Skip to content
Snippets Groups Projects
multifluid.cpp 5.02 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "teqp/core.hpp"
    
    #include "teqp/models/multifluid.hpp"
    
    #include <optional>
    
    class Timer {
    private:
        int N;
        decltype(std::chrono::steady_clock::now()) tic;
    public:
        Timer(int N) : N(N), tic(std::chrono::steady_clock::now()){}
        ~Timer() {
            auto elap = std::chrono::duration<double>(std::chrono::steady_clock::now()-tic).count();
            std::cout << elap/N*1e6 << " us/call" << std::endl;
        }
    };
    
    
    void trace_critical_loci(const std::string &coolprop_root, const nlohmann::json &BIPcollection) {
        std::vector<std::vector<std::string>> pairs = { 
            { "CarbonDioxide", "R1234YF" }, { "CarbonDioxide","R1234ZE(E)" }, { "ETHYLENE","R1243ZF" }, 
            { "R1234YF","R1234ZE(E)" }, { "R134A","R1234YF" }, { "R23","R1234YF" }, 
            { "R32","R1123" }, { "R32","R1234YF" }, { "R32","R1234ZE(E)" }
        };
        for (auto &pp : pairs) {
            using ModelType = decltype(build_multifluid_model(pp, coolprop_root, BIPcollection));
    
            std::optional<ModelType> optmodel{std::nullopt};
    
                optmodel.emplace(build_multifluid_model(pp, coolprop_root, BIPcollection));
    
            }
            catch (std::exception &e) {
                std::cout << e.what() << std::endl;
                std::cout << pp[0] << "&" << pp[1] << std::endl;
                continue;
            }
            for (int i : {0, 1}){
    
                const auto &model = optmodel.value();
                auto rhoc0 = 1.0 / model.redfunc.vc[i];
                auto T0 = model.redfunc.Tc[i];
                std::valarray<double> rhovec(2); rhovec[i] = { rhoc0 }; rhovec[1L - i] = 0.0;
                // Non-analytic terms make it impossible to initialize AT the pure components
                if (pp[0] == "CarbonDioxide" || pp[1] == "CarbonDioxide") {
                    if (i == 0) {
                        rhovec[i] *= 0.9999;
                        rhovec[1L - i] = 0.9999;
                    }
                    else {
                        rhovec[i] *= 1.0001;
                        rhovec[1L - i] = 1.0001;
                    }
                    double zi = rhovec[i] / rhovec.sum();
                    double T = zi * model.redfunc.Tc[i] + (1 - zi) * model.redfunc.Tc[1L - i];
                    double z0 = (i == 0) ? zi : 1-zi;
                    auto [Tnew, rhonew] = critical_polish_molefrac(model, T, rhovec, z0);
                    T0 = Tnew;
                    rhoc0 = rhovec.sum();
                }
                std::string filename = pp[0] + "_" + pp[1] + ".csv";
                trace_critical_arclength_binary(model, rhovec, T0, filename);
    
    int main(){
    
        std::string coolprop_root = "C:/Users/ihb/Code/CoolProp";
        coolprop_root = "../mycp";
        auto BIPcollection = nlohmann::json::parse(
            std::ifstream(coolprop_root + "/dev/mixtures/mixture_binary_pairs.json")
        );
    
        // Critical curves
        {
            Timer t(1);
            trace_critical_loci(coolprop_root, BIPcollection);
        }
    
    
    {
        auto model = build_multifluid_model({ "methane", "ethane" }, coolprop_root, BIPcollection);
        std::valarray<double> rhovec = { 1.0, 2.0 };
        double T = 300;
        {
            const std::valarray<double> molefrac = { rhovec[0]/rhovec.sum(), rhovec[1]/rhovec.sum() };
            const double rho = rhovec.sum();
            volatile double T = 300.0;
            constexpr int N = 10000;
            volatile double alphar;
            double rrrr = get_Ar01(model, T, rho, molefrac);
            double rrrr2 = get_Ar02(model, T, rho, molefrac);
            {
                Timer t(N);
                for (auto i = 0; i < N; ++i){
                    alphar = model.alphar(T, rho, molefrac);
                }
                std::cout << alphar << std::endl;
            }
            {
                Timer t(N);
                for (auto i = 0; i < N; ++i) {
    
                    alphar = get_Ar01<ADBackends::complex_step>(model, T, rho, molefrac);
    
                std::cout << alphar << "; 1st CSD" << std::endl;
            }
            {
                Timer t(N);
                for (auto i = 0; i < N; ++i) {
    
                    alphar = get_Ar01<ADBackends::autodiff>(model, T, rho, molefrac);
    
                }
                std::cout << alphar << "; 1st autodiff::autodiff" << std::endl;
    
                    alphar = get_Ar01<ADBackends::multicomplex>(model, T, rho, molefrac);
    
                std::cout << alphar << "; 1st MCX" << std::endl;
    
            }
            {
                Timer t(N);
                for (auto i = 0; i < N; ++i) {
                    alphar = get_Ar02(model, T, rho, molefrac);
                }
                std::cout << alphar << std::endl;
            }
        }
    
        auto alphar = model.alphar(T, rhovec);
        auto Ar01 = get_Ar01(model, T, rhovec);
        auto Ar10 = get_Ar10(model, T, rhovec);
        auto splus = get_splus(model, T, rhovec);
    
        std::valarray<double> molefrac = { 1.0/3.0, 2.0/3.0 };
        auto B2 = get_B2vir(model, T, molefrac);
    
    
    Ian Bell's avatar
    Ian Bell committed
        std::valarray<double> dilrho = 0.00000000001*molefrac;
    
        auto B2other = get_Ar01(model, T, dilrho)/dilrho.sum();
    
    
    Ian Bell's avatar
    Ian Bell committed
        std::valarray<double> zerorho = 0.0*rhovec;
        auto Ar01dil = get_Ar01(model, T, zerorho);
    
        return EXIT_SUCCESS;