 && idelta == 1) {
o += tdx::get_Ar01(model, Ts[j], rhos[j], c);
//o += tdx::get_Ar0n<1>(model, Ts[j], rhos[j], c)[1];
else if constexpr (itau == 0 && idelta > 1) {
o += tdx::get_Ar0n<idelta>(model, Ts[j], rhos[j], c)[idelta];
}
}
auto toc = std::chrono::high_resolution_clock::now();
double elap_us = std::chrono::duration<double>(toc - tic).count() / taus.size() * 1e6;
double val = o / N;
OneTiming result = { val, elap_us };
out.emplace_back(result);
}
return out;
}
template<int itau, int idelta, typename Taus, typename Deltas, typename TT, typename RHO, typename Model>
auto one_deriv(Taus& taus, Deltas& deltas, const Model& model, TT& Ts, RHO& rhos) {
auto check_values = [](auto res) {
Eigen::ArrayXd vals(res.size());
for (auto i = 0; i < res.size(); ++i) { vals[i] = res[i].value; }
if (std::abs(vals.maxCoeff() - vals.minCoeff()) > 1e-15 * std::abs(vals.minCoeff())) {
throw std::invalid_argument("Didn't get the same value for all inputs");
}
return vals.mean();
};
auto timingREFPROP = some_REFPROP(itau, idelta, taus, deltas);
auto timingteqp = some_teqp<itau, idelta>(taus, deltas, model, Ts, rhos);
std::cout << "Values:" << check_values(timingREFPROP) << ", " << check_values(timingteqp) << std::endl;
auto N = timingREFPROP.size();
for (auto i = 1; i < 6; ++i) {
std::cout << timingteqp[N-i].sec_per_call << ", " << timingREFPROP[N-i].sec_per_call << std::endl;
}
}
int main()
{
// You may need to change this path to suit your installation
// Note: forward-slashes are recommended.
std::string path = "C:/Program Files (x86)/REFPROP";
std::string DLL_name = "REFPRP64.dll";
// Load the shared library and set up the fluid
std::string err;
bool loaded_REFPROP = load_REFPROP(err, path, DLL_name);
printf("Loaded refprop: %s @ address %zu\n", loaded_REFPROP ? "true" : "false", REFPROP_address());
if (!loaded_REFPROP){return EXIT_FAILURE; }
SETPATHdll(const_cast<char*>(path.c_str()), 400);
int ierr = 0, nc = 1;
char herr[255], hfld[10000] = "PROPANE", hhmx[255] = "HMX.BNC", href[4] = "DEF";
SETUPdll(nc, hfld, hhmx, href, ierr, herr, 10000, 255, 3, 255);
{
char hflag[256] = "Cache ";
int jFlag = 3, kFlag = -1;
FLAGSdll(hflag, jFlag, kFlag, ierr, herr, 255, 255);
std::cout << kFlag << std::endl;
}
if (ierr != 0) printf("This ierr: %d herr: %s\n", ierr, herr);
{
auto model = build_multifluid_model({ "n-Propane" }, "../mycp", "../mycp/dev/mixtures/mixture_binary_pairs.json");
double rhoc = 1/model.redfunc.vc[0];
double Tc = model.redfunc.Tc[0];
//
std::valarray<double> taus(100000);
std::uniform_real_distribution<double> unif(2.0941098901098902, 2.1941098901098902);
std::transform(std::begin(taus), std::end(taus), std::begin(taus), [&unif, &re](double x) { return unif(re); });
std::valarray<double> deltas(taus.size()); {
std::uniform_real_distribution<double> unif(0.0015981745536338204, 0.0016981745536338204);
std::transform(std::begin(deltas), std::end(deltas), std::begin(deltas), [&unif, &re](double x) { return unif(re); });
auto Ts = Tc / taus;
auto rhos = deltas * rhoc;
one_deriv<0, 0>(taus, deltas, model, Ts, rhos);
one_deriv<0, 1>(taus, deltas, model, Ts, rhos);
one_deriv<0, 2>(taus, deltas, model, Ts, rhos);
one_deriv<0, 3>(taus, deltas, model, Ts, rhos);