Skip to content
Snippets Groups Projects
multifluid.hpp 24.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "nlohmann/json.hpp"
    
    
    Ian Bell's avatar
    Ian Bell committed
    #include <Eigen/Dense>
    #include <fstream>
    
    #include <cmath>
    
    #include <optional>
    #include "teqp/types.hpp"
    
    #include "MultiComplex/MultiComplex.hpp"
    
    Ian Bell's avatar
    Ian Bell committed
    // See https://eigen.tuxfamily.org/dox/TopicCustomizing_CustomScalar.html
    namespace Eigen {
    
        template<typename TN> struct NumTraits<mcx::MultiComplex<TN>> : NumTraits<double> // permits to get the epsilon, dummy_precision, lowest, highest functions
    
    Ian Bell's avatar
    Ian Bell committed
        {
            enum {
                IsComplex = 1,
                IsInteger = 0,
                IsSigned = 1,
                RequireInitialization = 1,
                ReadCost = 1,
                AddCost = 3,
                MulCost = 3
            };
        };
    }
    
    
    template<typename EOSCollection>
    class CorrespondingStatesContribution {
    
    private:
        const EOSCollection EOSs;
    public:
        CorrespondingStatesContribution(EOSCollection&& EOSs) : EOSs(EOSs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
                alphar = alphar + molefracs[i] * EOSs[i].alphar(tau, delta);
            }
            return alphar;
        }
    };
    
    template<typename FCollection, typename DepartureFunctionCollection>
    class DepartureContribution {
    
    private:
        const FCollection F;
        const DepartureFunctionCollection funcs;
    public:
        DepartureContribution(FCollection&& F, DepartureFunctionCollection&& funcs) : F(F), funcs(funcs) {};
    
        template<typename TauType, typename DeltaType, typename MoleFractions>
        auto alphar(const TauType& tau, const DeltaType& delta, const MoleFractions& molefracs) const {
    
            using resulttype = std::common_type_t<decltype(tau), decltype(molefracs[0]), decltype(delta)>; // Type promotion, without the const-ness
    
            resulttype alphar = 0.0;
            auto N = molefracs.size();
            for (auto i = 0; i < N; ++i) {
    
    Ian Bell's avatar
    Ian Bell committed
                    alphar = alphar + molefracs[i] * molefracs[j] * F(i, j) * funcs[i][j].alphar(tau, delta);
    
                }
            }
            return alphar;
        }
    };
    
    template<typename ReducingFunction, typename CorrespondingTerm, typename DepartureTerm>
    
    class MultiFluid {  
    
    public:
    
        const ReducingFunction redfunc;
        const CorrespondingTerm corr;
        const DepartureTerm dep;
    
    
        const double R = 1.380649e-23 * 6.02214076e23; ///< Exact value, given by k_B*N_A
    
    
        MultiFluid(ReducingFunction&& redfunc, CorrespondingTerm&& corr, DepartureTerm&& dep) : redfunc(redfunc), corr(corr), dep(dep) {};
    
        template<typename TType, typename RhoType>
        auto alphar(TType T,
            const RhoType& rhovec,
            const std::optional<typename RhoType::value_type> rhotot = std::nullopt) const
        {
    
    Ian Bell's avatar
    Ian Bell committed
            typename RhoType::value_type rhotot_ = (rhotot.has_value()) ? rhotot.value() : std::accumulate(std::begin(rhovec), std::end(rhovec), (decltype(rhovec[0]))0.0);
    
            return alphar(T, rhotot_, molefrac);
        }
    
        template<typename TType, typename RhoType, typename MoleFracType>
    
        auto alphar(const TType &T,
            const RhoType &rho,
    
            const MoleFracType& molefrac) const
        {
    
            auto Tred = forceeval(redfunc.get_Tr(molefrac));
            auto rhored = forceeval(redfunc.get_rhor(molefrac));
    
            auto delta = forceeval(rho / rhored);
            auto tau = forceeval(Tred / T);
            auto val = corr.alphar(tau, delta, molefrac) + dep.alphar(tau, delta, molefrac);
    
            return forceeval(val);
    
    Ian Bell's avatar
    Ian Bell committed
    class MultiFluidReducingFunction {
    private:
        Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
    
    
    Ian Bell's avatar
    Ian Bell committed
        template <typename Num>
    
    Ian Bell's avatar
    Ian Bell committed
        auto cube(Num x) const {
            return x*x*x;
        }
        template <typename Num>
        auto square(Num x) const {
            return x*x;
    
    Ian Bell's avatar
    Ian Bell committed
    public:
    
        Eigen::ArrayXd Tc, vc;
    
    Ian Bell's avatar
    Ian Bell committed
    
        template<typename ArrayLike>
        MultiFluidReducingFunction(
            const Eigen::MatrixXd& betaT, const Eigen::MatrixXd& gammaT,
            const Eigen::MatrixXd& betaV, const Eigen::MatrixXd& gammaV,
            const ArrayLike& Tc, const ArrayLike& vc)
    
    Ian Bell's avatar
    Ian Bell committed
            : betaT(betaT), gammaT(gammaT), betaV(betaV), gammaV(gammaV), Tc(Tc), vc(vc) {
    
    Ian Bell's avatar
    Ian Bell committed
    
            auto N = Tc.size();
    
            YT.resize(N, N); YT.setZero();
            Yv.resize(N, N); Yv.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
                    YT(i, j) = betaT(i, j) * gammaT(i, j) * sqrt(Tc[i] * Tc[j]);
                    YT(j, i) = betaT(j, i) * gammaT(j, i) * sqrt(Tc[i] * Tc[j]);
                    Yv(i, j) = 1.0 / 8.0 * betaV(i, j) * gammaV(i, j) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                    Yv(j, i) = 1.0 / 8.0 * betaV(j, i) * gammaV(j, i) * cube(cbrt(vc[i]) + cbrt(vc[j]));
                }
            }
        }
    
        template <typename MoleFractions>
    
    Ian Bell's avatar
    Ian Bell committed
        auto Y(const MoleFractions& z, const Eigen::ArrayXd& Yc, const Eigen::MatrixXd& beta, const Eigen::MatrixXd& Yij) const {
    
    
    Ian Bell's avatar
    Ian Bell committed
            auto N = z.size();
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum1 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
                sum1 = sum1 + square(z[i]) * Yc[i];
            }
            
    
    Ian Bell's avatar
    Ian Bell committed
            typename MoleFractions::value_type sum2 = 0.0;
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto i = 0; i < N-1; ++i){
                for (auto j = i+1; j < N; ++j) {
    
    Ian Bell's avatar
    Ian Bell committed
                    sum2 = sum2 + 2.0*z[i]*z[j]*(z[i] + z[j])/(square(beta(i, j))*z[i] + z[j])*Yij(i, j);
    
    Ian Bell's avatar
    Ian Bell committed
    
            return sum1 + sum2;
    
    Ian Bell's avatar
    Ian Bell committed
        }
    
        static auto get_BIPdep(const nlohmann::json& collection, const std::vector<std::string>& components) {
    
    
            // convert string to upper case
            auto toupper = [](const std::string s){ auto data = s; std::for_each(data.begin(), data.end(), [](char& c) { c = ::toupper(c); }); return data;};
    
            std::string comp0 = toupper(components[0]);
            std::string comp1 = toupper(components[1]);
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto& el : collection) {
    
                std::string name1 = toupper(el["Name1"]);
                std::string name2 = toupper(el["Name2"]);
                if (comp0 == name1 && comp1 == name2) {
    
    Ian Bell's avatar
    Ian Bell committed
                    return el;
                }
    
    Ian Bell's avatar
    Ian Bell committed
                    return el;
                }
            }
    
            throw std::invalid_argument("Can't match this binary pair");
    
    Ian Bell's avatar
    Ian Bell committed
        }
        static auto get_binary_interaction_double(const nlohmann::json& collection, const std::vector<std::string>& components) {
            auto el = get_BIPdep(collection, components);
    
            double betaT = el["betaT"], gammaT = el["gammaT"], betaV = el["betaV"], gammaV = el["gammaV"];
            // Backwards order of components, flip beta values
            if (components[0] == el["Name2"] && components[1] == el["Name1"]) {
                betaT = 1.0 / betaT;
                betaV = 1.0 / betaV;
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
        static auto get_BIP_matrices(const nlohmann::json& collection, const std::vector<std::string>& components) {
            Eigen::MatrixXd betaT, gammaT, betaV, gammaV, YT, Yv;
            auto N = components.size();
            betaT.resize(N, N); betaT.setZero();
            gammaT.resize(N, N); gammaT.setZero();
            betaV.resize(N, N); betaV.setZero();
            gammaV.resize(N, N); gammaV.setZero();
            for (auto i = 0; i < N; ++i) {
                for (auto j = i + 1; j < N; ++j) {
                    auto [betaT_, gammaT_, betaV_, gammaV_] = get_binary_interaction_double(collection, { components[i], components[j] });
                    betaT(i, j) = betaT_;         betaT(j, i) = 1.0 / betaT(i, j);
                    gammaT(i, j) = gammaT_;       gammaT(j, i) = gammaT(i, j);
                    betaV(i, j) = betaV_;         betaV(j, i) = 1.0 / betaV(i, j);
                    gammaV(i, j) = gammaV_;       gammaV(j, i) = gammaV(i, j);
                }
            }
            return std::make_tuple(betaT, gammaT, betaV, gammaV);
        }
        static auto get_Tcvc(const std::string& coolprop_root, const std::vector<std::string>& components) {
    
    Ian Bell's avatar
    Ian Bell committed
            Eigen::ArrayXd Tc(components.size()), vc(components.size());
    
    Ian Bell's avatar
    Ian Bell committed
            using namespace nlohmann;
    
    Ian Bell's avatar
    Ian Bell committed
            auto i = 0;
    
    Ian Bell's avatar
    Ian Bell committed
            for (auto& c : components) {
                auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + c + ".json"));
                auto red = j["EOS"][0]["STATES"]["reducing"];
                double Tc_ = red["T"];
                double rhoc_ = red["rhomolar"];
    
    Ian Bell's avatar
    Ian Bell committed
                Tc[i] = Tc_;
                vc[i] = 1.0 / rhoc_;
                i++;
    
    Ian Bell's avatar
    Ian Bell committed
            }
            return std::make_tuple(Tc, vc);
        }
        static auto get_F_matrix(const nlohmann::json& collection, const std::vector<std::string>& components) {
            Eigen::MatrixXd F(components.size(), components.size());
            auto N = components.size();
            for (auto i = 0; i < N; ++i) {
                F(i, i) = 0.0;
                for (auto j = i + 1; j < N; ++j) {
                    auto el = get_BIPdep(collection, { components[i], components[j] });
    
                    if (el.empty()) {
                        F(i, j) = 0.0;
                        F(j, i) = 0.0;
                    }
                    else{
                        F(i, j) = el["F"];
                        F(j, i) = el["F"];
                    }   
    
    Ian Bell's avatar
    Ian Bell committed
                }
            }
            return F;
        }
    
    Ian Bell's avatar
    Ian Bell committed
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return Y(molefracs, Tc, betaT, YT); }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return 1.0 / Y(molefracs, vc, betaV, Yv); }
    
        enum class types { NOTSETTYPE, GERG2004, GaussianExponential, NoDeparture };
    
    private:
        types type = types::NOTSETTYPE;
    public:
        Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
    
        void set_type(const std::string& kind) {
            if (kind == "GERG-2004" || kind == "GERG-2008") {
                type = types::GERG2004;
            }
            else if (kind == "Gaussian+Exponential") {
                type = types::GaussianExponential;
            }
    
            else if (kind == "none") {
                type = types::NoDeparture;
            }
    
            else {
                throw std::invalid_argument("Bad type:" + kind);
            }
        }
    
        template<typename TauType, typename DeltaType>
        auto alphar(const TauType& tau, const DeltaType& delta) const {
            switch (type) {
            case (types::GaussianExponential):
    
                return forceeval((n * exp(t*log(tau) + d*log(delta)-c*pow(delta, l)-eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum());
    
                return forceeval((n * exp(t*log(tau) + d*log(delta) -eta * (delta - epsilon).square() - beta * (delta - gamma))).sum()); 
    
            case (types::NoDeparture):
    
            default:
                throw - 1;
            }
        }
    };
    
    auto get_departure_function_matrix(const std::string& coolprop_root, const nlohmann::json& BIPcollection, const std::vector<std::string>& components) {
    
        // Allocate the matrix with default models
    
        std::vector<std::vector<MultiFluidDepartureFunction>> funcs(components.size()); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
    
    
        auto depcollection = nlohmann::json::parse(std::ifstream(coolprop_root + "/dev/mixtures/mixture_departure_functions.json"));
    
        auto get_departure_function = [&depcollection](const std::string& Name) {
            for (auto& el : depcollection) {
                if (el["Name"] == Name) { return el; }
            }
            throw std::invalid_argument("Bad argument");
        };
    
        for (auto i = 0; i < funcs.size(); ++i) {
            for (auto j = i + 1; j < funcs.size(); ++j) {
                auto BIP = MultiFluidReducingFunction::get_BIPdep(BIPcollection, { components[i], components[j] });
                auto function = BIP["function"];
                if (!function.empty()) {
    
                    auto info = get_departure_function(function);
                    auto N = info["n"].size();
    
                    auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
                    auto eigorempty = [&info, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
                        if (!info[name].empty()) {
                            return toeig(info[name]);
                        }
                        else {
                            return Eigen::ArrayXd::Zero(N);
                        }
                    };
    
                    MultiFluidDepartureFunction f;
                    f.set_type(info["type"]);
                    f.n = toeig(info["n"]);
                    f.t = toeig(info["t"]);
                    f.d = toeig(info["d"]);
    
                    f.eta = eigorempty("eta");
                    f.beta = eigorempty("beta");
                    f.gamma = eigorempty("gamma");
                    f.epsilon = eigorempty("epsilon");
    
                    Eigen::ArrayXd c(f.n.size()), l(f.n.size()); c.setZero();
                    if (info["l"].empty()) {
                        // exponential part not included
                        l.setZero();
                    }
                    else {
                        l = toeig(info["l"]);
                        // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                        for (auto i = 0; i < c.size(); ++i) {
                            if (l[i] > 0) {
                                c[i] = 1.0;
                            }
                        }
                    }
    
                    f.l = l;
                    f.c = c;
                    funcs[i][j] = f;
                    funcs[j][i] = f;
                    int rr = 0;
                }
    
                else {
                    MultiFluidDepartureFunction f;
                    f.set_type("none");
                    funcs[i][j] = f;
                    funcs[j][i] = f;
                }
    
    /// From Ulrich Deiters
    template <typename T>                             // arbitrary integer power
    T powi(const T& x, int n) {
    
        if (n == 0)
            return static_cast<T>(1.0);                       // x^0 = 1 even for x == 0
        else if (n < 0){
    
            if constexpr (isDual<T> || isExpr<T>) {
    
                return eval(powi(eval(1.0/x), -n));
    
            }
            else {
                return powi(static_cast<T>(1.0) / x, -n);
            }
        }
    
        else {
            T y(x), xpwr(x);
            n--;
            while (n > 0) {
                if (n % 2 == 1) {
                    y = y*xpwr;
                    n--;
                }
                xpwr = xpwr*xpwr;
                n /= 2;
            }
            return y;
        }
    }
    
    template<typename T>
    
    inline auto powIVi(const T& x, const Eigen::ArrayXi& e) {
        //return e.binaryExpr(e.cast<T>(), [&x](const auto&& a_, const auto& e_) {return static_cast<T>(powi(x, a_)); });
        static Eigen::Array<T, Eigen::Dynamic, 1> o;
        o.resize(e.size());
    
        //return e.cast<T>().unaryExpr([&x](const auto& e_) {return powi(x, e_); }).eval();
    
    //template<typename T>
    //auto powIV(const T& x, const Eigen::ArrayXd& e) {
    //    Eigen::Array<T, Eigen::Dynamic, 1> o = e.cast<T>();
    //    return o.unaryExpr([&x](const auto& e_) {return powi(x, e_); } ).eval();
    //}
    
    
    Ian Bell's avatar
    Ian Bell committed
    template<typename T>
    auto pow(const std::complex<T> &x, const Eigen::ArrayXd& e) {
        Eigen::Array<std::complex<T>, Eigen::Dynamic, 1> o(e.size());
        for (auto i = 0; i < e.size(); ++i) {
            o[i] = pow(x, e[i]);
        }
        return o;
    }
    
    template<typename T>
    
    auto pow(const mcx::MultiComplex<T> &x, const Eigen::ArrayXd& e) {
        Eigen::Array<mcx::MultiComplex<T>, Eigen::Dynamic, 1> o(e.size());
    
    Ian Bell's avatar
    Ian Bell committed
        for (auto i = 0; i < e.size(); ++i) {
            o[i] = pow(x, e[i]);
        }
        return o;
    }
    
    template<class T>
    struct PowIUnaryFunctor {
        const T m_base;
        PowIUnaryFunctor(T base) : m_base(base) {};
        typedef T result_type;
        result_type operator()(const int& e) const{
            switch (e) {
            case 0:
                return 1.0;
            case 1:
                return m_base;
            case 2:
                return m_base * m_base;
            default:
                return powi(m_base, e);
            }
        }
    };
    
    
        enum class types { NOTSETTYPE, GERG2004, GaussianExponential, GaussianExponentialNonAnalytic };
    
    private:
        types type = types::NOTSETTYPE;
    public:
        Eigen::ArrayXd n, t, d, c, l, eta, beta, gamma, epsilon;
    
        Eigen::ArrayXd na_A, na_B, na_C, na_D, na_a, na_b, na_beta, na_n;
    
    
        void allocate(std::size_t N) {
    
            auto go = [&N](Eigen::ArrayXd &v){ v.resize(N); v.setZero(); };
            go(n); go(t); go(d); go(l); go(c); go(eta); go(beta); go(gamma); go(epsilon);
        }
    
    
        void allocate_na(std::size_t N) {
            auto go = [&N](Eigen::ArrayXd& v) { v.resize(N); v.setZero(); };
            go(na_A); go(na_B); go(na_C); go(na_D); go(na_a); go(na_b); go(na_beta); go(na_n);
        }
    
        void set_type(const std::string& kind) {
            if (kind == "GaussianExponential") {
                type = types::GaussianExponential;
            }
            else if (kind == "GaussianExponentialNonAnalytic") {
                type = types::GaussianExponentialNonAnalytic;
            }
            else {
                throw std::invalid_argument("Bad type to set_type:" + kind);
            }
        }
    
    
        template<typename TauType, typename DeltaType>
        auto alphar(const TauType& tau, const DeltaType& delta) const {
    
            switch (type) {
    
                case types::GaussianExponential:{                
                    return forceeval((n * exp(t * log(tau) + d * log(delta) - c * powIVi(delta, l_i) - eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum());
                    //return forceeval((n*exp(t*log(tau) + d*log(delta) - c*l_i.unaryViewExpr(PowIUnaryFunctor(delta)) - eta*(delta - epsilon).square() - beta*(tau - gamma).square())).sum());
                    break;
                }
    
                case types::GaussianExponentialNonAnalytic:
                    {
                    // All the "normal" terms
    
                    auto o1 = (n * exp(t * log(tau) + d * log(delta) - c * powIVi(delta, l_i) - eta * (delta - epsilon).square() - beta * (tau - gamma).square())).sum();
    
                    
                    // The non-analytic terms
    
                    auto square = [](auto x) { return x * x; };
                    auto delta_min1_sq = square(delta-1.0);
    
                    auto Psi = (exp(-na_C*delta_min1_sq -na_D*square(tau-1.0))).eval();
    
                    const Eigen::ArrayXd k = 1.0/(2.0*na_beta);
    
                    auto theta = ((1.0-tau) + na_A*pow(delta_min1_sq, k)).eval();
                    auto Delta = (theta.square() + na_B*pow(delta_min1_sq, na_a)).eval();
    
                    auto o2 = (na_n*pow(Delta, na_b)*delta*Psi).eval().sum();
    
        }
    };
    
    auto get_EOS(const std::string& coolprop_root, const std::string& name) 
    {
        using namespace nlohmann;
        auto j = json::parse(std::ifstream(coolprop_root + "/dev/fluids/" + name + ".json"));
        auto alphar = j["EOS"][0]["alphar"];
    
    
        std::size_t ncoeff_conventional = 0;
    
        const std::vector<std::string> conventional_types = {"ResidualHelmholtzPower", "ResidualHelmholtzGaussian"};
        const std::vector<std::string> weird_types = { "ResidualHelmholtzNonAnalytic" };
    
        auto isallowed = [&](const auto &conventional_types, const std::string &name){ 
            for (auto &a : conventional_types){ if (name == a){return true;};} return false;
        };
    
    
        for (auto& term : alphar) {
            std::string type = term["type"];
    
            if (!isallowed(conventional_types, type) & !isallowed(weird_types, type)){
    
                throw std::invalid_argument("Bad type:" + type);
            }
            else{
    
                if (isallowed(conventional_types, type)){
                    ncoeff_conventional += term["n"].size();
                }
    
        eos.allocate(ncoeff_conventional); // Allocate arrays to the right size for conventional terms, fill with zero
        eos.set_type("GaussianExponential"); // The default, generic formulation
    
        
        auto toeig = [](const std::vector<double>& v) -> Eigen::ArrayXd { return Eigen::Map<const Eigen::ArrayXd>(&(v[0]), v.size()); };
    
    
        /// lambda function for adding non-analytic terms
        auto add_na = [&eos, &toeig](auto &term){
            auto eigorzero = [&term, &toeig](const std::string& name) -> Eigen::ArrayXd {
                return toeig(term[name]);
            };
            eos.na_n = eigorzero("n");
            eos.na_A = eigorzero("A");
            eos.na_B = eigorzero("B");
            eos.na_C = eigorzero("C");
            eos.na_D = eigorzero("D");
            eos.na_a = eigorzero("a");
            eos.na_b = eigorzero("b");
            eos.na_beta = eigorzero("beta");
            eos.set_type("GaussianExponentialNonAnalytic");
        };
    
        std::size_t offset = 0;
    
            if (term["type"] == "ResidualHelmholtzNonAnalytic") {
                add_na(term); continue;
            }
            std::size_t N = term["n"].size(); 
    
            auto eigorzero = [&term, &toeig, &N](const std::string& name) -> Eigen::ArrayXd {
                if (!term[name].empty()) {
                    return toeig(term[name]);
                }
                else {
                    return Eigen::ArrayXd::Zero(N);
                }
    
    
            eos.n.segment(offset, N) = eigorzero("n");
            eos.t.segment(offset, N) = eigorzero("t");
            eos.d.segment(offset, N) = eigorzero("d");
            eos.eta.segment(offset, N) = eigorzero("eta");
            eos.beta.segment(offset, N) = eigorzero("beta");
            eos.gamma.segment(offset, N) = eigorzero("gamma");
            eos.epsilon.segment(offset, N) = eigorzero("epsilon");
    
            Eigen::ArrayXd c(N), l(N); c.setZero();
            if (term["l"].empty()) {
                // exponential part not included
                l.setZero();
            }
            else {
                l = toeig(term["l"]);
                // l is included, use it to build c; c_i = 1 if l_i > 0, zero otherwise
                for (auto i = 0; i < c.size(); ++i) {
                    if (l[i] > 0) {
                        c[i] = 1.0;
                    }
                }
            }
            eos.c.segment(offset, N) = c;
            eos.l.segment(offset, N) = l;
    
            offset += N;
        }
    
        eos.l_i = eos.l.cast<int>();
        
        if (((eos.l_i.cast<double>() - eos.l).cwiseAbs() > 0.0).any()) {
            throw std::invalid_argument("Non-integer entry in l found");
        }
    
        return eos;
    }
    
    auto get_EOSs(const std::string& coolprop_root, const std::vector<std::string>& names) {
        std::vector<MultiFluidEOS> EOSs;
        for (auto& name : names) {
            EOSs.emplace_back(get_EOS(coolprop_root, name));
        }
        return EOSs;
    }
    
    
    auto build_multifluid_model(const std::vector<std::string>& components, const std::string& coolprop_root, const std::string& BIPcollectionpath) {
    
        const auto BIPcollection = nlohmann::json::parse(std::ifstream(BIPcollectionpath));
    
    
        auto [Tc, vc] = MultiFluidReducingFunction::get_Tcvc(coolprop_root, components);
        auto F = MultiFluidReducingFunction::get_F_matrix(BIPcollection, components);
        auto funcs = get_departure_function_matrix(coolprop_root, BIPcollection, components);
        auto EOSs = get_EOSs(coolprop_root, components);
        auto [betaT, gammaT, betaV, gammaV] = MultiFluidReducingFunction::get_BIP_matrices(BIPcollection, components);
    
        auto redfunc = MultiFluidReducingFunction(betaT, gammaT, betaV, gammaV, Tc, vc);
    
        return MultiFluid(
            std::move(redfunc),
            std::move(CorrespondingStatesContribution(std::move(EOSs))),
            std::move(DepartureContribution(std::move(F), std::move(funcs)))
        );
    }
    
    
    
    class DummyEOS {
    public:
        template<typename TType, typename RhoType> auto alphar(TType tau, const RhoType& delta) const { return tau * delta; }
    };
    class DummyReducingFunction {
    public:
    
    Ian Bell's avatar
    Ian Bell committed
        template<typename MoleFractions> auto get_Tr(const MoleFractions& molefracs) const { return molefracs[0]; }
        template<typename MoleFractions> auto get_rhor(const MoleFractions& molefracs) const { return molefracs[0]; }
    
    };
    auto build_dummy_multifluid_model(const std::vector<std::string>& components) {
        std::vector<DummyEOS> EOSs(2);
        std::vector<std::vector<DummyEOS>> funcs(2); for (auto i = 0; i < funcs.size(); ++i) { funcs[i].resize(funcs.size()); }
        std::vector<std::vector<double>> F(2); for (auto i = 0; i < F.size(); ++i) { F[i].resize(F.size()); }
    
        struct Fwrapper {
        private: 
            const std::vector<std::vector<double>> F_;
        public:
            Fwrapper(const std::vector<std::vector<double>> &F) : F_(F){};
            auto operator ()(std::size_t i, std::size_t j) const{ return F_[i][j]; }
        };
        auto ff = Fwrapper(F);
        auto redfunc = DummyReducingFunction();
        return MultiFluid(std::move(redfunc), std::move(CorrespondingStatesContribution(std::move(EOSs))), std::move(DepartureContribution(std::move(ff), std::move(funcs))));
    }
    void test_dummy() {
        auto model = build_dummy_multifluid_model({ "A", "B" });
        std::valarray<double> rhovec = { 1.0, 2.0 };
        auto alphar = model.alphar(300.0, rhovec);
    }